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Abstract

I study a platform-mediated two-sided matching with incomplete infor-
mation. Platform users voluntarily disclose their taste information to the
platform, and the platform aggregates and redistributes the collected infor-
mation back to each user before they form matches. I characterize conditions
under which the platform can (or cannot) achieve a optimal matching outcome
by the exchange of information. It is shown that a simple rule of recommen-
dation can induce full disclosure of user information and an optimal matching.
I also study an optimal customized pricing schedule and show that full extrac-
tion of user surplus is possible. Lastly, as an application, I study a two-way
communication protocol with non-verifiable messages and demonstrate that
communication strictly improves efficiency in any circumstances.
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1. Introduction

On matching platforms, two groups of users, such as job seekers and recruiters,
participate in finding their matching partners from the other side. Although
matching platforms are similar to traditional markets in that they both provide
marketplaces in which two groups can meet, they exhibit a key innovative compo-
nent: In addition to mediating matches, they operate as information gatekeepers.
Platforms collect, aggregate, and distribute relevant information among users to
facilitate effective coordination of matches.1 When participating in a matching
platform, users often have limited knowledge about their potential partners on
the other side of the market and potential competitors on the same side; however,
they know themselves better than anyone else. As an information gatekeeper, the
platform asks users to provide their information when they register for the service
and subsequently aggregates and distributes the collected data before users are
engaged in their match decisions. Thus, the platform can indirectly influence the
match outcome by controlling the information that users are asked to provide and
to which they have access.

How can a platform obtain user information and redistribute it to make users
voluntarily form a desired match? If the preferences of users and the platform
were perfectly aligned, the exchange of all decision-relevant information would be
optimal for both the users and the platform. However, this is often not the case
because of the scarcity of matching partners and the level of rivalry between the
users. While the platform takes all potential matches into consideration, each user
is only interested in his or her matching partner. For example, suppose there are
two users on each side of the market: A and B on one side and C and D on the
other side. If ((A,C), (B,D)) is the desired matching outcome for the platform,
the interest of the platform and some users are misaligned unless A prefers C to D,
B prefers D to C, C prefers A to B and D prefers B to A. Owing to the presence
of such misalignment in preferences, the interaction between users and a platform
incorporates a number of strategic aspects. First, users might not want to reveal
their information to the platform. Second, a platform might want to provide only
limited or incorrect information to users. Finally, users might have an incentive
to misuse the information they received from the platform and deviate from the
behavior that the platform has initially intended to follow.

1For example, at Upwork, one of the largest online job-matching platforms, job seekers are
required to upload their résumés and firms need to specify details about their job openings.
After collecting and aggregating information from users, the platform presents recommended job
opportunities to users.
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To study the strategic aspects of a two-sided matching market, I consider a
model that has the following features that mirror communications in matching
platforms:

(i) A two-sided platform hosts users. Each user has an attribute that is privately
observed by the user. Users can choose how much of information to disclose
to the platform2.

(ii) The platform can redistribute the collected information back to users. I
model this information flow to users as costless and non-verifiable messages
such as “recommendations”.3

(iii) Market is decentralized. Instead of being assigned to a partner, users have
the freedom to choose their partners.

The novelty of the current study is that it takes place in a setting in which users
retain both information and authority. To incentivize users to fully reveal their
information and to form the desired match, the platform needs to cautiously
manage information flows back to the users.

The baseline model I consider is a benevolent platform that wants to achieve
the socially optimal matching outcome. Government-operated matching platforms
can be good examples of this kind. The game proceeds as follows. After private
information of the users is realized, users can choose how much of information to
share with the platform. The platform collects and aggregates the information that
is provided to it, and then provides information back to the users in the form of a
“Recommendation”. After communication between the users and the platform, a
user on one side can make a proposition to a user on the other side. The user who
receives a proposal can subsequently decide whether or not to accept the proposal.
If a user receives multiple proposals, she chooses only one between the proposers
or reject them all. If two users are matched, a non-transferable utility is realized
that depends on the matching pair’s locations. Users who remain unmatched
receive zero payoff as an outside option. Users care only about their match value,
while the platform takes overall matches into consideration to maximize the social
surplus, which is the sum of the realized utilities.

As an application, in section 4, I also consider a profit maximizing platform
that customizes its pricing schedule. The timeline is the same as in the first model
except that the platform offers customized pricing schedule instead of recommen-
dations. Users must pay the amount specified in the schedule to match with a

2e.g., résumé or discriptions of the job position
3The message is delivered back to the users in the form of cheap talk. Messages do not directly

affect utilities of players and there is no restriction on the set of messages a platform can send.
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partner in the later model.

When and how can a platform mediate socially optimal matching through commu-
nication? What is the optimal customized pricing schedule that maximize profit
of a greedy platform? The purpose of this study is to answer these questions and
to better understand the value of communication and the strategic aspects arises
in communication in a platform.

1.1. Main Results

Theorem 1 states an information unraveling result in the mediated two-sided
market. If a personalized recommendation is effective, meaning that users are
willing to follow recommendations, then users only worse off by not sharing their
information with the platform. This finding shows that a recommender system,
under certain circumstances, can be used to fully extract private information of the
users. Theorem 2 and Theorem 3 identify a sufficient condition and a necessary
condition, respectively, under which a socially optimal matching is obtainable as
an outcome of the decentralized matching with recommendations specified above.
An equilibrium that achieves such an outcome has the following notable features.

(i) Users fully reveal their private information.

(ii) The platform provides personalized and filtered information back to each
user.

The message sent from the platform to a user is personalized based on the in-
formation collected from the user, and it is filtered in so much as only limited
information is delivered back to users. I show that a simple rule of recommendation
can be used to achieve the desired outcome: The platform presents a recommended
matching partner to each user. This recommendation, a message to a user, reveals
only the identity of a partner that has the same rank as the user, while the exact
location or rank is not revealed. Under the sufficient condition, this message rule
of the platform results in two positive effects to users. First, users are willing
to reveal their locations; otherwise, they would receive information that is less
relevant to them. Second, users expect their recommended partners to be better
matches for them than other users on the other side.

Theorem 2 and Theorem 3 state that the key components that directly influ-
ence whether such an equilibrium can be achieved are as follows: 1) The distance
between the inverse distributions of attributes of each side, 2) the uncertainty
measure of each distribution, and 3) the population size. The three components
work in the following way. The closer the distance between the distributions, the
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closer the distance between two locations of the same rank. On the other hand, if
there is a high degree of uncertainty, the information provided by the platform
becomes relatively more informative to users. Thus, according to the proximity of
distributions and conditions of higher uncertainty, the recommendation generated
by the platform is helpful to users, and they benefit from fully revealing their
information and forming matches with recommended partners. Finally, a general
condition can be obtained when the size of the population is large because, even if
the distributions are close to one another, the expected distances between empirical
distributions after observing one sample4 on one side can still be large.

When the platform does not intervene in the users’ information transmission
and, instead, allows them to freely communicate with each other using verifiable
messages, I show, in Theorem 4, that a stable matching can be attained as an
outcome of a communication game under certain conditions. Under some reg-
ularity conditions related to the distributions, the condition that guarantees a
stable matching can also be interpreted as a proximity condition of the distributions.

Proposition 2 describes an optimal pricing schedule when the platform can charge
different prices for each pair of potential partners as a mean of to maximizing
the profit. I derive a pricing schedule that consists of a function of collected
messages collected from users, that fully extracts user surplus and supports an
equilibrium with full revelation of private information. Full extraction of user
surplus is particularly possible when messages are verifiable, and the platform
customizes its charges to users and their potential partners. I observe that no
information but price is sent back to users in the equilibrium in an equilibrium
that achieves maximum profit under the optimal pricing schedule.

1.2. Related Literature

The current study lies at the intersection of two strands of literature: com-
munication models with verifiable and non-verifiable messages and decentralized
two-sided matching with a mediator.

Communication model with verifiable messages.– The core concept in this litera-
ture is “unraveling” of private information, originating from Grossman (1981) and
Milgrom (1981). Upon receipt of a message, if the receiver infers the sender’s type
is the worst-case type among senders who could have sent this message, then the
private information of the sender will “unravel,” starting from the highest-type
sender. This type of skepticism is generalized by Hagenbach et al. (2014). Hagen-
bach et al. (2014) studies conditions under which unraveling of private information

4Each user’s private observation of his or her location.
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is possible. My paper differs from Hagenbach et al. (2014) in various ways. First,
while communication is public in Hagenbach et al. (2014), it is private in my
model. Users report verifiable information to the platform in a private channel,
and the platform sends only filtered information back to each user. The difference
in communication channel and the existence of a strategic information gatekeeper
results in players making different inferences after communication even if every
user fully reveals his private information. Second, if there were no information
intermediary, one could not apply skepticism in my model of horizontal infor-
mation because no type of sender is superior to another. To apply skepticism,
I need to design information transmission from the platform to generate orders
among users’ types. While most of the literature has focused on settings with
vertical information with one-sided communication (Okuno-Fujiwara et al. (1990),
Ben-Porath et al. (2017), Quigley and Walther (2017) and Ali et al. (2019)), Celik
(2014) explores seller-buyer with horizontal attribute, and finds an equilibrium
with partial unraveling of information. I provide an equilibrium with full disclosure
of information.

Matching with intermediary.– The literature on two-sided matching with mediator
has been quite influential but has focused primarily on cases in which 1) monetary
transfers are possible or 2) mediators can restrict agents’ actions. Damiano and
Li (2007), Gomes and Pavan (2016) and Gomes and Pavan (2019) study optimal
price discrimination of a monopolistic mediator. Kanoria and Saban (2017) and
Arnosti et al. (2014) allow the platform to design the search environment so that
it can restrict a user’s ability to acquire information about users on the other
side. The key difference with the current work is that these previous studies do
not allow the platform to collect information from users. The platform chooses
which side of the market users can search for their partners, assuming that search
activity is decentralized and costly. The current study considers the case in which
transfers are not possible, and the mediator does not have direct control over
agents’ actions. Instead, the platform can influence users’ decisions by providing
personalized choice-relevant information, and can elicit full information from users.

Two-sided matching with private information.– Hoppe et al. (2009) examines
assortative matching under two-sided private information with costly signals; se-
lection of costly signal occurs prior to matching, and costs create credibility in
revelation. Poeschel (2013) considers a search-and-match model with private infor-
mation and costless signal: agents who look for a match can exchange information
via cheap talk messages. The study shows that truthful revelation is possible if
players need to bargain over splitting match to be matched to each other. Messages
become credible because higher types are expected to produce more, and therefore,
pay more at the bargaining stage. In both studies, truthtelling behavior is driven
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by an (explicit or hidden) cost of signaling and an assumption about match value:
a higher-type player produces a higher value. Hałaburda (2010) allows agents
to commit to future relationship before the private information is observed, and
provides an unraveling result under certain condition. In the model, truthful
behavior can be interpreted in an informational context. Because the matching
platform tailors its message in response to the agent’s message, agents receive
information that is not suitable for them if they provide false information.

Coarse-matching.– Chao and Wilson (1987), McAfee (2002) and Shao (2016)
study a coarse-matching scheme in a two-sided matching problem with complete
information and a continuum population. In coarse matching, a matchmaker sorts
the population into finite classes, and the members are randomly matched within
the classes. Hoppe et al. (2011) studies model of incomplete information with a
continuum population, and shows that coarse matching can be implemented using
monetary transfers among users and the matchmaker. As an application, I study
an implementation problem of coarse matching without monetary transfer, but
with communication. Using non-verifiable two-way communication, I show that
coarse matching with two partitions can be implemented via communication in
any environment.

Assortative matching.– Becker (1973) demonstrates that positive assortative
matching (henceforth, PAM) is efficient if types are complementary. That is,
match value is super-modular in attributes of the users who form a match. Shimer
and Smith (2000) further investigates the conditions under which PAM is efficient
when there is a search friction. My model builds on these papers by considering a
horizontal location model with match values that are weakly concave and decreas-
ing function of distance. Under this utility specification, PAM maximizes the sum
of match values as long as all match values are non-negative.

1.3. Outline of the Paper

The rest of the paper is organized as follows. In the next section, I present the
baseline model. Section 3 analyzes the main theoretical results when the platform
operates as a social planner. Section 4 studies the optimal pricing schedule of a
profit-maximizing platform. Section 5 provides an extension of the model, and
Section 6 concludes the paper. All proofs are relegated to the appendix.
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2. Model

I consider a platform that hosts workers and firms, each of which wants to
match with a partner.5 I use the term “user” to refer to a firm or a worker. The
model deals with the cases in which a matching platform cannot assign matches to
users or use monetary transfers to incentivize users. Instead, a matching platform
can collect information from, and distribute it to, users.

2.1. Primitives

Players.– There are n workers, n firms, and a platform. Worker i has a privately
known area of specialization ωi, which is independently distributed over the unit
interval, according to a cumulative distribution function G. Firm j has a private
taste θj which is independently distributed over [0, 1] according to F . F and G are
assumed to have positive densities f and g, respectively. I use the term “location”
to refer to the type of a user.

Utility.– Users are horizontally differentiated. In terms of location, the closer
the distance between users in a match, the higher the match value generated by
the pairing. I denote the match value generated by a pair (θ, ω) by V (θ, ω). The
match value I use throughout the paper is

V (θ, ω) = 1− (θ − ω)2.

If they remain unmatched, they receive an outside option utility which is normal-
ized to zero. The main results of the paper holds with a slight modification in the
statements for other match value V that satisfies if V (θ, ω) is 1) non-negative and
continuously differentiable in θ and ω and 2) concave and strictly decreasing in
the distance |θ − ω|.

In the baseline model, I consider a platform that wants to maximize the social
surplus, the sum of all realized match values, generated in the platform. The case
of a profit-maximizing platform is discussed at Section 4.

Communication.– I consider the following communication protocol. First, the
platform requires users to send a verifiable message, à la Grossman (1981) and
Milgrom (1981), to the platform. Examples of verifiable messages are résumés,
employment history profiles, and job descriptions. After collecting information

5The model can be used to study matching platforms targeting other types of users. I use the
worker-firm terminology, although consumer-service provider or man-woman pairings could be
equally relevant.
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from the users, the platform aggregates the information and communicates with
each user via a private channel. The messages from the platform to the users are
not restricted, and are assumed to be non-verifiable. Examples of this type of
message are “Recommendation for you” and “Instant match.”6 All messages are
assumed to be costless in this model.

1. The user sends a verifiable message to the matching platform.
2. After receiving messages from users, the platform provides a non-verifiable
message to users.
3. After communication, workers apply to firms and firms accept or reject the
application.

Table 1: Verifiable communication protocol

Definition 1 (Verifiable message). Location x user’s set of messages, Mx, is a
collection of all closed subsets of [0, 1] with a restriction that x ∈ m, ∀m ∈Mx.

In a setting in which verifiable messages are issued, users are allowed to withhold
as much information as they like. However, they cannot lie about their actual
locations in the sense that their type should be included in any message they send.

Timeline.– After firms and workers receive their private information, they can
engage in two-way communication with the platform following the protocol pre-
sented above. After communicating with the platform, one side of the market, say
workers, can send a proposal to the other side of the market; in this case, a firm.
The firm that subsequently receives the proposal can choose whether or not to
accept the proposal. If the firm receives multiple proposals, it can accept at most
one of them.

Figure 1: Timeline
6Many online platforms provide “Instant match” options to users. Upon a user’s request, the

platform directly provides a match to another user on the other side of the market. Even if the
platform matches users, it allows users to cancel the request after the match is provided. For
example, in TaskRabbit, “Quick Assign” provides an instant match; however, the match provided
can be canceled either if users do not engage in any further action regarding the match within
two hours or if the assigned user cancels the match.
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Worker’s strategy.– Worker i with ωi chooses a verifiable message to send to
the platform in the communication stage, and then chooses firms to apply to
in the selection stage. Workers are allowed to opt out, which is denoted by an
action ∅. If she wants to share its location fully with the platform, she will report
m1 = {ωi}. On the other hand, if she does not want to share any information, the
corresponding message will be m1 = [0, 1]. Other messages m1 /∈ {{θ1}, [0, 1]} will
partially reveal her location to the platform.

Firm’s strategy.– Firm j with θj chooses messages from Mθ and send it to the
platform in the communication stage. After the firm collects applications, it
decides which worker to accept and which to reject. Again, choosing an ∅ has an
interpretation of rejecting all applications and receiving an outside option.

Platform’s strategy.– The platform decides which message to send to each user
after collecting and aggregating messages from users.

I study Perfect Bayesian equilibrium of the game. Specifically, we call an equi-
librium an unraveling equilibrium if user information is fully revealed to the
platform.

3. Main Results

Before stating the main results, I clarify some basic notations that will be used in
the remainder of the paper and define the optimal match that the platform aims
to achieve.

Notations.– θ(k;n) denotes the kth order statistic7 when there are n independent
draws according to F . F(k;n) denotes its corresponding cumulative distribution
function. On the worker side of the platform, ω(k;n) and G(k;n) are defined in a
similar way.

Optimal matching.– The optimal matching can be achieved by a positive assorta-
tive matching: worker with higher attribute is matched with a firm with higher at-
tribute. To formalize, consider a realization θ = (θ1, · · · , θn) and ω = (ω1, · · · , ωn).

Remark. In an optimal matching, worker i is matched to firm j if and only if ωi

and θj have the same rank in ω = (ω1, · · · , ωn) and θ = (θ1, · · · , θn), respectively.
7θ(1;n) ≤ θ(2;n) ≤ · · · ≤ θ(n;n)
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Proof. See Appendix for the proof. �

The recommendation scheme that possibly achieve the optimal matching is called
an assortative recommendation.

Definition 2 (Assortative recommendation). Suppose that the platform holds a
belief that the locations of users are (ω̃, θ̃) with probability one. The platform’s
recommendation is said to be assortative if it recommends worker i and firm j to
each other only if ω̃i and θ̃j have the same rank.

Notice that the definition does not require the platform to hold a correct belief
that is consistent with the true realizations of the locations. As messages from the
platform are costless and not certifiable, it is not guaranteed that users’ beliefs
are influenced by the messages they received from the platform8. This possibility
is excluded if the recommendation is effective.

Definition 3. The recommendation is effective if all the users follow the recom-
mendation of the platform.

3.1. Recommendation induces full-revelation

To achieve the optimal matching outcome for any realization of locations, full
disclosure of user information is necessary. If some users’ locations are only par-
tially known to the platform or other users, there always exists a strictly positive
probability that an inefficient outcome arises. On the other hand, if the full
disclosure has taken place under the unmediated matches, then only a stable
matching under full information can arise as an equilibrium.

In the first theorem, it is shown that recommendations that achieve the opti-
mal matching, i.e., the assortative recommendation, induces full revelation of user
information to the platform. When the assortative recommendation is used to
follow up with the voluntary revelation of the users, users cannot effectively hide
their information to the platform.

Theorem 1. Full-disclosure is mutually optimal for users if assortative recom-
mendation is effective.

Proof. See Appendix for the proof. �

To best understand how an effective assortative recommendation induces full
disclosure of the user information, consider a simple example of a platform that
hosts two users on each side, each of who has a location independently drawn

8e.g., In a “babbling equilibrium”, users believe that there is no informative content in the
platform’s message and hence do not change their belief after the message.
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from the uniform distribution. To check mutual optimality, consider worker 1’s
disclosure decision given that 1) all the other users have fully revealed their
locations to the platform, and 2) an effective assortative recommendation will be
made based on her disclosure and the other users’ revealed locations. Suppose
now that the ω1 worker wants to pretend to have another location ω′1. Without
loss of generality, assume θ1 ≤ θ2. If the platform takes the worker at her word,
the worker will be recommended with firm 2 if ω′1 ≥ ω2 and with firm 1 if ω′1 ≤ ω2.
Thus, if the assortative recommendation is effective, the worker matches to a firm
with a higher location with probability ω′1 and a firm with a lower location with
probability 1− ω′1. The resulting expected payoff from the deception is

ω′1E[1− (ω1 − θ(2;2))2] + (1− ω′1)E[1− (ω1 − θ(1;2))2].

As can be checked from the expected utility, the user has an incentive to exaggerate
her location. To see this, suppose first that the user has a high ω1. The user wants
to maximize the probability that she is matched to the firm with a higher location,
namely firm 2, and this probability is exactly ω′1. On the other hand, if she has a
low ω1, she wants to minimize this probability to maximize the chance of getting
matched to firm 1, and her optimum is achieved by minimizing 1 − ω′1. In the
uniform distribution case, the worker with ω1 ≥ 1

2 benefits from reporting ω′1 as
high as possible while the worker with ω1 ≤ 1

2 benefits from acting exactly the
opposite. Knowing these user incentives, when a message m1 from the worker has
arrived, the platform rationally infer that the worker’s true location is

ω1 = arg min
ω∈m
|ω − 1

2 |.

As the platform skeptically believes the worker has a location that is closer to 1
2

and the message is verifiable, the worker can only successfully pretend to have a
location of ω′1 ∈ [ω1, 1 − ω1]. (or [1 − ω1, ω1] if ω1 ≥ 1

2). However, this possible
deception only increases the probability that she is recommended with the less
desirable firm.

In general, let v(x, x′) denote the expected utility of location x user when it
pretends to have a location x′ under an effective assortative recommendation of the
platform. In the proof of theorem 1, it is shown that v exhibits increasing difference
in (x, x′). Consider a location x user who benefits from pretending to have x′,
v(x, x′) > v(x, x). This, by the increasing difference, implies v(x′, x) < v(x′, x′).
Therefore, if a message m = {x, x′} has arrived at the platform, the platform
can rationally infer that the user has a location of x. That is, the platform can
successfully construct a belief system that decodes user messages into true user

12



locations. The proof provides construction of the belief system that can be applied
to a general message.

3.2. Socially Optimal Matching

The first theorem predicts that users cannot profitably withhold information if
users obey the assortative recommendation of the platform. As a result, whenever
the assortative recommendation is self-enforcing to users, the socially optimal
matching arises as an outcome under the verifiable communication protocol. This
section provides a sufficient condition and a necessary condition under which the
assortative recommendation is self-enforcing. I find that the proximity of the
two distributions is a sufficient condition to produce obedience to the assortative
recommendation.

Let Γn denote the game with n users on each side, σ(F ) refers to a standard
deviation of random variable whose associated distribution function of which is F ,
and Kolm(F,G) denotes a Kolmogorov-Smirnov distance of F and G, which is
given by Kolm(F,G) = supx∈R|F (x)−G(x)|.

Theorem 2 (Sufficiency). ∃N such that ∀n ≥ N , a socially optimal matching
can be obtained by communication in Γn if

Kolm(F−1, G−1) < min{σ(F ), σ(G)}.

Proof. See Appendix for the proof. �

Notice first that the inverse of distributions is used to measure the distance.
Suppose there is a continuum users on each side of the platform. In case of an
assortative matching, a worker with ω is matched to a firm with F−1(G(ω)); hence,
the user expects

1− (ω − F−1(G(ω)))2. (1)

Lemma 1 in Appendix states that under the assortative recommendation, the
user’s belief on the location of the recommended partner converges to a degenerated
belief that assigns probability 1 to F−1(G(ω)) as n grows. Thus, I confirm that
(1) is, indeed, an approximated expected utility in large games. Now, denoting
G(ω) = x, I see that the distance between inverses is directly related to the
expected utility in matching. Figure 3 shows the convergence of belief when ω = 1

2
with F (θ) = θ2 and G(ω) = ω. Each graph depicts a cumulative distribution
function of the location of the recommended firm when a worker with location 1

2
fully revealed his location to the platform in a situation in which there are there
are n workers and n firms.
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On the other hand, the standard deviation of F is related to the maximum
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Figure 2: Convergence of belief

expected utility of the worker when he is accepted by a firm which is not rec-
ommended to him. If a worker with ω matches with a firm when he received
no information from the platform, he expects an unconditional expected utility,
1 − Eθ[(ω − θ)2]. Since the platform provides only the identity of the recom-
mended firm to the worker, the belief on the location of the firm that had not
been recommended to the worker converges to the prior as n grows, and this re-
sults in the convergence of the expected payoff to the unconditional expected utility.

Finally, I observe that the number of users of the platform plays an important role.
The platform cannot obtain an optimal outcome if there are not enough users even
if the two distribution are close to each other. An extreme example of this kind is
F (x) = G(x) = x3 and n = 2. The reason for this is straightforward. First, in a
small population, empirical distributions can still be far from each other, even if
two distributions are adjacent to one another. Secondly, as the population size
grows, more detailed matching becomes possible. That is, the uncertainty about
the location of the recommended partner decreases.

To conclude the sufficiency part, I provide some examples which satisfy the
sufficient condition. If both F and G are uniform distributions, N = 1 suffices. If
F (θ) = θ and G(ω) = ω2, then N = 3 satisfies the conditions. However, F (θ) = θ

and G(ω) = ω3 does not satisfy the condition.

I turn now to the conditions that are necessary for generating an optimal matching
outcome. For an illustrative purpose, consider the following example of a platform
that hosts two users on each side. Assume, for now that, user location is drawn
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from the following two distributions9:

G(ω) =
{

2ω if θ ≤ 1
2

1 if θ ≥ 1
2

F (θ) =
{

0 if θ ≤ 1
2

2θ − 1 if θ ≥ 1
2

When a worker’s location is near 1
2 , the recommended firm to her is highly likely

F

G
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x
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Figure 3: Example 1

to be the one that is farther away from her under the assortative recommendation.
Knowing this, suppose that the worker deviates from the recommended partner,
and applies to the other firm. From the perspective of the firms, consider a firm
that is located near 1

2 , it also rationally infer that the recommended worker is likely
to be the one who has the lowest location. Thus, when a not-recommended worker
applies to the firm, it strictly benefits, in expectation, by accepting the worker.
As a result, the assortative recommendation results in a non-optimal outcome.

To find a general necessary condition under which an optimal outcome is ob-
tained. I first define p ∈ [0, 1] in a way that

p = P[x|(F−1(x)−G−1(x))2 > Ey[(F−1(x)−G−1(y))2]],

where x and y independently follow the uniform distribution over the unit interval.
Suppose a worker deviates from the recommendation and applies for a job at a firm
that is not recommended to him. p denotes the measure of firms that are willing
to accept the worker assuming there is a continuum firms. Thus, with a large
population, p is the approximate probability that the worker will be successfully
accepted by a firm in situations in which he has deviated from the recommendation.

Theorem 3 (Necessity). If there exists N s.t. an unraveling equilibrium exists in
9Just for an illustration purpose, let us relax the assumption that G and F are strictly

increasing in this example. I can easily find examples with the same result without the relaxation
of the assumption. However, it requires more involved calculation. For example, one can check
that F (θ) = θ and G(ω) = ω3 also works well with this example.
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Γn, ∀n ≥ N , then @x∗ ∈ [0, 1] s.t.

p >
1− (F−1(x∗)−G−1(x∗))2

1− Ey[(F−1(y)−G−1(x∗))2] .

Proof. See Appendix for the proof. �

Theorem 3 predicts that the upper bound by the uncertainty measure in Theorem
1 can be relaxed to some extent. It is because feasible deviations in matching
models should be bilateral deviations that form a blocking pair. Even if a worker
has an incentive to apply to a firm that is not recommended to him, if p is low,
he may not be accepted by that firm. However, it cannot be fully relaxed. If two
distributions are far apart from each other, p tends to be large, and it becomes
easier to find x∗, which satisfies the second condition of Theorem 2. To conclude
this section, I provide an example that does not satisfy the necessary condition. If
F (θ) = θ

1
5 and G(ω) = ω5, then x∗ = 2

3 violates the necessary condition.

3.3. Limit Game: Assortative matching

The conditions provided in the previous section do not give a tight upper or lower
bound on the distance of the distributions. This is mainly because the analysis
takes an approximation approach to compare the expected utilities of users. Since
the expected utilities of users do not behave in a consistent manner with changes
in the number of population, predictions can only be obtained when there is a
sufficiently large number of users in the population. However, in a game in which
there is a continuum population, a more sharp prediction, which is a necessary
and sufficient condition for an unraveling equilibrium, can be obtained.

Suppose now that there is a continuum users, with equal volume, on each side of
the platform. As above, workers’ (firms’, resp.) locations are distributed according
to a continuous and strictly increasing distribution G (F , resp.). As known in the
literature of transportation theory, a socially optimal matching is achieved by the
following PAM10 and it is known to be unique if V is concave in |θ − ω|. Denote
the set of workers’ locations by Ω and the set of firms’ locations by Θ.

Definition 4 (PAM). A match µ : Ω → Θ is positively assortative if µ(ω) =
F−1(G(ω))

In PAM, users with the same quantile are matched to each other: worker a and
firm b are partners to each other if and only if G(ωa) = F (θb). I denote the game

10It is a solution of the Monge’s problem. The proof appears in Chapter 3.2 of Rachev and
Rüschendorf (1998) and Ekeland (2010).
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by Γ∞. The following proposition states a sufficient and necessary condition under
which the platform achieves PAM through communication with the users.

Proposition 1. An unraveling equilibrium exist in Γ∞ if and only if @x∗ ∈ [0, 1]
s.t.

p >
1− (F−1(x∗)−G−1(x∗))2

1− Ey[(F−1(y)−G−1(x∗))2] .

Proof. See Appendix for the proof. �

As predicted in the previous section, the following prediction also holds true.

Corollary 1. An unraveling equilibrium exist in Γ∞ if

Kolm(F−1, G−1) < min{σ(F ), σ(G)}.

Intuitively, a worker who fully revealed her location ω benefits from following the
recommendation when her recommended firm, which is located at F−1(G(ω)) in
PAM, is close to herself. With verifiable messages, the platform also can make
users fully reveal their locations by applying skepticism as masquerading incentives
of users are straightforward. For example, suppose that F is a standard normal
distribution and G is a uniform distribution as shown in Figure 4 below. A worker
of location ω has incentives to masquerade as ω′ < ω if G(ω) > F (ω) and she
has the exact opposite incentive if G(ω) < F (ω). It is because she knows her
recommended partner is below her location if G(ω) < F (ω), and vice versa. Thus,
whenever the two distributions cross each other, users have reversed direction of
incentives. Taking this into consideration, the platform can rationally infer that a
user is located at the worst case location possible among the claimed locations.
Proposition 1 states that the necessary condition in the previous section is indeed a
necessary and sufficient condition in a limit game with continuum users. However,
this does not imply that the condition

p <
1− (F−1(x∗)−G−1(x∗))2

1− Ey[(F−1(y)−G−1(x∗))2]

can be sufficient for the existence of an unraveling equilibrium in large games. The
probability that a deviating worker is accepted by a firm that is not recommended
to him converges to p. However, since the rate of convergence is not known, so
does the existence of a population threshold N .

3.4. Limit Game: Achieving an Ex-post Stable Matching

This subsection studies the cases in which the platform cannot influence the
formation of matches by providing recommendations to users. Consider a laissez-
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Figure 4: Masquerading incentives of users

faire economy in which the platform does not play a mediating role. Two groups
of users, workers and firms, of the same volume are located in a unit interval
according to G and F . Before studying an outcome of this game under incomplete
information, consider first a complete information game as a benchmark case. I
impose a regularity condition on F and G for the sake of simplicity of the matching
outcome.

Assumption 1 (MLRP). f and g bear monotone likelihood ratio property. That
is,

f(x)
g(x) is non-decreasing in x.

As also noticed in Clark (2007) and Flanders (2013), there is a unique stable
matching of the following kind.

Remark (Stable Matching). In the case of stable matching with perfect informa-
tion, min{f(x), g(x)} measure of workers match to the firms with location x and
remaining workers of location ω match to the firm with location F−1(1−G(ω)).

Proof. See Theorem 4 and Theorem 5 of Clark (2007) for further evidence. �

Among the class of stable matches, I focus on matching that is fair in the sense that
workers of the same location face the same lottery over firms. In a matching that
is stable and fair, a worker with ω matches with a firm of the same location with
probability min{g(ω), f(x)} and matches with a firm of location F−1(1−G(ω))
with probability max{g(ω), f(ω)} −min{g(ω), f(ω)}.

Now, suppose that locations represent the private information of each user. Before
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Figure 5: Stable matching

choosing their partners, users can engage in a public communication that discloses
their locations using verifiable messages and then observe each other’s disclosed
locations. To examine a sufficient condition that achieves stable matching without
mediation of the platform, I further impose a condition that highlights the main
driving force of the sufficient condition.

Assumption 2 (Mirror). f and g mirror each other across the midpoint, 1
2 . That

is,
f(x) = g(1− x).

A general sufficient condition without assuming this regularity condition will be
presented and discussed in the Appendix.

Theorem 4. Stable matching is attainable if

max{f(x), g(x)} ≤ 2 min{f(x), g(x)}, ∀x ∈ [0, 1].

Proof. See Appendix for the proof. �

The condition presented in Theorem 3 can be interpreted in a similar way to the
condition stated in Theorem 1: The proximity of the two distributions guarantees
the existence of fully revealing equilibrium. The reason for this is simple and
intuitive. If all users fully reveal their locations, a worker of location ω expects to be
matched to a firm with the same location with probability min{g(ω), f(ω)} and to a
firm of location F−1(G(1−ω)) with probability max{g(ω), f(ω)}−min{g(ω), f(ω)}.
If the two distributions are close to each other, the former probability and its
resulting utility dominates the later, and thus, the user benefits from fully revealing
her location.
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4. Profit Maximizing Matching

As an application of the unraveling user information result provided in the
previous section, consider now the case of profit-maximizing platforms. We study
the optimal customized pricing schedule when the platform learns user information
through self-disclosed messages from each user. The timeline is as follows: After
collecting verifiable messages from the users, the platform provides a customized
pricing schedule to each user. Observing the schedule, users decide their matching
partners. Here, a pricing schedule to worker i given a message profile m is a map
TWi (m) : SnF → R. Similarly, TFj (m) : SnW → R is defined as a pricing schedule
to firm j given a message profile m collected from the both side of users. When
worker i and firm j are matched at the price of Ti,j to i and Tj,i to j, each user
respectively expects 1− (θj − ωi)2 − Ti,j and 1− (θj − ωi)2 − Tj,i.

Figure 6: Timeline

How can the platform maximize its profit, the sum of prices from the matching
pairs? Is it possible to achieve the first best outcome? If so, under what conditions
is it possible? The remainder of this section can be seen as answers to these
questions. I begin the analysis with a simple pricing problem of a platform under
location uncertainty and describe how the platform makes inferences about the
unobserved locations based on their messages.

4.1. Example

Suppose there is one firm and one worker on a platform. If the locations θ1 and
ω1 were perfectly observable by the platform, it can fully extract match surplus
by charging 1 − (θ1 − ω1)2 to the worker and the firm. In this example, I show
that the platform can achieve the same profit using verifiable messages even when
locations are private information. Firstly, consider a pricing schedule by which the
platform charges 1− (θ̂ − ω̂)2 to the users if it believes they are located at θ̂ and
ω̂. Denote the message from the worker (the firm, resp.) by mw (mf , resp.).11.
After receiving the message, the platform makes an inference that the location of

11Recall that mi is constrained to be a closed subset of [0, 1] that contains ωi.
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the worker is ω̂1, where
ω̂1 = arg min

ω∈mw
|ω − Eθθ|

and the location of the firm to be θ̂1 where

θ̂1 = arg min
θ∈mf

|θ − Eωω|.

That is, the platform skeptically makes an inference that the users are located at
the points that are the closest to medians. To see how this skepticism works in
equilibrium, consider the worker’s problem when the firm fully revealed its location
to the platform. If she successfully makes the platform believe that her location is
ω̄, her expected payoff from this successful deception is

QW (ω1, ω̄) = Eθ[1− (θ − ω1)2 − (1− (θ − ω̄)2)],

where θ is located according to F . Here, QW (ω1, ω̄) decreases in ω̄ if ω̄ < Eθθ and
increases if ω̄ > Eθθ. That is, a worker in location ω1 benefits from pretending to
be located further away from Eθθ. Thus, the platform rationally infers that the
true location of the worker is the element of mw that is the closest to Eθθ because
the worker would not send such a message had the true location been closer to
the endpoints.

4.2. Generalization: Full Extraction of User Surplus

The main reason why skepticism works in the above example can be attributed
to the fact that the payoff from a successful deception, QW (ω, ω̄), exhibits increasing
difference: If ω benefits from mimicking ω̄, ω̄ cannot gain from mimicking ω. As
shown in the proof of Theorem 1, this property allows the platform to figure out
the true locations of users by inferring the worst-case location possible that would
have sent the message. To generalize the idea, consider a platform with n workers
and n firms. First, notice that if the platform observes the true locations of the
users, it maximizes its profit when users form assortative matching. I can define
users’ payoffs from a successful deception, QFn and QWn , by

QFn (θ, θ′) =E[(θ′ −Wn(θ′))2 − (θ −Wn(θ′))2] and
QWn (ω, ω′) =E[(ω′ −Θn(ω′))2 − (ω −Θn(ω′))2],

where Wn(θ) is the expected location of the partner in an assortative matching
when the platform believes the firm’s location is θ and Θn(ω) is defined in a similar
way. In other words, a worker with ω expects to gain 1− (ω −Θn(ω′))2 and pay
1− (ω′ −Θn(ω′))2 by successfully pretending to have a location of ω′.
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Definition 5 (Worst-case location, Hagenbach et al. (2014)). A location, t,
is said to be the worst-case location if t ∈ wcl(mG|QGn ) = {t′ ∈ mG|@t′′ ∈
mG, QGn (t′′, t′) > QGn (t′′, t′′)}, G = W,F

Now, I state an optimal pricing schedule of the platform using the worst-case
locations to infer true locations. Denote profiles of locations inferred by wcl

operator by θ̂ and ω̂. That is, θ̂j ∈ wcl(mF
j |QFn ) and ω̂j ∈ wcl(mW

j |QWn ) for
j ∈ {1, · · · , n}.

Proposition 2 (Optimal Pricing Schedule). Given θ̂ and ω̂, the following is an
optimal pricing schedule for the platform:

(i) TFj (m) = TWi (m) = 1− (ω̂i − θ̂j)2 if rank(θ̂j |θ̂) = rank(ω̂j |ω̂) and

(ii) TFj (m) = TWi (m) = 1 otherwise,

where rank(θj |θ) denotes the rank of θj in θ.

Proof. See Appendix for the proof. �

It is worth mentioning that the optimal pricing schedule support an unraveling
equilibrium and, consequently, extracts full surplus of the users. As shown in
the example, the key element that makes the unraveling of locations possible is
the increasing difference of QG, the expected utility of a user in group G when
she successfully pretends to be in another location. When QG exhibits increasing
difference, wcl(mG|QG) is non-empty for any message mG. Thus, the platform
can rationally infer that a user who has sent a message, mG, would have been
located at the worst-case location possible, and by definition of the worst-case
location, users cannot be better off by pretending to be in another location.

5. Extension: Two-way Cheap-talk Communication Protocol: A
Curated Coarse Matching

Matching platforms that operate in some areas, such as online dating markets,
do not require users to provide a verifiable information. Upon registering for the
service, the users upload their information, which is usually non-verifiable, to the
platform through a private channel, and the platform suggests a recommended
partner to the user. I model this communication pattern by a two-way cheap-talk
communication protocol.

5.1. Non-Trivial Coarse Matching: Existence Theorem

Under the two-way cheap-talk communication protocol, messages from both
users and the platform are costless and non-verifiable.
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1. Each user sends a message to the platform.
2. After receiving messages from agents, the platform generates a recommenda-
tion for workers.
3. After communication between the users and the platform, workers apply for
jobs, and firms decides either accept or reject application.

Table 2: Cheap-talk communication protocol

Using the communication protocol, I provide an existence result of coarse matching
of McAfee (2002) in games with a finite number of players, and provide an
implementation methods of the coarse matching.

Definition 6 (Non-trivial coarse matching). Given two equal-sized populations, a
matchmaker sorts the populations into a finite number of classes before randomly
matching the users within the classes. Coarse matching is said to be non-trivial if
the number of classes is greater than one.

Note that in this communication game with cheap talk, I assume that recom-
mendation is given only to one side of the market.

Proposition 3. A non-trivial coarse matching which strictly improves the plat-
form’s ex-post profit exists for any n, F and G.

Proof. See Appendix for the proof. �

In the non-trivial coarse matching, platform categorize users on each side into
two groups, recommends a matching partner within the same group on the other
side to achieve a coarse matching and prevent unnecessary congestions. While
most studies in coarse matching assumes a centralized matching procedure, the
above application shows that an introduction of a platform enables us to achieve a
coarse matching with a cheap-talk communication.

6. Conclusion

I studied a class of communication games in two-sided matching with an inter-
mediary. Within the platform, instead of being matched with another user, users
have the freedom to choose their match partner; however, they have limited knowl-
edge about the other users. I have demonstrated that a platform, as an information
gatekeeper, can elicit full information from users via verifiable messages, and sub-
sequently persuade them via cheap talk to choose a partner of the platform’s
choosing. This, in turn, achieves a socially optimal matching outcome under certain
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conditions. The analysis delivers a sufficient condition and a necessary condition in
terms of the shape of private information and number of users. I find that the key
factors by which it is possible to achieve a profit maximizing matching outcome are
a pool that consists of a large number of users, the proximity of distributions from
which the users’ tastes are drawn, and the uncertainty measure of the distributions.

The above analysis is worth extending in a few research directions. One di-
rection is to focus on the two-way cheap-talk communication model between users
and a platform. Although I have delivered a positive result in terms of imple-
menting a coarse matching, I do not know yet how much of detailed information
can be transmitted in other equilibria with finer partitions. Another direction is
to consider a platform that operates according to different objectives or requires
users to make payment to access certain information.
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Appendix

1. Proof of Remark

Remark. An optimal matching is achieved when a worker with ω̂(i;n) is matched
with a firm with θ̂(i;n), ∀i ∈ {1, · · · , n}.

Proof. I prove it by induction on n.
Base step: n = 2

(θ̂(1;2) − ω̂(1;2))2 + (θ̂(2;2) − ω̂(2;2))2 =(θ̂(1;2) − ω̂(2;2) + ω̂(2;2) − ω̂(1;2))2

+ (θ̂(2;2) − ω̂(1;2) + t(1;2) − ω̂(2;2))2

=(θ̂(1;2) − ω̂(2;2))2 + (θ̂(2;2) − ω̂(1;2))2

− 2(t(2;2) − ω̂(1;2))(θ̂(2;2) − θ̂(1;2))
≤(θ̂(1;2) − ω̂(2;2))2 + (θ̂(2;2) − ω̂(1;2))2

Induction step: Suppose that (θ̂(1;n), · · · , θ̂(n;n)) and (ω̂(1;n), · · · , ω̂(n;n)) are given.
Match θ̂(1;n) with ω̂(k;n) for some k ∈ {1, · · · , n}. The rest (θ̂(2;n), · · · , θ̂(n;n)) and
(ω̂(1;n), · · · , t(k−1;n), ω̂(k+1;n) · · · , t(n;n)) can be matched optimally when θ̂(j;n) is
matched with ω̂(j−1;n) if j ≤ k and θ̂(j;n) is matched with ω̂(j;n) if j > k by
induction hypothesis. Now I will show k = 1 minimizes the distance sum. To
show this, it is sufficient to show that k 6= n. It is because if k 6= n, I can apply
the induction hypothesis to (θ̂(1;k), · · · , θ̂(k;k)) and (ω̂(1;k), · · · , ω̂(k;k)), which yields
k = 1. Suppose k = n and note that

(θ̂(1;n) − ω̂(n;n))2 + (θ̂(n;n) − ω̂(n−1;n))2 ≥ (θ̂(1;n) − ω̂(n−1;n) + ω̂(n;n) − ω̂(n;n))2.

Thus, I have

(θ̂(2;n) − ω̂(1;n))2 + · · ·+ (θ̂(n;n) − ω̂(n−1;n))2 + (θ̂(1;n) − ω̂(n;n))2

≥(θ̂(2;n) − ω̂(1;n))2 + · · ·+ (θ̂(n;n) − ω̂(n;n))2 + (θ̂(1;n) − ω̂(n−1;n))2,

which contradicts the induction hypothesis. �

2. Proof of Theorem 1

Theorem 1. Full-disclosure is mutually optimal for users if assortative recom-
mendation is effective.

Proof. I need to construct a belief system that supports full revelation of informa-
tion when user’s expected match value is the one from the assortative matching.
Suppose that a firm with θ who successfully pretends to have a location of θ′ while
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other users fully reveal their locations. When a worker i is recommended to the
firm, the firm’s belief about the location of worker i can be denoted as a random
variable, W i

n(θ′), which conditions on firm j’s reported location θ′. Given all users’
full revelations to the platform and platform’s assortative recommendation, the
recommendation only reveals that firm j and worker i have the same rank12 in
θ = (θ1, θ2, · · · , θn) and ω = (ω1, ω2, · · · , ωn), respectively. Since the probability
that θ′ is rank k is given by F(k−1;n−1)(θ′)− F(k;n−1)(θ′).13, the associated pdf of
W i
n(θ′) is the following:

n∑
k=1

[F(k−1;n−1)(θ′)− F(k;n−1)(θ′)]g(k;n)(ω)

or, equivalently,

n∑
k=1

(
n− 1
k − 1

)
F (θ′)k−1(1− F (θ′))n−kg(k;n)(ω).

The corresponding expected utility from the successful deception is v(θ, θ′) =
1 − E[(θ − Wn(θ′))2]. Denote the derivative of v with respect to the second
argument by v2. I start by partitioning the unit interval as follows:

I[0,1] = ∪l=1,2,···Pl

where 1) each Pl is an interval, 2) if θ1, θ2 ∈ Pl, then v2(θ1, θ1) · v2(θ2, θ2) ≥ 0,
∀l ∈ {1, 2, · · · } and 3) if θ1 ∈ Pl and θ2 ∈ Pl+1, then v2(θ1, θ1) · v2(θ2, θ2) ≤ 0.14

The unit interval is partitioned based on the deception incentives of users. If two
locations are in the same interval, they locally want to be believed as locations in
the the same direction. Now, suppose that a message m ⊂ [0, 1] is received from
firm j.

I find the locally worst case location from each interval, and then show that
there always exists at least one globally worst case location among them. For each
l ∈ {1, 2, · · · }, if m ∩ Pl 6= ∅, I pick one type from m ∩ Pl by

θ̃l =
{

minm ∩ Pl if v2(x, x) ≥ 0, ∀x ∈ Pl
maxm ∩ Pl if v2(x, x) ≤ 0, ∀x ∈ Pl.

Define Θ̃ be the collection of such θ̃l. The platform’s belief assigns probability 1
12θj has rank k in θ if it is the kth smallest value in θ
13The probability that k − 1 firms among n − 1 firms are lower than θ′, subtracting the

probability that k firms among n− 1 firms are lower than θ′.
14The partition is well defined because by continuity of v2(·, ·).
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to a location θ̃ ∈ Θ̃ which satisfies

@θ̃′ ∈ Θ̃ s.t. v(θ̃′, θ̃) > v(θ̃′, θ̃′).

That is, no other location in Θ̃ wants to masquerade as θ̃ even if it is possible to
do so.15 If there are multiple types that satisfies the above condition, I can pick
one arbitrarily.

Before I show existence of such θ̄, I show that a firm with θ̃l ∈ Pl cannot ben-
efit from pretending to be another location which is available to him, I first
consider a local incentive within Pl and then global incentive within Θ̃. Sup-
pose first that v2(x, x) ≥ 0, ∀x ∈ Pl.16 Since (k − 1)

(n−1
k−1
)

= (n − 1)
(n−2
k−2
)
and

(n− k)
(n−1
k−1
)

= (n− 1)
(n−2
k−1
)
, I have

∂

∂θ′

(
n− 1
k − 1

)
F (θ′)k−1(1− F (θ′))n−k

=
(
n− 1
k − 1

)[
(k − 1)F (θ′)k−2(1− F (θ′))n−k − (n− k)F (θ′)k−1(1− F (θ′))n−k−1

]
f(θ′)

=(n− 1)
[(
n− 2
k − 2

)
F (θ′)k−2(1− F (θ′))n−k −

(
n− 2
k − 1

)
F (θ′)k−1(1− F (θ′))n−k−1

]
f(θ′).

Thus, v2 can be reformulated as

v2(θ, θ′) = ∂

∂θ′

n∑
k=1

(
n− 1
k − 1

)
F (θ′)k−1(1− F (θ′))n−kE[1− (θ − ω(k;n))2]

=
n∑
k=2

(n− 1)f(θ′)
(
n− 2
k − 2

)
F (θ′)k−2(1− F (θ′))n−kE[1− (θ − ω(k;n))2]

−
n−1∑
k=1

(n− 1)f(θ′)
(
n− 2
k − 1

)
F (θ′)k−1(1− F (θ′))n−k−1E[1− (θ − ω(k;n))2]

=(n− 1)f(θ′)
n−1∑
k=1

(
n− 2
k − 1

)
F (θ′)k−1(1− F (θ′))n−k−1E[(θ − ω(k;n))2 − (θ − ω(k+1;n))2]

=(n− 1)f(θ′)
n−1∑
k=1

(
n− 2
k − 1

)
F (θ′)k−1(1− F (θ′))n−k−1

∫ 1

0
(θ − ω)2[g(k;n)(ω)− g(k+1;n)(ω)]dω

=(n− 1)f(θ′)
n−1∑
k=1

(
n− 2
k − 1

)
F (θ′)k−1(1− F (θ′))n−k−1[αkθ + βk].

15Although the construction of belief is motivated from Hagenbach et al. (2014), the construction
cannot directly applied to the model because I deal with continuum type space with non-monotonic
masquerade relation.

16The same proof applies to the other case.
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where αk = −2
∫ 1

0 ω[g(k;n)(ω)−g(k+1;n)(ω)]dω and βk =
∫ 1

0 ω
2[g(k;n)(ω)−g(k+1;n)(ω)]dω.

I have αk > 0 and βk < 0 because G(k+1;n) first order stochastically dominates
G(k;n). Thus, if θ1, θ2 ∈ Pl and θ1 < θ2 then

0 ≤ v2(θ1, θ1) ≤ v2(θ1, θ
′) < v2(θ2, θ

′), ∀θ′ ∈ [θ1, θ2],

and, as a consequence,

v(θ2, θ1) =
∫ θ1

0
v2(θ1, θ)dθ <

∫ θ2

0
v2(θ1, θ)dθ = v(θ2, θ2)

As θ̃l ∈ Pl and v2(x, x) ≥ 0, ∀x ∈ Pl, the firm only can pretend to have a location
θ′ which is lower than θ̃l if it pretends to have another location in Pl. However,
the inequality above shows that the deception within Pl cannot be beneficial.

Now, consider the mimicking incentive within Θ̃. The only case when θ̃l firm can
profitably pretend to have another location is that when there is a cycle of the
form:

v(θ̃l, θ̃l) < v(θ̃l, θ̃m1), v(θ̃m1 , θ̃m1) < v(θ̃m1 , θ̃m2), · · · , v(θ̃mt , θ̃mt) < v(θ̃mt , θ̃l).

I will show that there cannot be a cycle of any length.

Lemma 1. If ∃(m1,m2, · · · ,mt) s.t. v(θ̃l, θ̃l) < v(θ̃l, θ̃m1) and v(θ̃mk , θ̃mk) <
v(θ̃mk , θ̃mk+1), for k = 1, 2, · · · , t− 1, then v(θ̃mt , θ̃mt) ≥ v(θ̃mt , θ̃l).

Proof. First, notice that v(θ, θ′) exhibits an increasing difference.

∂2

∂θ∂θ′
v(θ, θ′) = ∂

∂θ
(n− 1)f(θ′)

n−1∑
k=1

(
n− 2
k − 1

)
F (θ′)k−1(1− F (θ′))n−k−1[αkθ + βk]

=(n− 1)f(θ′)
n−1∑
k=1

(
n− 2
k − 1

)
F (θ′)k−1(1− F (θ′))n−k−1αk,

where αk = 2
∫ 1

0 ω[g(k+1;n)(ω)− g(k;n)(ω)]dω > 0. Now, I will prove the statement
by induction on the length of a cycle.

Base step: No cycle of length 2.
Let θ1 < θ2. By increasing difference, v(θ2, θ1)− v(θ1, θ1) is non-decreasing in the
second argument:

v(θ1, θ2)− v(θ1, θ1) ≤ v(θ2, θ2)− v(θ2, θ1).

Thus, if v(θ1, θ2) ≤ v(θ1, θ1), then v(θ2, θ2) ≤ v(θ2, θ1). That is, if θ1 benefits from
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mimicking θ2, then θ2 cannot benefit from mimicking θ1.

Induction step: Suppose that there is no cycle of length l − 1
For a contrary, suppose that there is a cycle of length l with θ1, θ2, · · · , θl. Without
loss of generality, let θ1 = min{θ1, · · · , θl} and cycle connects θi to θi+1 and θl to
θ1, for all i = 1, · · · , l − 1. By increasing difference,

v(θ1, θ2)− v(θ1, θ1) ≤ v(θk, θ2)− v(θk, θ2), ∀k = 1, · · · , l.

Thus, I have v(θk, θ2) ≥ v(θk, θ1) > v(θk, θk) which implies there is a cycle of
length l − 1. �

Since there is no cycle, any Θ̃ has an element θ̃ s.t. @θ̃′ ∈ Θ̃ s.t. v(θ̃′, θ̃) > v(θ̃′, θ̃′),
which completes the proof. �

3. Proof of Theorem 2

Theorem 2. ∃N such that ∀n ≥ N , an unraveling equilibrium exists in Γn if
Kolm(F−1, G−1) < min{σ(F ), σ(G)}.

Proof. To find an unraveling equilibrium under the sufficient condition, I work
backward from the users’ matching decisions. Suppose that all users fully revealed
their locations and consider firm j’s problem when it is recommended to accept
worker i. As in the proof of Theorem 1, its belief about the location of worker i is
denoted by W i

n(θj). Recall that the probability distribution function of W i
n(θj) is

given by
n∑
k=1

(
n− 1
k − 1

)
F (θj)k−1(1− F (θj))n−kg(k;n)(ω)

in the proof of Theorem 1. On the other hand, the location of worker l 6= i can be
denoted by a random variable W−in (θj), and its associated pdf is

n∑
k=1

(
n− 1
k − 1

)
F (θj)k−1(1− F (θj))n−k

1
n− 1

[
ng(ω)− g(k;n)(ω)

]
.

It is because 1) the pdf of the location of a worker whose rank is not k is
1

n−1
∑
l 6=k g(l;n)(ω) and 2) the mean of the order statistic density g(k;n) over k is g,

k ∈ {1, 2, · · · , n}. Therefore, it is

ng(ω) =
n∑
l=1

gl;n(ω) = (n− 1)
[ 1
n− 1

∑
l 6=k

g(l;n)(ω)
]

+ g(k;n)(ω),

which enables us to express the location of l 6= i in a closed form. Now, if multiple
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workers, including i, apply to firm j, j accepts i if and only if

E[1− (θj −W i
n(θj))2] ≥E[1− (θj −W−in (θj))2].

Using the closed form for the location of worker l 6= i, the condition is equivalent
to the following inequality:

E[1− (θj −W i
n(θj))2] ≥ Eω[1− (θj − ω))2].

Similarly, consider worker i who is recommended to apply to firm j. Denote the
location of firm j by Θj

n(ωi). Using the same reasoning, i has an incentive to follow
the recommendation if

E[1− (Θj
n(ωi)− ωi)2] ≥ Eθ[1− (θ − ωi))2].

Lemma 2. W i
n(θ) d−→ G−1(F (θ)), ∀θ ∈ [0, 1] and Θj

n(ω) d−→ F−1(G(ω)), ∀ω ∈
[0, 1].

Proof. I shall show that W i
n(θ) d−→ G−1(F (θ)). The same proof can be applied to

the second argument. First, note that if
√
n( kn − q)→ 0, then ω(k;n)

d−→ G−1(q) for
q ∈ (0, 1).17 Now, for each θ, define a random variable Qnθ whose value is k/n with
probability

(n−1
k−1
)
F (θ)k−1(1− F (θ))n−k for k = 1, · · · , n. I will show that

Qnθ
p−→ F (θ).

The mean of Qnθ is

E[Qnθ ] =
n∑
i=1

i

n

(
n− 1
i− 1

)
F (θ)k−1(1− F (θ))n−k = n− 1

n
F (θ)

The second equality derived using a property of the mean of a binomial distribu-
tion.18 Using a property of the variance of a binomial distribution, I find

Var[Qnθ ] = n− 1
n2 F (θ)(1− F (θ)).

Thus,

P[|Qnθ − E[Qnθ ]|] =E[1 (Qn
θ
−E[Qn

θ
])2

ε2
≤1

]

≤ 1
ε2
E[(Qnθ − E[Qnθ ])2] = 1

ε2
Var[Qnθ ]

17For a proof, see p.93 of DasGupta (2008).
18Mean of B(m, p) is mp.
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Since the last term tends to zero as n → ∞, I have Qnθ
p−→ F (θ). Combining

the two convergence results, the pdf of W i
n(θj) converges to a function h, where

h(θ) = 0 if θ 6= θj , where θj is the only point of discontinuity. Thus, I have
W i
n(θ) d−→ G−1(F (θ)). �

Since the utility function is continuous and bounded, I can appeal to Portman-
teu theorem. Therefore, the utility of the firm j from following recommendation
converges to 1− (θj −G−1(F (θj)))2.Now, I will use Lemma 2 to show that this
convergence of expected utilities are uniformly convergent.

Lemma 3 (Test for uniform convergence). Given a
∑n
k=1 ak(x)bk(x), if {ak(x)}

is uniformly bounded and is monotone for each x, while the series
∑
bk(x) is

uniformly convergent, then
∑
ak(x)bk(x) is also uniformly convergent.

Proof. See Hardy (1918) �

For θ ∈ [0, 1], define ak(θj) =
∫ 1

0 ω
mg(k;n)(ω)dω, which is independent of θ, and

bk(θ) =
(n−1
k−1
)
F (θ)k−1(1− F (θ))n−k. Then, I have

∑n
k=1 bk(θ) = 1, ∀n and ∀θ, by

the binomial theorem. On the other hand, ak(θ) is monotonically increases in k
and bounded below by 0 and above by 1 for any m ∈ {0, 1, 2, · · · }. Since sum of
two uniformly convergent functions also uniformly convergent, I conclude that the
firm’s expected utility converges uniformly to 1− (θj −G−1(F (θj)))2 if it follows
the recommendation.

Now, by the sufficient condition, I have

(F−1(x)−G−1(x))2 < σ(F )2, ∀x ∈ [0, 1]

Since F has a unit support, the above inequality still holds when x = F (θj),
∀θj ∈ [0, 1]. Thus, the above inequality is equivalent to

(θj −G−1(F (θj)))2 < σ(F )2, ∀θj ∈ [0, 1]. (2)

On the other hand, since the variance minimizes the distance, I have

σ(F )2 = Var(F ) ≤ Eω[(θj − ω)2], ∀θj ∈ [0, 1]. (3)

Combining the two inequalities above, I conclude that

1− (θj −G−1(F (θj)))2 > 1− Eω[(θj − ω)2].

Define εF = σ(F )−Kolm(F−1, G−1). By the uniform convergence result above,
for εF , there exists an NF ∈ N such that if the population of users on each side
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is larger than NF , they do not have an incentive to deviate from accepting the
recommended worker. Similarly, for εG = σ(G)−Kolm(F−1, G−1), there exists
NG such that all workers follow recommendation if the size of population is large
than NG. Since any effective deviation should be bilateral, I can consider the
case at least one side of users do not have incentive deviate from following the
platform’s recommendation.

Now, consider the platform’s strategy. As noted at Remark, a positive assor-
tative matching maximizes the social surplus and the platform’s utility. Thus,
given that all users fully reveal their information and follow the recommendations,
providing an assortative recommendation is optimal to the platform.

�

3. Proof of Theorem 3

Theorem 3. If there exists N s.t. an unraveling equilibrium exist in Γn, ∀n ≥ N ,
then @x∗ ∈ [0, 1] s.t.

p >
1− (F−1(x∗)−G−1(x∗))2

1− Ey[(F−1(y)−G−1(x∗))2] .

Proof. Suppose for a contrary that ∃x∗ ∈ [0, 1] that satisfies the inequality. The
expected utility of a worker with ω∗ = G−1(x∗) from following the recommendation
converges to 1 − (F−1(x∗) − G−1(x∗))2. If he apply to a firm which is not
recommended to him, his expected utility converges to p

[
1− Eθ[(ω∗ − θ)2]

]
. Thus,

the worker benefits from deviation and applying to another firm. �

4. Proof of Proposition 1

Proposition 1. An unraveling equilibrium exist in Γ∞ if and only if @x∗ ∈ [0, 1]
s.t. p > 1−(F−1(x∗)−G−1(x∗))2

1−Ey [(F−1(y)−G−1(x∗))2] .

Proof. (Sufficiency) I work backward to verify that an unraveling equilibrium
indeed exists under the condition. Consider a worker a who is recommended to
apply to firm b. By assortative recommendation and truthful revelation, the worker
knows that the location of the firm is F−1(G(ωa)). His updated belief on the
location of the other firms remains the same because the revelation of a location of
one firm does not reveal any information about the locations of other firms when
there are continuum firms. Since p[1− Eθ[(ωa − θ)2]] ≤ 1− (ωa − F−1(G(ωa)))2,
the worker does not have incentive to deviate. Since all firms receive only one
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application, they will accept their applicant.

Now, to apply “skepticism”, I need to construct a belief system of the plat-
form which makes users have no incentive to withhold any information. Denote
the set of roots of (F −G)(x) by19 R and suppose that a message m is received
from a firm20. Given message m from a user, consider a collection of subsets of m,
{mα}α∈Ip , which is constructed in a way that

if θ < θ′ and θ, θ′ ∈ mα′ for some α′ ∈ Ip, then @r ∈ R s.t. θ ≤ r ≤ θ′.

Thus, {mα}α∈Ip∪(R∩m) constitutes a partition of m. By construction, if θ ∈ mα′

for some α′ ∈ Ip, then it is either F (θ) > G(θ) or F (θ) < G(θ). Define lα′ by
supmα′ if F (θ) > G(θ) and inf mα′ if F (θ) < G(θ). Let {lα}α∈Ip∪(R∩m) = l(m).
The platform believes the user’s location to be

arg min
x∈l(m)

{
−
(
x−G−1(F (x)

))2}
(4)

If there are multiple arguments which solves (4), pick one arbitrarily. I need to
show that truthful revelation constitutes an equilibrium. Suppose that user with a
location θ tries to mimic θ′ 6= θ. First of all, it should be

∣∣θ′ −G−1(F (θ′)
)∣∣ > ∣∣θ −G−1(F (θ)

)∣∣ (5)

Otherwise, θ′ wouldn’t be taken over θ by the platform. Furthermore, it should be

∣∣θ −G−1(F (θ′)
)∣∣ =

∣∣θ − θ′∣∣+ ∣∣θ′ −G−1(F (θ′)
)∣∣ > ∣∣θ − θ′∣∣+ ∣∣θ −G−1(F (θ)

)∣∣.
The first equality is from the construction of belief system and the second inequality
is by inequality (5). Thus, firms do not have incentive to withhold any information,
and this completes the proof.

(Necessity) Suppose for a contrary that ∃x∗ s.t. p[1− Ey[(F−1(y)−G−1(x∗))2]] >
1− (F−1(x∗)−G−1(x∗))2. Then, a worker with a location ω = G−1(x∗) benefits
from deviating and applying to a firm which is not recommended to him. Thus,
an unraveling equilibrium cannot exist. �

19R is a totally ordered set as it is a subset of [0, 1]
20The same construction works for workers as well.
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5. Proof of Theorem 4

Theorem 4. Stable matching is attainable if

max{f(x), g(x)} ≤ 2 min{f(x), g(x)}, ∀x ∈ [0, 1].

Proof. Suppose the distributions G and F satisfy Assumption 2, Assumption 3
and the sufficient condition presented in the Theorem. Define RG(x, x′) to be the
expected utility of a user of location x in group G when she successfully convinces
other users that her location is x′ while other users truthfully and fully reveal
their locations. I first show that RW (ω, ω′) exhibits increasing difference. One can
show the increasing difference of RF (θ, θ′) using the same logic. In a fair stable
matching, RW (ω, ω′) is

1− min{f(ω′), g(ω′)}
max{f(ω′), g(ω′)}(ω−ω′)2−

(
1− min{f(ω′), g(ω′)}

max{f(ω′), g(ω′)}

)
(ω−F−1(1−G(ω′)))2.

Because of (MLRP) and (Mirror), f(x) ≥ g(x) if and only if x ≤ 1
2 . Thus,

RW12 (ω, ω′) is

d

dω′

(
g(ω′)
f(ω′)

)
(ω′ − F−1(1−G(ω′))) + g(ω′)

f(ω′) −
g(ω′)(f(ω′)− g(ω′))

f(ω′)f(F−1(1−G(ω′))) if ω′ ≤ 1
2

d

dω′

(
f(ω′)
g(ω′)

)
(ω′ − F−1(1−G(ω′))) + f(ω′)

g(ω′) −
g(ω′)− f(ω′)

f(F−1(1−G(ω′))) otherwise.

By (Mirror), 1 − G(ω′) = F (1 − ω′). Thus, the first terms in the above two

expressions are positive as d
dω′

(
g(ω′)
f(ω′)

)
is increasing and d

dω′

(
f(ω′)
g(ω′)

)
is decreasing.

To demonstrate the last two terms are also positive, it is sufficient to show the
following:

1− f(ω′)− g(ω′)
f(1− ω′) ≥ 0, ω′ ≤ 1

2 and

f(ω′)
g(ω′) −

g(ω′)− f(ω′)
f(1− ω′) ≥ 0, ω′ > 1

2 .

By (Mirror), they can further be simplified as

2g(ω′)− f(ω′) ≥ 0, ω′ ≤ 1
2 and

2f(ω′)− g(ω′) ≥ 0, ω′ > 1
2 .

It is clear to see the above inequalities are satisfied by the sufficient condition
provided in the Theorem.
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Now, since RW (ω, ω′) exhibits increasing difference, each user can infer each
other user’s true location by applying skepticism as shown in the proof of Theorem
1, and thus, the game after communication is a complete information game which
has a fair stable matching as an equilibrium outcome. �

6. Proof of Proposition 2

Proposition 2. Given θ̂ and ω̂, the following is an optimal pricing schedule to
the platform:

(i) TFj (m) = TWi (m) = 1− (ω̂i − θ̂j)2 if rank(θ̂j |θ̂) = rank(ω̂j |ω̂) and

(ii) TFj (m) = TWi (m) = 1 otherwise.

Proof. Firstly, it is clear that a user who fully reveals her location and receives an
optimal pricing schedule will apply to or accept a user with the same rank on the
other side. To show it cannot benefit from pretending to have other locations, it
is sufficient to show that QGn exhibits increasing difference. If it does, the belief
system that supports the equilibrium will follow as in the proof of Theorem 1. We
show that QFn exhibits increasing difference. Similar proof can be used to show
increasing difference of QWn .

d2

dθdθ′
QFn (θ, θ′) = d2

dθdθ′
E[(θ′ −Wn(θ′))2 − (θ −Wn(θ′))2]

=− d2

dθdθ′
E[(θ −Wn(θ′))2]

=v12(θ, θ′) > 0,

where v is as defined in the proof of Theorem 121, and v12 > 0 is also shown in
the proof of Theorem 1. �

7. Proof of Proposition 3

Proposition 3. A non-trivial coarse matching exists for any n, F and G.

Proof. Consider an equilibrium with thresholds ω̄ and θ̄ in which all workers whose
locations are lower than ω̄ send m and all workers with locations higher than ω̄
sends m to the platform. On the other hand, all firms with location lower than
θ̄ send s, while firms with location higher than θ̄ sends s to the platform. The
platform, after collecting messages, recommends each user in an assortative manner.
Let #m denote the number of message m collected by the platform: If #m̄ > #s̄
and #m ≤ #s, a worker who sent a lower message, m, is recommended with a

21v(θ, θ′) = 1 − E[(θ −Wn(θ′))2]
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firm who sent a lower message, s. If a worker sends a higher message, m, then the
platform arbitrarily picks #s workers and each of them are recommended with a
firm who sent a higher message, s. All other workers are recommended with a firm
who sent a lower message. If the other case, #m̄ ≤ #s̄ and #m > #s happens, the
platform provides recommendations in the opposite way. At the last stage of the
game, all workers apply to its recommended firm, and all firms accept its applicant.

To show this indeed constitute an equilibrium, I will work backward from the indi-
vidual’s match choice problem. Suppose that a worker i sent m, and recommended
to apply to firm j. In equilibrium, the partial assortative recommendation reveals
that θj ≥ θ̄ with probability

n∑
k=0

(
n

k

)
F (θ̄)k(1− F (θ̄))n−k

n−1∑
j=k

(
n− 1
j

)
G(ω̄)j(1−G(ω̄))n−1−j(1− k

1 + j
).

He also updates about the location of other firms, say firm k 6= j. By ex-ante
homogeneity, the probability that j is recommended to i is 1

n . Using the total law
of expectation, P [θj ≥ θ̄] is the same as

1
n
P[θj ≥ θ̄|j is recommended to i] + n− 1

n
P[θj ≥ θ̄|j is not recommended to i]

By ex-ante homogeneity again,

P [θj ≥ θ̄|j is not recommended to i] = P [θk ≥ θ̄|k is not recommended to i]

Thus, P [θk ≥ θ̄|k is not recommended to i] is

n

n− 1(1− F (θ̄))− 1
n− 1P[θj ≥ θ̄|j is recommended to i]

For notational simplicity, I denote P [θj ≥ θ̄|j is recommended to i] by P [θj ≥ θ̄|j]
and P [θk ≥ θ̄|k is not recommended to i] by P [θk ≥ θ̄|¬k]. Given that 1 ≥ 1̄,
applying to firm j is better than applying to other firm if

P[θj ≥ θ̄|j]E[1− (θj − ωi)2|θj ≥ θ̄] + P[θj ≤ θ̄|j]E[1− (θj − ωi)2|θj ≤ θ̄]

≥max{0, 1
2P [θk ≤ θ̄|¬k]E[1− (θk − ωi)2|θk ≤ θ̄] + P [θk ≥ θ̄|¬k]E[1− (θk − ωi)2|θk ≥ θ̄]}

Since 1 ≥ 1̄, I have

P[θj ≥ θ̄|j]E[1− (θj − ωi)2|θj ≥ θ̄] + P[θj ≤ θ̄|j]E[1− (θj − ωi)2|θj ≤ θ̄] ≥ 0.

Using the closed form expression of P [θk ≤ θ̄|¬k] in terms of j, the remaining

37



inequality can be simplified as follows:

[P[θj ≤ θ̄|j]−F (θ̄)]E[1−(θj−ωi)2|θj ≤ θ̄] ≥ [P[θj ≤ θ̄|j]−F (θ̄)]E[1−(θj−ωi)2|θj ≥ θ̄]

Lemma 4. P[θj ≤ θ̄|j] > F (θ̄), ∀θ̄ ∈ (0, 1).

Proof. By a property of the binomial distribution, B(n, p), it is

n∑
k=0

(
n

k

)
pk(1− p)n−kk = np.

On the other hand, using a binomial theorem, it is

n−1∑
j=0

(
n− 1
j

)
G(ωi)k(1−G(ωi))n−1−j = 1.

Letting p = F (θ̄), and using the two equalities above, I can express F (θ̄) in a form
of

F (θ̄) =
n∑
k=0

(
n

k

)
F (θ̄)k(1− F (θ̄))n−k k

n

n−1∑
j=0

(
n− 1
j

)
G(ωi)k(1−G(ωi))n−1−j .

Thus,

P[θj ≤ θ̄|j]− F (θ̄)

=
n∑
k=0

(
n

k

)
F (θ̄)k(1− F (θ̄))n−k

k−1∑
j=0

(
n− 1
j

)
G(ωi)k(1−G(ωi))n−1−j

(
1− k

n

)

+
n∑
k=0

(
n

k

)
F (θ̄)k(1− F (θ̄))n−k

n−1∑
j=k

(
n− 1
j

)
G(ωi)k(1−G(ωi))n−1−j

(
k

1 + j
− k

n

)]
> 0.

�

By Lemma 4 I conclude that ωi worker follows the recommendation if

E[1− (θj − ωi)2|θj ≤ θ̄] ≥ E[1− (θj − ωi)2|θj ≥ θ̄].

Before I study the platform’s incentive, I find that ω̄ and θ̄ should satisfy the
arbitrage condition of Crawford and Sobel (1982). That is, by continuity and
concavity, ω̄ is decided by the following condition:

E[1− (θ − ω)2|θ ≤ θ̄] ≥E[1− (θ − ω)2|θ ≥ θ̄] ∀ω ≤ ω̄
E[1− (θ − ω)2|θ ≤ θ̄] ≤E[1− (θ − ω)2|θ ≥ θ̄] ∀ω ≥ ω̄.
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Similarly, θ̄ is decided by the following condition:

E[1− (θ − ω)2|ω ≤ ω̄] ≥E[1− (θ − ω)2|ω ≥ ω̄] ∀θ ≤ θ̄
E[1− (θ − ω)2|ω ≤ ω̄] ≤E[1− (θ − ω)2|ω ≥ ω̄] ∀θ ≥ θ̄.

Now, I need to check the incentive of the platform to provide partially assortative
recommendation. Suppose that all users report their location using the binomial
message space, and they all follow recommendations of the platform. Consider the
situation where worker 1 sent m̄, worker 2 sent m, firm 1 sent s̄, and firm 2 sent s.
Now, for a contrary, suppose that the platform recommends firm 1 to worker 2
and firm 2 to worker 1. Fixing the recommendations to the other workers, other
than worker 1 and worker 2, the same, the platform’s expected utility from this
non-assortative matching is greater than an assortative matching by

E[1− (θ − ω)2|ω ≥ ω̄ ∧ θ ≤ θ̄] + E[1− (θ − ω)2|ω ≤ ω̄ ∧ θ ≥ θ̄]
−E[1− (θ − ω)2|ω ≤ ω̄ ∧ θ ≤ θ̄]− E[1− (θ − ω)2|ω ≥ ω̄ ∧ θ ≥ θ̄].

Here, by the arbitrage conditions, I have

− E[1− (θ − ω)2|ω ≤ ω̄ ∧ θ ≤ θ̄] + E[1− (θ − ω)2|ω ≤ ω̄ ∧ θ ≥ θ̄] < 0 and
E[1− (θ − ω)2|ω ≥ ω̄ ∧ θ ≤ θ̄]− E[1− (θ − ω)2|ω ≥ ω̄ ∧ θ ≥ θ̄] < 0.

which makes the overall value negative. Thus, the platform cannot benefit from
non-assortative recommendation. This complete the proof since the user’s incentive
not to deviate at reporting stage is satisfied by the arbitrage condition. �
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