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Abstract

Frequently in experiments there is not only variance in the reaction of participants
to treatment. The heterogeneity is patterned: discernible types of participants
react differently. In principle, a finite mixture model is well suited to simultane-
ously estimate the probability that a given participant belongs to a certain type,
and the reaction of this type to treatment. Yet often, finite mixture models need
more data than the experiment provides. The approach requires ex ante knowl-
edge about the number of types. Finite mixture models are hard to estimate for
panel data, which is what experiments often generate. For repeated experiments,
this paper offers a simple two-step alternative that is much less data hungry, that
allows to find the number of types in the data, and that allows for the estimation
of panel data models. It combines machine learning methods with classic frequen-
tist statistics.
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1 Introduction

Not all experimental participants are equal. This is not only a truism. If, strictly
speaking, all were equal, there would be nothing to estimate. There would be no
need to expose a randomly selected sample to random variation. One could infer the
universal law of nature from exposing one of two otherwise identical individuals to
treatment. Most empirical researchers shy away from the philosophical debate over
natural laws. Even if such laws exist, and matter for the behavior of human participants,
the researcher is not in a position to observe them. All she can study is the reaction
of a sample that she suspects to differ in multiple ways. Yet as long as (a) assignment
to treatment is random, (b) the sample is sufficiently large, and (c) the difference in
outcomes between treated and untreated participants is sufficiently pronounced, the
researcher can infer the population effect. Frequentist statistics let her assess whether
it is sufficiently unlikely for the observed difference to be a false positive.

Note that this standard approach to the analysis of experimental data assumes het-
erogeneity: different individuals react differently to treatment. Yet this heterogeneity
is treated as a nuisance variable. It results from the fact that perfectly clean data is
unavailable. It is the purpose of randomization to prevent this heterogeneity from bi-
asing the estimation of the treatment effect. The researcher feels justified to treat the
unobserved heterogeneity as noise. This is why, in statistical textbooks, the estimation
of the treatment effect is introduced as the difference in the central tendency of two
Gaussian distributions.

Not so rarely, experimenters have reason to doubt that the heterogeneity in reaction
to treatment is indeed random. A prominent illustration is social preferences. On
average, participants in dictator, ultimatum or public good games do not behave as
predicted by microeconomic textbooks. They share some of their endowments with
their passive counterparts (Engel, 2011), they reject offers that exploit a first-mover
advantage (cf. Cooper and Dutcher, 2011), and they make substantial contributions
to socially beneficial joint projects (Zelmer, 2003). Yet a substantial fraction of most
experimental samples maximize short-term profit. A rather small minority are true
altruists. And many only neglect the dilemma structure of a public good if they know,
observe or believe that their counterparts will do so as well (Fischbacher et al., 2001).1
There are thus (at least) three discernible types.

In principle, such patterned heterogeneity is a case for a finite mixture model. The
model can be estimated with maximum likelihood. The procedure simultaneously esti-
mates the probability of a datapoint to belong to each of the types, and the reaction of
each type to treatment. In postestimation, each participant of the experiment can be
assigned to the most likely type. Yet in practice, finite mixture models with experimen-
tal data often do not converge. Two-dimensional maximum likelihood requires more
and cleaner data than many experiments produce. This in particular holds if one prop-

1For detail see below ***
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erly reflects the dependence structure induced by an interactive, repeated experiment,
like a repeated public good. Such an experiment generates data from choices, nested
in individuals, nested in groups. Each group is a single independent observation. A
further drawback is the necessity to fix the number of types beforehand, although one
typically estimates the finite mixture model when the data suggests that there might be
more than a single type. The purpose of the model is to find out whether heterogeneity
is indeed patterned. At this point, theory to rationalize this type space is still missing.

In this paper, I propose a statistical approach that precisely targets this situation. With
the proposed approach, the biggest challenge for the estimation of a finite mixture model
turns into the critical asset: the panel structure of repeated experiments. The approach
needs one identifying assumption: type is a personality variable. The heterogeneity
originates in the fact that different individuals react to treatment in different ways. If
this assumption can be made, in a first step one can separately regress each individual
on all exogenous variables. The coefficients from these local regressions characterize
the individual’s type. Standard machine learning techniques, like a classification and
regression tree CART, can be used to find the best way to partition the type space. In
the second step, each participant is characterized by one of these types. Treatment is
interacted with type. These interaction terms estimate in which ways the reactions of
different types to treatment differ.

The remainder of the paper is organized as follows. The next section relates the paper
to the literature. Section 3 explains the approach in detail, and contrasts it with the
alternatives. Section 4 uses simulation to explore how well the proposed non-parametric
method performs. Section 5 applies the approach to a real experimental dataset. Section
6 concludes with discussion.

2 Related Literature

Experimenters pay increasingly attention to patterned heterogeneity (see, for instance,
Bruhin et al., 2018; Conte and Levati, 2014; Santos-Pinto et al., 2015) and use finite
mixture models (Moffatt, 2015) to simultaneously estimate the composition of the type
space, and reactions to treatment conditional on type, in games as diverse as public
goods (Bardsley and Moffatt, 2007; Kassas et al., 2018), prisoner dilemmas (Becchetti
et al., 2017), beauty contests (Bosch-Domènech et al., 2010; Breitmoser, 2012), bribery
games (Bolle et al., 2011), learning in networks (Kovářík et al., 2018), and attitudes
towards macro-risk in financial markets (Brown and Kim, 2013). Yet to the best of
my knowledge, none of these papers discuss machine learning methodes to organize the
type space.

There is an active literature on the estimation of heterogeneous treatment effects out-
side experimental economics. Some of these papers discuss the application of machine
learning methods (for overviews see Alaa and Schaar, 2018; Künzel et al., 2017; Powers
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et al., 2017). They for instance use CART (Athey and Imbens, 2016; Su et al., 2009),
random forests (Lu et al., 2018; Wager and Athey, 2017) or support vector machines
(Imai et al., 2013) to estimate differences in the reaction to treatment, or advocate
averaging types over the outcomes from multiple alternative machine learning methods
(Grimmer et al., 2017).

A particularly active application is biostatistics. Data from reactions of patients to
alternative medical interventions is used to personalize treatment (Bonetti and Gel-
ber, 2004; Gail and Simon, 1985; Sauerbrei et al., 2007; Tian et al., 2014; Wendling
et al., 2018; Zhao et al., 2012) or to evaluate the performance of hospitals in treating a
heterogeneous population of patients (Berta et al., 2016).

Closest in spirit is Bonhomme et al. (2016). They also propose to proceed in two steps.
In the first step, they estimate the probability that a datapoint belongs to a certain
group, exploiting repeated measurement. In the second step, the data are weighted by
these estimates. Yet they assume the number of groups (types) to be known ex ante,
while my approach allows to estimate them from the data. Bertoletti et al. (2015)
propose a Bayesian method to estimate the number of groups in a finite mixture from
the data. As I will explain below, under suitable conditions, there is a simpler approach
if one has multiple observations per participant of an experiment.

3 Estimation Approaches

Observed Type

If the type space is fully understood, a two-step approach invites itself. In a first step,
one measures type, for instance with the test developed by Fischbacher et al. (2001). In
a second step, one explains observed choices yi with type τi ∈ {1, .., T} and treatment
ti ∈ {0, 1}. Hence one estimates

yi =


β1,0 + β1,1ti + εi if τi = 1

...

βT,0 + βT,1ti + εi if τi = T

(1)

This can equivalently be written as

yi = β0 +
T∑
τ=2

βτ−1τi + β2ti +
T∑
τ=2

βT−1+ττi ∗ ti + εi (2)

One defines one type as the reference category. For this type, β0 is the estimated
choice when untreated, and β0 + β1 is the estimated choice when treated. For any
other type, the choice when untreated is estimated by β0 + βτ−1, and the choice when
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treated is estimated by β0 + βτ−1 + β1 + βT−1+τ . This specification has the advantage
that β1..βT−1 are a direct estimate for the difference between the type chosen as the
reference category and the respective alternative type when untreated. Likewise the
interaction terms measure how the reaction to treatment differs between the reference
type and the remaining types.2

Finite Mixture Model

If type τi is not observed independently of choice yi, the composition of the type space,
and choices conditional on type, must be simultaneously estimated. In principle, this
can be done with a finite mixture model. If one feels confident to estimate a linear
model, the density to be estimated is given by

f(yi) =
T∑
τ=1

πτfτ (yi|xi
′β) (3)

In (3) fτ (yi|xi
′β) is a generic way of writing (1), while allowing x to contain covariates,

together with the treatment variable t. The additional component is estimating the
probability πτ of observations in the population to be of type τ , with the constraint
that

∑T
τ=1 πτ = 1.

The model defined in (3) can be estimated with maximum likelihood. The probabilities
π1..πT are treated as latent variables. Estimating these latent variables is a challenge
though. Statistical packages usually parry the challenge iteratively, using the EM al-
gorithm (Dempster et al., 1977), going back and forth between (initially arbitrary)
probabilities, and the coefficients conditional on an observed datapoint belonging to
one of the types.

This iterative procedure is why finite mixture models often fail with experimental data.
Models do not converge. This is the more likely the more types one posits to exist.
Moreover, in a finite mixture model, the number of types in the population must be
fixed ex ante; it is not taken from the data.

Estimating the Type Space from the Data

The previous approaches have treated each data point as an independent observation.
Economic experiments are frequently repeated. For estimating the treatment effect,
this is not a concern. One can estimate the random effects model (4)

yit = β0 + β1ti + εi + εit (4)
2Of course both only holds if the statistical model is linear.

5



assuming that individuals i are randomly assigned to treatment t, and that choices are
nested in individuals i. Yet finite mixture models for panel data are difficult. The
individual specific error εi is itself a random latent variable. One would be forced to
integrate out latent variables in two dimensions (types, and individuals). One way out
is adding dummies for individuals to x in (3) (Deb and Trivedi, 2013).3

For the approach proposed here, the panel structure of the data is, to the contrary, not
a challenge, but the critical asset. For the approach to work, one must feel confident to
assume that type is a personality variable. The population subdivides into an (initially
unknown) number of types. Each individual is permanently of one and the same type. It
depends on type how the individual reacts to treatment. The approach finally requires
that type induces some within participant variation. The archetypal illustration is a
time trend that differs across types.

If these conditions are fulfilled, one can proceed in two steps. In the first step one
defines the type space and assigns each individual in the sample to one of these types.
In the second step, one estimates the treatment effect conditional on type.

Steps 1-10 of the Algorithm proposed below explain in which ways the panel structure
of the data can be exploited to estimate the type space from the data. This part of the
procedure has two components. One first regresses the choices yit of each individual on
all time varying observed explanatory variables xit (steps 2-6 of the algorithm). This
yields for every participant a series of coefficients βi. These coefficients characterize
the between subjects variance in the data.

The second component uses these coefficients to organize the type space (steps 7-10 of
the Algorithm). The purpose of the exercise is estimating a heterogeneous treatment
effect. Consequently, supervised learning is appropriate. One trains a classification
algorithm on choices yit, as explained by the individual coefficients βi. In principle, one
could use any classification algorithm for the purpose, including naive Bayes, nearest
neighbor methods, support vector machines or neural networks (for a very accessible
introduction to these methods see James et al., 2013). Yet a classification tree CART
is appealing for two reasons: the classification is straightforward to interpret, and there
are well-validated methods for defining the depth of the tree, and thereby the estimated
number of types in the population (Breiman et al., 1984; Strobl et al., 2009).

CART recursively partitions the data, such that each split explains as much variance
as possible. Hence at the first split, CART uses each coefficient in β. As all coefficients
are continuous, CART not only tries out each coefficient, but each cutpoint on each
coefficient. This first step creates a tree with two branches. CART repeats the proce-
dure and, separately for each tree, finds the (cutpoint at the) coefficient that explains
most of the remaining variance. The standard algorithm first grows the complete tree,
but then "prunes" it, to find the optimal balance between exploiting the information
in the sample, and overfitting. The method proposed here uses this approach to find

3The workaround only works though if the panel is sufficiently long. Otherwise one runs into the
incidental parameters problem (Neyman and Scott, 1948; Lancaster, 2000).
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the optimal number of types. The problem is equivalent, as one only has the sample
to estimate the type space in the population. Hence one has reason to be concerned
about putting too much stress on unsystematic features of the sample.

A tree that yields three types might for instance have a first split at β1 < 2, and a second
split for the right branch of the tree at β2 < 5. These splits can also be used to assign
participants to types. All participants with β1 < 2 are classified as τ1. Participants
with β1 ≥ 2 and β2 < 5 are classified as τ2, and participants with β1 ≥ 2 and β2 ≥ 5
are classified as τ3.

In the final step (step 11 of the Algorithm) treatment t can be interacted with type τ ,
to yield the estimated treatment effect conditional on type. This final step is an exact
analogue to the procedure if type is observed. As one can treat participants as if one
had always known their type, it is easy to capture the dependence structure by splitting
up the error into εi+ εit, i.e. by estimating a random effects model. This is particularly
helpful if, as often, the data not only comes from a repeated, but from a repeated
interactive experiment. Then choices are nested in individuals who are themselves
nested in groups.4 This dependence structure can be captured by εg + εgi + εgit, i.e.
by a mixed statistical model that distinguishes between the "fixed" effects x and the
series of (assumedly orthogonal) random error terms (where g stands for the group).

Algorithm

1. Let D0 be a panel with dependent variable yit, and explanatory variables xit that
include treatment t

2. initialize β

3. For every participant Do

4. regress yit on all time varying xit

5. collect participant id and all βi in separate data frame D1

6. EndFor

7. merge D1 with D0 on id

8. fit classification tree of yit on β

9. use standard algorithm to define optimal depth of tree

10. use optimal tree to assign type to each participant

11. estimate panel version of (2)

4If groups are rematched during the experiment, g must stand for the matching group from which
the rematching in done.
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Figure 1: Simulated Data Pooled

4 Simulation

In this section, I show with simulated data how the approach performs. In the simula-
tion, N = 400 individuals are observed for T = 10 periods each. Half of the individuals
are treated (τ ∈ {1, 2}), and individuals are of types θ ∈ {1..4}. Types differ in their
reaction to treatment. Specifically, dependent variable yit is generated according to (5)

yit = 4 + 2 ∗ (3− θ) ∗ τ ∗ t+ εi + εit (5)

where individual specific error εi ∼ N (0, 1) captures dependence within individuals,
and εit ∼ N (0, 1) ⊥ εi is residual error. Figure 1 shows that the dependent variable
seemingly exhibits 6 different groups. Both extremes come from treated data. Two in-
termediate arrows purely come from untreated participants. The remaining two arrows
are mixed from treated and untreated participants (black and red circles overlap).

Comparing the regression in Table 1 with Figure 2 shows that ignoring the heterogeneity
yields a very misleading picture. The regression finds overall a significant positive time
trend. Yet this only holds for 2 of 4 types, while the trend is negative for type 4 and
close to 0 for type 3. Likewise the interaction between treatment and the time trend is
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misleading. Overall it is again significantly positive. But this effect is driven by types
1 and 2, while the treatment effect is actually negative for type 4, and again close to 0
for type 3.

τ 0.105 (2.061)
t 0.994∗∗∗ (0.084)
τ ∗ t 0.996∗∗∗ (0.118)
cons 4.004∗∗ (1.458)

N 4,000

Linear model with
individual random ef-
fect. Standard errors in
parenthesis. ∗p<0.05;
∗∗p<0.01; ∗∗∗p<0.001

Table 1: Pooled Random Effects Model

If this were experimental data, one would only have Figure 1. It clearly suggests
patterned heterogeneity. But it is hard to guess the number of types: two, as there
are some with a positive and some with a negative trend? Three, as there are two
arrows that clearly separate untreated and treated cases? Or four, as is indeed the data
generating process?5

As the simulated data generation process is so clean, the correct finite mixture model
with four types converges and yields results that closely match (5), Table 2. Yet note
that the model ignores dependence at the individual level.6 As the data is simulated, I
can compare estimated with true type. The estimate is correct in 96.33 % of all cases.
The root mean squared error is 1.410, which is even less than in the original data, where
it is 1.429.7

I now contrast this result with the result generated applying the Algorithm. The only
variable that varies within participants is t. I therefore, separately for each individual,
estimate

yt = β0 + β1t+ εt (6)

This step yields a new dataset with two scores per participant, β0 and β1, plus the
observed outcomes yit, and a user identifier. I use these scores to build the regression

5In an experiment, random assignment would exclude 6 types, as there could not be selection of
types into treatment.

6Given each participant is assigned to either baseline or treatment for the entire sequence, one
can also not emulate a fixed effects model by adding participant dummies: they would be perfectly
collinear with the explanatory variable of interest, i.e. the interaction between τ and t.

7This betrays a slight degree of overfitting: the finite mixture model "explains" some of the noise
in the sample.

9



●

●
●

●

●
●

● ●
●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

● ●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
● ●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●
●

● ●

●
●

●
●

●
●

●

●
●

●
●

● ●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

● ●

●
●

●

● ●

●

● ●
●

●
●

●
●

● ●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

● ●

●
●

●

●
●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

● ●

●
●

●
●

●
●

●
●

● ●

●
●

●

●
●

●
●

●

●
●

●

● ●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
● ●

●

● ●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

● ●

●
●

●

● ●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

20
40

60
80

type 1

per

y

●

●

untreated

treated

● ●

●
●

● ● ●

●
●

●

●
●

●

● ●
● ●

●
●

●

● ●

● ●
●

●
●

●
●

●

●
● ●

● ● ●

●

●
●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●
●

●
●

●

● ●

● ●
●

●

●
●

●
●

●
●

●
●

●

●
●

● ●
●

●

● ●
●

●
● ●

●
● ●

●
●

● ●

●
●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●
●

●
● ●

●
●

●
● ●

●
●

● ●

●
●

●

●

● ●

●
●

●
● ●

●

●

●
●

● ●

●

● ●
●

●

●

●
●

●
● ●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

● ●

● ●
● ●

●
● ●

●

● ●

● ●

●

●
●

●
●

●

● ●
●

● ●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●
● ●

●
●

●
●

●
●

●

●

●

● ●

●

● ●
●

●

●

●
●

●
●

●

●
● ●

●

●

● ●
●

●
●

●

●
●

●
●

●

●
●

● ●
●

●
●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

● ●
●

●

●
●

●

●
● ●

●
● ●

●
●

●

●

●
●

● ●
●

●
●

●
● ●

●
●

●
●

● ●

● ●

●
●

●
●

● ●
●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●
●

● ●

● ●
●

●
●

●
●

●
● ●

●
●

●
●

● ●
●

●
●

●

● ● ●

● ● ●

● ●
●

●

● ●

●
●

● ●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
● ●

●
●

●

●

●

●
●

● ●
●

●

●
●

●
● ●

● ●
●

●
● ●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

● ●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

● ●

●
●

●

●
●

●

● ●

● ●
●

●

●
●

●
●

●
●

●

●
●

●

● ●

●
●

● ●
●

●
● ●

● ●

●
●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

● ●
●

●

●
● ●

●
● ●

● ●

●

●
●

●
●

● ●
●

●

●
●

●

● ● ●

●
●

●
● ●

●

●
●

●
● ●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

0
10

20
30

40

type 2

per

y

●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

● ● ●

●

●

●

●

●
●

●

● ●

●

●

● ●
●

●

●
●

●

● ●

●
●

●

●

●

●

●
● ●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

● ● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

● ● ●

●
●

●

●

●
●

● ● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

● ●

●
● ●

● ●
●

●

●

● ●

●

●

●

●
●●

●
●

●

●

●
● ●

● ●
●

●

●

● ●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

● ●

●
●

● ●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

● ●● ●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●
●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

● ● ●
●

●

●

●

●
●

● ●

●

●

●

●

●
● ●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●

● ●

●

● ●

●

●

●
● ●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

● ●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

● ●

●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●
●

●

●
● ● ● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

● ● ●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

● ● ● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

● ●
●

●

2 4 6 8 10

0
2

4
6

8

type 3

per

y

●
●

●

●
●

●
●

● ●

●

●
●

●
●

●

●

● ●
● ●

● ● ●

●
●

●
●

●
●

●

●
●

●

●
●

● ●

●
●

●

●

● ●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

● ●

●

●

●
●

●
●

●
●

●
●

●

● ●
●

●
● ●

●

● ●

●

●
● ●

●
●

●

●

● ● ●

● ●

●
●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

● ●

●

● ●

● ●

●

●
●

●
●

●

●
● ●

●

●
●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●
●

●
●

●
●

● ●

●
●

●
●

● ●

● ●

● ●
●

● ● ●

●
●

● ●

● ● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
● ●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●
●

● ●
●

● ●

●
●

●
●

●

●
●

●

●
●

●

● ●
●

●

● ●

●

●

● ●

●
●

●
● ●

●
●

●
● ●

●
●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

● ●

● ●

●

●
●

●

● ●

●
●

● ●

●

●
● ●

● ●

● ●

●
●

●

●
●

● ●

●
●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

● ●
●

●
●

● ●

●
●

●
● ●

●

●
●

●

●
● ●

●

● ● ●

●
●

●

●
●

●

● ●

● ●

●
●

●
● ●

●

●
● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

● ●

●

●
●

●
●

●
●

●
●

●

● ●

●
●

●

●
● ●

●
● ●

● ●

● ●

● ●

● ●

●

●
●

●
●

●

●
●

●
●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●
●

●

●
●

●

● ●
●

● ●
●

●
● ●

●

●
●

● ● ●

●

● ●
●

●

●
●

●

● ●
●

● ●

●
●

●

●
●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●
●

●
●

●

●
● ●

● ●

●
●

● ●

●

● ●
●

●

●

●
●

● ●

●
●

●
●

●

●

● ●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

2 4 6 8 10

−
40

−
30

−
20

−
10

0

type 4

per

y

Figure 2: Simulated Data by Type
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type 1 type 2 type 3 type 4
ptype 24.97 24.89 24.79 25.35
t -.007 .012 .024 .055
τ -.102 .147 .407 .301
τ ∗ t -1.992 -.011 1.982 3.963
cons 4.002 3.949 3.367 3.548
Linear finite mixture model, assuming 4
groups, and treating all data points as in-
dependent

Table 2: Finite Mixture Model

1 2 3 4 5 6 7 8 9
untreated 50 60 40 50
treated 50 8 50 42 50

Table 3: Type Space Estimated with CART

tree of Figure 3.8 Two things are remarkable: the tree exclusively uses β1, i.e. the
individual slope coefficients, and it finds 6 types, i.e. the six distinct arrows of Figure
1.

Now τ is observed as well. Three of the types generated by CART exclusively cover
treated or untreated cases. Taking this into account, the final set of types consists of
nine types, of which four are treated, and 5 are untreated. Table 3 reports the estimated
frequencies of these types.

Using this coding, in the next step I estimate (7), where τ̂k is one of the 9 estimated
types.

yit = γ0 + γ1tit +
9∑

k=2

γkτ̂k +
9∑

k=2

γ2kτ̂k ∗ tit + εi + εit (7)

Table 4 shows that the procedure works well. Type main effects are all insignificant,
as they should, given the data generating process of (5) starts at the same point,
irrespective of type. The coefficient of t captures the time trend for the first type (it
corresponds to type 1 in Figure 2, for the untreated participants). The interaction
effects define how much the time trend for each of the remaining estimated types τ̂k
differs from the time trend in the first type.

Tests for the treatment effect come from subsequent Wald tests. As CART (together
with the observed treatment classifier) finds 9 types, one may first want to know the
estimated overall treatment effect, which is .225, p < .001. τ̂1 and τ̂2 correspond to

8I use the tree command of R’s library tree. It uses the Gini coefficient as the impurity measure,
and cross-validation to find the tree depth with the optimal tradeoff between bias and variance.
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|
beta1 < 0.999002

beta1 < −1.03408

beta1 < −3.018

beta1 < 6.01105

beta1 < 3.03366−18.160  −7.072
  4.138

 14.870  26.060
 48.050

Figure 3: Regression Tree from Scores of Local Regressions
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type 1 in Figure 2. The time trend is strong when untreated, and approximately
twice as strong when treated. The treatment effect is directly measured by t ∗ τ̂2 in
Table 4. CART splits the treated cases corresponding to type 2 in Figure 2 into a
few cases (8 participants) of τ̂4 and a large group (50 participants) of τ̂5. Wald tests
show that the difference to the corresponding untreated type τ̂3 is in either comparison
highly significant (p < .001), but the comparison with τ̂4 is −1.5 and hence has the
wrong sign. By contrast, the comparison with τ̂5 is 2.313 and as expected. τ̂6 and τ̂7
correspond to type 3 in Figure 2. By design, for this type treatment is immaterial,
which is also what the regression finds: the difference between both interaction effects
is .004, p = .894. τ̂8 and τ̂9 correspond to type 4 in Figure 2. The estimated treatment
effect is −1.978, p < .001, and hence very close to the data-generating process.

Figure 4 shows that, overall, the local regression approach predicts the data very well.
The predicted values from (7) not only reconstruct the six arrows from Figure 1. With
one exception, the predicted value even sits close to the midpoint of the local distribu-
tion of y. Only for the third arrow from above, the predicted values are at the lower
bound of the local distributions. The root mean squared error is less good than for the
(technically incorrect) finite mixture model, but with 2.219 still very good.

5 Experimental Data

In the final step, I use the seminal contribution of Fischbacher et al. (2001); Fischbacher
and Gächter (2010) to explore the power of the approach with real experimental data.
Fischbacher & Gächter have participants play a standard linear public good, where
payoff is defined by (8)

πi = 20− ci + .4
4∑

k=1

ck (8)

In (8) π is payoff, c is the contribution a participant makes to the public good of a
group of size K = 4. As .4 < 1 it is individually rational to keep the endowment.
Yet as 4 ∗ .4 = 1.6 > 1 it is socially rational that all group members contribute their
entire endowments. The novelty is the use the strategy method (Selten, 1965). Each
participant makes two contribution choices: one unconditional, and one conditional
on the mean choice of the remaining participants. After the game, the one group
member is randomly determined for whom the conditional choice is payoff relevant.
For this participant, the design removes strategic uncertainty. This provides a clean
test of conditional cooperation: if, but only if, others are holding back the pull of
selfishness, conditionally cooperative participants are happy to do so as well. This is
indeed what Fischbacher & Gächter find for 50% of their participants. Yet 30% free
ride, and 14% exhibit a peculiar pattern of behaviour: as long as the contributions
of others are moderate, they match them. But if others contribute more than half of

13



t
4.005***
(.020)

τ̂2
.180
(.408)

τ̂3
-.095
(.390)

τ̂4
-.989
(.776)

τ̂5
.337
(.408)

τ̂6
.344
(.432)

τ̂7
.510
(.427)

τ̂8
.029
(.408)

τ̂9
-.178
(.408)

t ∗ τ̂2
3.978***
(.028)

t ∗ τ̂3
-2.326***
(.027)

t ∗ τ̂4
-3.846***
(.053)

t ∗ τ̂5
-.033
(.028)

t ∗ τ̂6
-4.049***
(.030)

t ∗ τ̂7
-4.045***
(.029)

t ∗ τ̂8
-6.016***
(.028)

t ∗ τ̂9
-7.994***
(.028)

cons 3.956***
(.288)

N uid 400
N obs 4000
Linear random
effects model, based
on estimated types.
Standard errors
in parenthesis.
∗p<0.05; ∗∗p<0.01;
∗∗∗p<0.001

Table 4: Two-Step Approach: Final Model
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Figure 4: Raw Data and Predicted Values from Local Regression Approach
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Figure 5: Cooperation Types, Fischbacher Gächter Economics Letter 2001, Fig.1

their endowment to the public project, they exploit them, the more so the more they
contribute, Figure 5.

In their original, frequently cited contribution, Fischbacher & Gächter had only 44
participants. In a later paper, they have repeated the test with a larger sample of
140 participants, and have made the data available (Fischbacher and Gächter, 2010). I
apply my proposed method of organizing the type space to this new dataset.

The research question can be formulated in statistical terms as (9)

ci = β0 + β1c−i + εi + εli (9)

Each participant makes L = 21 conditional choices ci, for the case that the remaining
three group members on average unconditionally contribute c−i = 0..20 tokens. As the
participant in question stays the same, a random effects model is in order that filters
out unobserved individual idiosyncrasies with the random effect εi. If one estimates (9),
one finds β0 = .531, p = .201 and β1 = .425, p < .001. This naive model thus suggests
a population of imperfect (β1 < 1) conditional cooperators. Yet Figure 6 shows clear
heterogeneity. Inspecting the figure suggests three relatively clear types: those who
freeride and always contribute 0; those who unconditionally believe in the common
good and always contribute 20; and those who perfectly condition their own choices on
the mean choice of their group members and exhibit choices on the 45◦ line. Yet many
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Figure 6: Fischbacher & Gächter Distribution of Raw Data

choices do not match either of the three patterns. Such choices are more frequent below
than above the 45◦ line. Attempts at estimating a finite mixture model fail, even if I
only impose 2 or 3 types.

I instead use my proposed method to organize the type space. Figure 7 collects the
results. The upper right panel is resulting from, separately for each participant, regress-
ing ci on c−i. As Figures 5 and 6 suggest the possibility of a non-linear relationship,
the upper left panel is derived from local regressions of ci on c−i + c2−i. The former
exercise yields 7 distinct types, the latter 8. As Table 5 shows, both methods agree
for the extreme cases (types 1, and types 7 linear vs. 8 quadratic), but disagree in the
intermediate range. Both trees agree that the slope of the individual reaction curve
(β1 in either local regression) is most important, and hence defines the first split. Yet
the tree based on linear models already splits at moderate inclination to condition on
c−i (β1 = .356), while the tree based on quadratic models requires β1 = .782. The
intermediate range (.356 < β1 < .711) is assigned to a separate type in the tree based
on linear models. For this tree, all finer grained separation is based on the intercept of
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1 2 3 4 5 6 7
1 44 1 0 0 0 0 0
2 0 0 0 0 3 3 0
3 13 4 0 0 3 0 1
4 0 0 0 0 2 3 3
5 0 0 3 0 0 0 0
6 0 0 0 3 0 0 0
7 1 6 0 0 6 0 1
8 0 0 0 0 4 1 35
horizontal axis: types based
on local regressions with only
a linear term; vertical axis:
types based on local regres-
sions with a linear and a
quadratic term. Numbers are
frequencies.

Table 5: Type Space

local regressions. By contrast, the tree based on quadratic models uses the coefficient
of the quadratic term β2 in the local regressions for classification in either branch of
the tree (for details see Figure 8).

The most instructive graph is, however, Figure 7. For each type, it aggregates over
conditional choices, separately for each possible (mean) unconditional choice. Whether
local regressions include a quadratic term or not (upper left and upper right panels),
there is a type that almost perfectly matches the unconditional choices; a type that is
almost perfectly selfish; a type with very high contributions even if the unconditional
contributions are low. Characteristics of the types in the middle differ. If one includes
the quadratic term in the local regressions, there is a type that imperfectly matches the
unconditional choices; a type that matches very low unconditional choices, but then
levels off; a type that is selfish if unconditional choices are low, but comes closer with
higher unconditional choices.

One can make sense of all these types. The optimality criterion of CART suggests
that one would not run an excessive risk of overfitting. Yet the lower right panel of
Figure 7 shows that the loss in precision is low if one only allows for three types. The
choice patterns of these three types are shown in the lower left panel. The largest type
(69 participants) is actually the (almost) selfish type. The type that almost perfectly
matches the unconditional choices is a little less frequent (65 participants). There is
finally a small type (6 participants) that makes high contributions, irrespective of the
contributions made by the remaining group members. Note that this partition of the
type space results from a "pruned" tree, with just three final nodes. Hence it assigns all
participants to a type, not only those who exhibit patterns similar to the ones shown
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Figure 7: Types Induced by CART
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|
beta1 < 0.355844

beta0 < 5.53247

beta0 < 2.16883 beta0 < 15.4524

beta1 < 0.711039

beta0 < −1.83983

 0.6141  4.1470 10.0600 19.3800

 6.1670
 6.8910  9.9870

|
beta1 < 0.782199

beta0 < 4.53783

beta1 < 0.0755074

beta2 < 0.0405733 beta2 < 0.0130465

beta0 < 18.0136

beta2 < −0.0406476

 0.1556  4.6030  3.0880  7.5890

10.0600 19.3800

 6.1020  9.8580

Figure 8: Trees Induced by Local Regression with Only Linear / also Quadratic Term
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in the lower left panel when allowing for 7 types (upper left panel). This is remarkable
as the reduced type space leads to clearly discernible choice patterns, despite the fact
that it has to assign all participants to one of these three types.

Hence the proposed method corroborates what is often treated as a stylized fact in the
community: the typical experimental community consists of large groups of conditional
cooperators and selfish participants, and a small group of altruists.9

6 Conclusion

The data from economic experiments often suggests patterned heterogeneity. Reactions
to treatment do not only vary. They seemingly vary in systematic ways. In the long run,
one would wish to theorize the type space, and have reliable measures for classifying
participants into types. But an important first step is organizing the type space. In
principle, estimating heterogeneous treatment effects is a job for a finite mixture model.
Such a model simultaneously estimates the probability that a given observation falls into
one of the types, and the reaction of participants from this type to treatment. Yet these
models have a number of drawbacks: (a) one must posit the number of types, and cannot
take them from the data; (b) experimental data is frequently repeated, and often also
interactive. Finite mixture models have a hard time capturing the dependence at the
individual (and possibly group) level; (c) finite mixture models require two-dimensional
maximum likelihood estimation. The datasets from experiments are often too small for
these demanding models to converge.

In this paper I propose a simple two-step procedure to address these concerns. This
procedure exploits the panel structure of many experimental datasets. Separately for
each participant, I estimate a local regression of choices on those variables that change
over time. I use the coefficients from these local regressions to train a classification
algorithm. Specifically I propose to estimate a regression tree that uses the coefficients
from the local regressions to predict choices in the experiment. This procedure allows
to assign each participant to a type. In the final step, I interact this classification
with treatment. I propose to use the standard procedure for regression trees to find
the optimal number of types (a). The final step of the procedure can easily handle
random and mixed effects models, as at this point type need no longer be estimated
(b). And splitting up the definition of the type space, and using type for explaining
treatment effects, drastically facilitates estimation, so that in all my trials the model
always converged (c).

Local regressions require within participant variation. Hence the method does not
work with one-shot experiments. Yet the variation need not result from reaction to

9In this particular case the treatment is the hypothetical size of c−i, and hence coincides with the
within subjects variation that is used for classification. Therefore interacting type with treatment does
not yield additional insights.
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treatment. Any variation resulting from repeated reactions suffices. It of course is for
the researcher to justify that such variation is meaningful for finding types that exhibit
systematically different reactions to treatment.

At each step, CART implements the binary split of the data that explains most of the
(remaining) variance. If one draws random samples from a larger population, the trees
tend to exhibit some variance. If one is concerned about this possibility, one can use
bootstrapping (which the machine learning community calls bagging). The coefficients
from local regressions are usually not hugely different from each other. The more they
are, the more it would be likely that the coefficients with higher variance have a higher
impact on the resulting tree. If one is concerned about this, one can standardize the
coefficients before building the tree. Finally, if one coefficient exhibits higher variance
than another, it likely will receive greater importance in organizing the type space.
For this application, this effect tends to be desirable. But if one were concerned, one
could use the procedure that the machine learning community calls boosting. One
builds multiple trees, and averages types over these trees. Each tree randomly drops
variables from the dataset. Yet if the local regression is simple, as in the examples
presented in this paper, boosting would be inappropriate. One would frequently drop
the information that should be most important for classification. At any rate, both
bootstrapping (bagging) and boosting, i.e. what the machine learning community calls
a random forest, will only yield types. One does not have a single, easily interpretable
tree.

Arguably, many behavioral traits are not universal. These traits are also not just more
or less pronounced. There are discernible types. Yet organizing the type space is
challenging. This paper proposes a simple and robust method to do so, provided the
experiment is repeated.
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