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@ Define yr = Z;l Vi, XT = ZtT:l We.

© v; and w; are both stationary, /(d;) and /(d2) processes,
—1/2 < d1,d2 < 1/2.

@ The variances of y, and x;:

-
0}2, = Var(y,) = Var (Z vt>

t=1
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© Sowell (1990, Theorem 1) proves that

op=O0(T"?%)  and o =O(T%).

@ Davydov (1970) shows that as T — oo,

1 1
a_yy[”] = By (r) and — X
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@ Model 1:
@ Model 2:
© Model 3:
© Model 4:
© Model 5:
Q Model 6:

i

Yt
Vt
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is regressed on
is regressed on
is regressed on
is regressed on

is regressed on

is regressed on

an

an

an

an

an

an

intercept and x;.

intercept and w;, where di + do > 0.5.
intercept and w;, where do > 0.
intercept and x¢, where d; > 0.
intercept and t.

intercept and t.

5/ 30



o AR Eﬁf

@ Model 1:
@ Model 2:
© Model 3:
Q Model 4:
© Model 5:
Q@ Model 6:

Vi

tg = Op(Tl/Q).

tg = 0 (Td1+d2 05)
tg = Op(Td2)-

tg = Op(T™).

tg = Op(Tl/Q)

tg = Op(le)
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@ Consider the maximum likelihood estimation (MLE) of a class of
stationary and invertible vector autoregressive fractionally integrated
moving-average (VARFIMA) processes:

o(B)diag(V)Y: = ©(B) Z,,

where
Ye= Vit s ¥rt) s ,t=1,2,....T,

is an r—dimensional vector of observations of interest, and ®(B) and
©(B) are finite order matrix polynomials in B (usual lag operator),
such that:

®(B) =0y —0B—---— 2,5, O(B) =00 +6O01B+---+04B,
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VARFIMA: =

@ The diagonal matrix diag(V¥) is defined as:

v 0 ... 0
J 0 Ve ... 0
diag(VY) = ) ) , s
0 0 v
with V=1-B.
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VARFIMA: =

@ The contribution of this paper is to show that the conditional
likelihood function of the VARFIMA process can be evaluated exactly
and efficiently if the model can be represented as:

diag(V9)®(B)Y; = O(B) Z.. (VARIMA.1)

@ Assumption 1. Given that the data is generated by (1), we assume
(i) ®(B) is diagonal, or (ii) the values of differencing parameters dj
remain intact across i=1,...,r.

© However, The parameters of the unrestricted VARFIMA models are
not identified, due to the non-uniqueness of VARMA models,
discussed in Litkepohl (2005).
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VARFIMA: =

@ The r-dimensional VARMA(p, q) representation is said to be in final
equations form if ©g = /and ®(B) = ¢g — p1B—--- — $pBP is a
scalar operator if ¢, # 0.

@ Another justification is the realized volatility literature where the value
of d are very close to each other and at the range between 0.35 and
0.45.
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VARFIMA: =

@ When Y; is a VARFIMA(O, d, q) process, i.e.:
diag(V?) Y, = ©(B) Z,

the (m, n)th element of its corresponding autocovariance function,
Q(h), is Qm a(h):

o* (Umn@mm 09nn 0)
e {
+Q*{
m*{

L h+d,+ T(h+1—dm
2 2 T me@anFEh-Fd) (i+?—(d +g- fg}

u=1v=1
I'(h+d,—f T(h+1—dp) }

M~ e |
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" T(h+d,) T(h+1—dm+H
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VARFIMA: 7

@ Note that
I'(l—dn—d, T(h+d,)

¥ = TG T —d) T(h+ 1= dy)

@ O, « denotes the (m, n)th element of ©

© Note that there are (rg + 1)? terms. With the autocovariance
functions in (13), we apply the multivariate Durbin-Levinson algorithm
of Whittle to the VARFIMA(O, d, q) processes.
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VARFIMA: =
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Figure: Box-plots of the estimated d from the 3-dimensional VARFIMA(O, d, 1) model
and p = 0. The value f(g) denotes the model specification where f= d, g denotes the
sample size, such that g=A=200, g=B=300, and g=C=400.
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VARFIMA: =

ED‘

Figure: Box-plots of the estimated MA parameter from the 3-dimensional

VARFIMA(O, d, 1) model and p = 0.5 based on the CLDL algorithm with 250
replications. The value f(g) denotes the model specification where f represents the value
of MA parameter, and g denotes the sample size, such that g=A=200, g=B=300, and
g=C=400.
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VARFIMA: ~
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Figure: Box-plots of the estimated X from the 3-dimensional VARFIMA(O, d, 1) model
and p = 0.5 based on the CLDL algorithm with 250 replications.
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¥ &Ry * 03] VAR

diag(V) Y: = e,

where we allow the integration of each component of Y; to be
different across i=1,2,--- ,r.

@ Assumption 1. (i) et = (e1,¢,...,€rt)" is an r—dimensional
disturbance vector for the t-th observation; (ii) ¢ is an i.i.d. process
with E(e¢) = 0, and E(ee;) = X, where the off-diagonal elements of
Y are allowed to be non-zero; (iii) each element of e; has a finite
fourth moment, i.e., E(Ej-ft) =gi<ooforalli=1,2,...,r.

=3 sek 16 / 30



VAR: =

© We consider the problem of predicting the (T + 1)th value of Y4, i.e.,
Y7Ti1.
@ The predictor has the VAR(k)form:

YTk Z A YT jt1-
j=1

We are interested in the asymptotic properties of the prediction error
Y11 — Y7u(1).
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VAR: =

@ We estimate Ay, j=1,..., k, by the multivariate LS coefficient
estimator A(k):

Z(k) = (Zlkv ’/2\2/0 s 7Zkk) = ]/-—‘\ka;17

where
R T-1 R T-1
Tie=(T=R'D YaYi,  Te=(T-') VY,
t=k t=k
and

T
Yt,k = (Y;l—v Y;l——lﬂ SRR y:—k-%—l) :
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VAR: =

© Theorem 2. Given that Y; is generated an multivariate fractional
white noise and Assumption 1 holds, d; € (0,0.5),i=1,2,--- ,r,

Q@ d=max{dy,ds, - ,d,} and d" = min{d;, d>,--- ,d,},

(5] k/Tl_zd — 0 as k, T — oo when 0.25 < d < 0.5,

Q k/T%5(log T)™%5 — 0 as k, T — oo when 0 < d < 0.25,

@ As T— o0, E[(Y711 = Y7u(1)(Y71 = Y7A(1))] = £+ 0p(1), where
Y7k(1) is the same-realization prediction and ¥ = E(e 71167, ).

19 / 30



s E A #073): Cumulative distribution function e #
@ Consider a linear stochastic frontier model in the usual matrix form:
y=XB+e,

where y and € are n x 1 vectors of observations on dependent variable
and the random disturbance, respectively; X'is an n x k matrix of
observations on a constant term and k — 1 regressors; and §is a k x 1
vector of unknown regression coefficients to be estimated.

@ The error specification is:

E=vVv+u,

where the elements of v are independently and identically distributed
(iid) as N(0,02), and the elements of u are the absolute value of the
variables which are iid as N(0, o2).

© We follow the reparameterization of Aigner et al. (1977):

o2 =02 402, A=

Ou

Ov
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CDF: =

@ The log likelihood function for the SFA model is:

n

Lo= fln(2/7r — nin(o —i—ZIn{ ( )]—Q;Za?,

i=1

where ¢; = y; — x! 3, x] is the i-th row of X, and ® is the cumulative
distribution function (cdf) of N(0,1).

@ The maximum likelihood estimator is obtained by the maximization of
the above log-likelihood function with respect to the parameter

(/BTa Ou, Uv)-
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CDF: =

@ When the dependent variable is censored, i.e.,

}i;: lﬂ—i—&“,, i:1,27...,n;
yi=yi, if yi>0; (censored SFA)
Yi= 07 if y;k < Oa

where £, = v; + u;.

@ We should not used the likelihood function of the standard SFA model
to estimate the parameters of the model, because it does not take the
presence of censored dependent variable into account.
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CDF:

@ We should use Tobit MLE procedure for the stochastic frontier models
with censored dependent variable.

@ The Tobit likelihood function for the censored SFA model is:

L= Infle) + > InF(—x B), (Tobit likelihood)
1 0

where f(e;) is the density function of &;, F(—x; 3) is the cumulative
distribution function of &; from —oo to —X,Tﬂ, > denotes the sum
1

over those i for which y7 > 0, and ) means the sum over those i for

which y7 < 0.

0
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CDF: 7

© The uncensored part of the Tobit SFA model is easily implemented,
because we note that

2 Ej A
=20 (3)e(5=).
where ¢(.) denotes the density function of N(0,1).
@ The major difficulty is to compute F(—x; 3):

-
—x 8

F(_XT/B) = / f(gi)dE/, for Yi= 0.

—00
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CDF: =

© We know F(—x; 3) can be represented as:

A 8) = 2 (-] 8) = / ([ e@d)owe

where ) )
a=—, b=—, Q:—x,-T,B.
o

g

@ We derive an approximate formula /,,, for the component /.
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CDF: -

@ To derive the approximation, we define

2 ver (
Erf(z / ~Cdr =2 o (1) dt
\/_ )
and
1, if x>0
sign(x) = 0, if x=0;
-1, if x<0,
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CDF: ~

© Theorem 1. Under (Q, a, b) € finite R, a> 0, and b#0, | is
approximated by l,pp:

6% |:1 i Erf<—aC1+\/§Q(b2_a2c2)Xsign(Q)>:|

/ B 2\/b2—32cz
b 4V b2 — a%cy
bQ .
. E(R) 14sen@
2b 2 ’

where ¢; = —1.0950081470333 and c; = —0.75651138383854.
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CDF: 4

© Since a= /o > 0, we divide the derivation into two parts: for
(@>0,a>0)and (R<0,a>0).

@ let us emphasize two equations, (7.1.1) and (7.4.32), of Abramowitz
and Stegun (1970) for later applications:

V2z
Erf(z) = \/_/ Cdt =2 ¢ (t) dt

—(kx2+2mx+n) _ = ™ m2_k _
/e dx S\ e - Erf ka+\/7( +C,  k#0,

where C denotes some finite constant.
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CDF: +

© Given that (Q, a, b) € finite R, b# 0, Erf(—x) = —Erf(x), and define
€= \/§u/a, we have:

leo = ?/_fQ(/_fwc)dc)qs(ﬁug) dv

- *2/_3 _an + Erf(v)) ¢ (x/ﬁyg) dv
_ g /_(; (1+ Erf(v)) 6 (\/§V§> v

L2 /0;50(1 L Erf(r) 6 ( 2u§> .
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CDF: - -

@ Note that Erf(x) can be well approximated by a function,
gx)=1-— et for x > 0, where ¢; and ¢y are chosen to ensure

that g(x) is as close to Erf(x) as possible. The choice of ¢; and ¢ is

discussed above.

30 / 30




Accurancy of F,pp in Computing CDF

A=1 Q

Method —16 —12 12 16

Fapp 1.3037e—105 1.9947e — 61 1—3.5530e—33 1—2.778e— 57
AST 4.0776e— 115 3.1534e—66 1 — 3.640le—39 1 — 1.7856e — 75

Exact 4.0816e — 115 3.1559e — 66 1 — 3.5530e — 33 1 — 1.2778e — 57

Notes: AST denotes the simulation method proposed by Amsler, Schmidt,
and Tsay (2019).
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