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Abstract

This paper revisits the property of the optimal contract of a static principal-agent

relationship with subjective performance evaluations (MacLeod, 2003), but assuming that

the principal and the agent receive correlated signals. It is shown that, when the agent

is risk-averse and the principal’s information is relatively more precise than the agent’s,

the optimal contract requires the agent’s compensation to depend only on the principal’s

signal. When the agent is risk-neutral, we further fully characterize the optimal contract.

It either requires the agent’s compensation to depend only on the principal’s signal, or the

principal’s wage cost to depend only on the agent’s signal. That is, the truthful revelation

constraints prevent full utilization of information. In either case, although one party’s

pay (or cost) depends only on the other party’s signal, his own signal is nonetheless used

as an instrument to prevent the other party from strategically misreporting.
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1 Introduction

The structure of the optimal labor contract, when the performance measure of the agent is non-

verifiable, has been an area long attracting the attention of contract theory scholars. One issue

which attracts particular interest is the case when the principal and the agent both observe

signals that are correlated to the agent’s performance.

When the principal’s and the agent’s signals are identical, the “relational contract” literature

has shown that there exists a simple repeated game equilibrium strategy which implements

efficient effort level (e.g., Bull, 1987; Levin, 2003).1 More interesting, and perhaps more realistic,

case is when they receive different, but correlated signals. In this case the optimal contract

not only has to decide which signal is to be incorporated into the contract, but also how. Is

the optimal contract dependent only on either the principal’s, or only the agent’s signal, or

both? In the latter case, how to compromise the two signals if they conflict? Moreover, since

the signals observed by both parties are soft in the sense that they are non-verifiable, how to

ensure that they report the true value of the signals they receive?

A recent contribution by MacLeod (2003) adopts a static model to characterize the optimal

contract under the case of “ subjective performance measures” mentioned above. In his model,

although the signals received by the principal and the agent are not verifiable, they can each

send a verifiable message (indicating the signal each receives) so that the contract is a function of

the message sent. The optimal contract must not only satisfy the usual incentive compatibility

and individually rational constraints, but also the truthful revelation constraint in which both

parties report the true values of the signals they receive. He shows that, since the messages are

reported after the output is realized, truthful revelation entails money burning, in the sense

that there must be some contingencies under which the principal’s wage payment is strictly

1 For excellent survey of the literature on the relationship contract, please see Malcomson (20)

2



greater than the wage received by the agent. The most important result in his paper is that,

in the optimal contract, the agent’s compensation does not depend on his own information.

That is, the agent’s compensation is totally dependent on how the principal reports the agent’s

performance to be. This result mainly comes from two crucial assumptions in the model. The

first is that the principal is risk neutral while the agent is risk averse. The second is that the

principal’s signal is a sufficient statistics of that of the agent. Because of this, on the one hand,

a compensation which depends on both principal’s and agent’s signals are no informational

efficient than one depending on the principal’s only, and only introduces additional risks to

the agent’s compensation on the other. Therefore, as the agent is risk-averse, a contract which

depends on the messages of both the principal and the agent will be dominated by one which

depends only on the principal’s signal averaged over the agent’s possible signals.2 The first

assumption is one usually adopted in the literature. The second, however, is a strong one.

In this paper, we reinvestigate the issue of the structure of the optimal contract, under the

more general informational structure in which the principal and the agent receive different, but

correlated, signals. Under the assumption of binary signals, we show that MacLeod’s (2003)

main result holds true if the principal’s signal is a sufficient statistics of that of the agent.

That is, although the proof for this result has been incomplete in MacLeod (2003), his result is

nonetheless valid in the binary signal case. In the general case when their signals are correlated,

however, the agent’s compensation does not always only depend on the principal’s signal, even

in the two-signal case. Specifically, we show that the structure of the optimal contract falls into

two regimes. In the first, which parallels MacLeod’s (2003) result, the agent’s compensation

depends on the principal’s signal only, while the latter’s wage cost depends on the signals of

2 The proof for this result (Proposition 3 in MacLeod, 2003) is actually invalid. While the contract

constructed in the proof of Proposition 3 satisfies the incentive compatibility and individually rational constraint,

it does not satisfy the truthful revelation constraint for the principal. Moreover, we have found a counter-example

against this result (see the discussion after Proposition 3). Therefore, the result in general is incorrect.
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both parties. The second regime is symmetric to that of the first: the agent’s compensation

depends on the signals of both parties, while the principal’s wage cost depends only on the

agent’s signal. The truthful revelation constraint is always biding: In either regime it is always

the case that one party’s information is not fully incorporated into the contract, and there is

always one party whose benefit (or cost) is solely determined by the other’s signal.

Our characterization of the optimal contract also implies that one of the determinants of

which regime prevails is the relative precision of the principal’s and the agent’s signals. If the

principal’s (agent’s) information is relatively more precise, then regime 1 (2) prevails.

1.1 Related Literature

Besides MacLeod (2003), there are several recent papers which also investigate the structure

of the optimal contract when performance evaluation is subjective. Levin (2003) assumes

that both the principal and the agent are risk-neutral, and they have an infinitely repeated

relationship. In each period they observe a common, but non-contractible signal, regarding the

agent’s performance. He shows that the optimal contract can take a simple stationary form.

Moreover, under the moral hazard case, the agent’s wage in optimal contract only takes two

values: high wage for high-range outcomes and low wage for low-range outcomes. His model

differs from ours in that, first, the agent is risk- neutral while we allow risk-aversion. Second,

in his model the principal and the agent receive identical signal, while in our model we allow

for different, but correlated signals. Third, his model is a dynamic principal-agent relationship

while ours is static.

Fuchs (2007) also proposes an infinite-horizon setting with risk-neutral principal and agent.

His model differs from that of Levin (2003) mainly in that, in every stage, only the principal

observes the value of output. Both effort level and output are binary. Wage is contingent on
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the message that the principal sends to the agent and the realization of a public randomization

device. He shows that the optimal contract can be implemented by a “review contract” in

which the agent is paid a constant wage without bonus, the principal never sends any message,

and the incentive is solely provided by the threat of termination when, under the principal’s

eyes, the agent’s performance over a specific length of period is sufficiently unfavorable.

In a model similar to that of Fuchs (2007), but allowing for continuous effort levels and

for agent also receiving a signal related to output, Maestri (2012) compares the efficiency-wage

equilibrium (which is exactly the optimal contract derived in Fuchs, 2007) and the bonus-

payment equilibrium, in which the agent is motivated by a bonus payment, but can quit after

disagreement between his self-appraisal and the principal’s evaluation. He shows that the

former can approximate efficient outcome as discount factor goes to one, while the payoffs of

the latter are bounded away from the efficiency frontier.

Chan and Zheng (2011) consider a finite-horizon model in which both the principal and the

agent are risk-neutral. Moreover, both the effort levels and the output are binary. There is a

contractible performance measure, but the principal and the agent each receives a private binary

signal correlated with output. They mainly show that the optimal contract is not stationary:

given the same number of good evaluations, the agent is better rewarded under increasingly

improving performance than deteriorating performance. Their model is very similar to ours, but

the optimization problem is different: In their paper, the optimization problem is to minimize

money burning, while in this study. the optimization problem is to minimize the cost.
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2 The Model

A risk-neutral principal delegates a project to an agent who is risk-averse or risk-neutral. The

agent chooses an effort level e ∈ [0, 1], which is his private information, and whose value

determines the distribution of the output. The agent’s utility function is U(c, e) = u(c)−V (e),

where u(c) is the utility gained from compensation c > 0 and V (e) is the disutility incurred

by effort. Assume conventionally that u′ > 0, u′′ ≤ 0, V ′ > 0, V ′′ > 0, and assume technically

that lime↓0 V
′(e) = 0, lime↑1 V

′(e) = ∞. The agent’s reservation utility is denoted by U . In

order to economize the use of notations, we set U = u(0) = V (0) = 0.

Following MacLeod (2003), performance measure of the agent is assumed to be subjective

in the sense as follows. The output is not observable, but the principal and the agent each

observes a signal of the output, t ∈ {0, 1} and s ∈ {0, 1}, respectively. The realization of the

signal, (t, s) , depends on the value of the output, which in turn (as assumed above) is a random

variable of the effort level, e. For convenience, we then assume that (t, s) is a function of e.3

Specifically, let αts(e) be the joint probability of (t, s) being realized when the effort level is e.

Also, αts(e) is strictly positive and continuously differentiable for all t, s ∈ {0, 1} and for all

e ∈ [0, 1].

We assume that signals of the parties are positively correlated in the following sense:

Assumption 1. α11(e)α00(e) > α10(e)α01(e) for all e ∈ (0, 1).

We will call t = 1 or s = 1 the good signal, and t = 0 or s = 0 the bad. Since a higher

effort level tends to yield a better outcome of the project, we also assume

Assumption 2. α′11(e) + α′10(e) > 0 and α′11(e) + α′01(e) > 0 for all e ∈ (0, 1).

3 In MacLeod (2003), the output could be either success or failure, and e stands for the probability of the

success being realized. In sum, the outcome of the output is binary in MacLeod (2003), while the outcome in

this paper is more general, e.g. it can be continuously distributed over a region, though the signals are binary.
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Assumption 2 essentially says that, when the agent’s effort level increases, both the principal

and the agent will be more likely to receive the high signal. We also assume that, given the other

party’s signal, the (conditional) distribution of each party’s signal satisfies the usual Monotone

Likelihood Ratio Condition (MLRC):

Assumption 3. For all e ∈ (0, 1), α′1s(e)/α1s(e) ≥ α′0s(e)/α0s(e) for s ∈ {0, 1} and α′t1(e)/αt1(e) ≥

α′t0(e)/αt0(e) for t ∈ {0, 1}.

It is instructive to compare the informational structure specified here to that in MacLeod(2003).

In his model, the principal receives a signal, conditional on output. The agent’s signal, how-

ever, is conditional on the principal’s signal, rather than output. Specifically, every signal the

principal receives induces a (different) probability distribution for the signals that the agent

might receive. Under this specification, the principal’s signal is actually a sufficient statistic

of that of agent. In other words, given signal that the principal observes, the signal that the

agent observes has no additional informational value. This specification plays a crucial role in

his characterization of the optional contract.

Note that Assumption 3 implies that, α′11(e)/α11(e) ≥ α′ts(e)/αts(e) ≥ α′00(e)/α00(e), for

t, s ∈ {0, 1}, which in turn implies the following fact:

Fact 1. For all e ∈ (0, 1), α′11(e) > 0 > α′00(e).

Proof. Suppose, on the contrary, that α′00(e) ≥ 0 . Then from the inequality immediately

above we know that α′10(e) ≥ 0, α′01(e) ≥ 0, and α′11(e) ≥ 0. Since
∑

t,s∈{0,1} αts(e) = 1 for

all e ∈ (0, 1), we have
∑

t,s∈{0,1} α
′
ts(e) = 0 for all e ∈ (0, 1). This implies α′ts(e) = 0 for all

t, s ∈ {0, 1}, which contradicts Assumption 2. Similar argument yields α′11(e) > 0.

Since neither output nor effort is observable, and since signals are positively correlated with

the effort level, the contract between the principal and the agent must depend on the signals
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to provide incentives. That is, the payment to the agent is a function of t and s. As argued in

MacLeod (2003) and Fuchs (2007), in the case when performance measure is subjective, there

might involve money burning in the optimal labor contract. That is, the principal’s payment

might not be equal to the agent’s wage in all contingencies. In particular, there must be at

least one contingency in which the principal’s payment is strictly greater than the agent’s wage.

Therefore, the form of the contract is

{wts, cts}t,s∈{0,1},

where wts and cts are respectively the principal’s payment and the agent’s wage (or compensa-

tion) when the principal’s signal is t and that of the agent is s. We assume limited liability so

that wts ≥ cts ≥ 0 for all t and s.

As usually assumed in the literature, the principal designs a take-it-or-leave-it contract

to the agent to maximize his profit. Since the principal is risk-neutral, we can decompose

the principal’s problem into two steps, with the first step being a cost-minimization problem

(Grossman and Hart, 1983):

C∗(e) ≡ min
{wts,cts}t,s∈{0,1}

C =
∑

t,s∈{0,1}

wtsαts(e), (P)

subject to ∑
t,s∈{0,1}

u(cts)αts(e)− V (e) ≥ U, (IR)

e ∈ arg max
ẽ∈[0,1]

∑
t,s∈{0,1}

u(cts)αts(ẽ)− V (ẽ), (IC)

wts ≥ cts ≥ 0,∀t, s ∈ {0, 1}, (LL)

where (IR) and (IC) are respectively the usual individual rationality and incentive compatibility

constraints, and (LL) is the limited liability constraint. Since the values of the signals are private
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information, two additional constraints must be satisfied to include the principal and agent to

report their signals truthfully:

∑
s∈{0,1}

wtsαts(e) ≤
∑

s∈{0,1}

wt̃sαts(e),∀t, t̃ ∈ {0, 1}, (TRP)

∑
t∈{0,1}

u(cts)αts(e) ≥
∑
t∈{0,1}

u(cts̃)αts(e), ∀s, s̃ ∈ {0, 1}, (TRA)

where (TRP) and (TRA) are the truthful revelation constraints for the principal and the agent,

respectively.

For e ∈ (0, 1), (IC) implies the following first-order condition:4

V ′(e) =
∑

t,s∈{0,1}

u(cts)α
′
ts(e) (ICF)

=[u(c11)− u(c10)]α
′
11(e) + [u(c00)− u(c01)]α

′
00(e) + [u(c10)− u(c01)][α

′
11(e) + α′10(e)],

where the second equality comes from the fact that
∑

t,s∈{0,1} α
′
ts(e) = 0. By setting U = u(0) =

V (0) = 0, we ensure that the optimal contract which implements any effort level e ∈ (0, 1) must

make (IR) slack. This is because, given e > 0, (ICF) implies that cts > 0 for some t, s. If (IR)

were binding, the agent can increase his utility by switching to e = 0. In that case his expected

utility becomes E[u(cts)]− V (0) > 0 = U .

The two truthful revelation constraints have strong implications on the relative value be-

tween wts’s, and between cts’s.

Lemma 1. (i) Either both w10 = w00 and w01 = w11 or both w10 > w00 and w01 > w11; (ii)

Either both c00 = c01 and c11 = c10 or both c00 > c01 and c11 > c10.

4 Our assumptions that V ′(e) = ∞ rules out implementing e = 1. Also, it is trivial for the principal to

implement e = 0.
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Proof. Constraint (TRP) implies that

w11α11(e) + w10α10(e) ≤ w01α11(e) + w00α10(e) and

w01α01(e) + w00α00(e) ≤ w11α01(e) + w10α00(e),

which can be rewritten as

(w10 − w00)
α10(e)

α11(e)
≤ w01 − w11 ≤ (w10 − w00)

α00(e)

α01(e)
. (1)

The two inequalities of (1) imply (i) of Lemma 1 because α10(e)/α11(e) < α00(e)/α01(e) by

Assumption 1.

Constraint (TRA) implies that

u(c11)α11(e) + u(c01)α01(e) ≥ u(c10)α11(e) + u(c00)α01(e),

u(c10)α10(e) + u(c00)α00(e) ≥ u(c11)α10(e) + u(c01)α00(e),

which can be rewritten as

(u(c00)− u(c01))
α01(e)

α11(e)
≤ u(c11)− u(c10) ≤ (u(c00)− u(c01))

α00(e)

α10(e)
. (2)

The two inequalities of (2) imply (ii) of Lemma 1 because α01(e)/α11(e) < α00(e)/α10(e) by

Assumption 1.

Lemma 1 indicates that the principal’s payment is either independent of his own signal,

or pays higher when his report contradicts with the agent’s. In particular, when the agent

reports good signal (s = 1), the principal pays higher when he reports bad signal (t = 0) than

when good (t = 1). That means when the agent reports good signal, the principal truthful

revelation constraint must be binding in order to prevent him from mis-reporting. Similarly,
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the agent’s compensation is either independent of his own report, or is strictly lower when his

report contradicts with the principal. Lemma 1 immediately implies that money burning must

occur in some contingency:

Proposition 1. There exists a contingency, (t,s), such that wts > cts.

Proof. Suppose to contrary, that, wts = cts for all t, s ∈ {0, 1}. Lemma 1 then implies that

c01 = w01 ≥ w11 = c11 ≥ c10 = w10 ≥ w00 = c00 ≥ c01, which in turn yields that c00 =

c01 = c10 = c11. Then, (ICF) gives V ′(e) =
∑

t,s∈{0,1}
u(cts)α

′
ts(e) = u(c00)

∑
t,s∈{0,1}

α′ts(e) = 0,

contradicting our assumption that V ′(e) > 0.

The fact that agent’s wage cannot equal to the principal’s payment is also shown in MacLeod

(2003). His reasoning is that, if wts and cts are equal in all contingencies, then at the stage when

the principal and agent report their signals to determine the payoff of each, they are playing a

constant-sum game. Since a constant game has a unique value, the agent’s expected payoff is

the same regardless of effort levels. This implies that only the lowest possible effort level can be

implemented in any contract that satisfies (TRA) and (TRP). Therefore, in order to implement

higher effort levels, the constant-sum nature must be broken, so that the principal’s payment

does not equal the agent’s wage under at least one contingency.

This argument is

There are several problems with this argument. First, since the agent is risk averse, the game

he played with the principal is not of constant-sum. Second, even though it is constant-sum,

different effort levels will result in different (or at least different expectations of) constant-sum

games. Therefore, it is still possible to implement an effort level higher than the minimum, as it

implies a higher value of constant to split between them. As we have shown in Proposition 1, the

crucial ingredient for this result is actually the statistical correlation between their signals. If the
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parties’ signals are uncorrelated, i.e., if α11(e)α00(e) = α10(e)α01(e), the argument based on 1

and 2 in the proof of Lemma 1 is invalid, and the optimal contract might involve no money burn-

ing. A numerical example is given as follows. Suppose u(c) = c, V ′ = 1, (α00, α01, α10, α11) =

(0.25, 0.25, 0.25, 0.25), and (α′00, α
′
01, α

′
10, α

′
11) = (−0.101, 0.09,−0.1, 0.111). Then the unique

optimal solution is (w00, w01, w10, w11) = (c00, c01, c10, c11) = (100, 0, 0, 100).5

3 The Characterization of the Optimal Contract

In this section, we solve for the optimal contract which implements any given e ∈ (0, 1).

For simplicity, we will denote uij ≡ u(cij), for i, j = 1, 2. The following proposition fully

characterizes the optimal contract and shows that its form depends on the marginal cost of

rewarding the agent under the worst signals (i.e., t = 0 and s = 0). Lemmas 2 to 5 in the

appendix shows that the minimum cost of implementing any effort level c∗(e), can be written

as a function of a single variable u00 ≡ u(c00), i.e., c∗(e) = c∗(u00). The marginal cost to the

principal, denoted as MC (u00), determines the form of the optimal contract.

Proposition 2. The optimal contract falls into one of the three types:

Type 1. If MC(0) ≥ 0, then w01 > w11 = c11 = w10 = c10 > w00 = c00 = c01 = 0;

Type 2. If MC(ū) ≤ 0, then w01 = w11 = c11 > w10 = c10 = w00 = c00 > c01 = 0;

Type 3. If MC(0) < 0 < MC(ū), then w01 > w11 = c11 > w10 = c10 > w00 = c00 > c01 = 0;

where

MC∗(u00) =
1

α′11 + α′10

 (α11 + α01)
(
α00

α10
α′10 − α′00

)
ũ′(u11)

−
(
α10 + α10

α11
α01

)(
α′00 + α00

α10
α′11

)
ũ′(u10)

+ (α00 −
α10

α11

α01)ũ
′(u00),

5 Note that the specification of signals in MacLeod (2003) does not preclude the principal’s and the agent’s

signals from being uncorrelated.
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ũ(·) is the inverse function of u(·), u11 =
V ′+

(
α00
α10

α′10−α′00
)
u00

α′11+α
′
10

, u10 =
V ′−

(
α′00+

α00
α10

α′11

)
u00

α′11+α
′
10

, and

ū = V ′
α00
α10

α′11−α′01
> 0.

Proof. See Appendix A.

For type 1 contract, c11 = c10 and c00 = c01. That is, the agent’s compensation does

not depend on his own report. This is exactly the main result (Proposition 3) in MacLeod

(2003). As mentioned in footnote 1, his proof is also invalid. The contract constructed in his

proof has not been shown to satisfy the principal’s truthful revelation constraint. Moreover, his

argument critically depends on the assumption that the principal’s signal is a sufficient statistic

of the agent’s. In Section 3.1, we will show that even keeping this assumption, Proposition 3

in MacLeod (2003) is correct for the binary-signal case, but no longer holds truth for the 3-

signal case. Proposition 2 also shows that, under the more general informational structure,

there exists two other types of optimal contracts. For type 2 contract, since w01 = w11 and

w10 = w00, the principal’s signal does not influence her own pay. This is the opposite to Regime

1. Type 3 contract is the case when the signals of both the principal and the agent affect their

own utilities.

When the agent is risk-neutral, ũ′(·), as well as the marginal cost MC(·), is constant. In

that case, MC(0) = MC(ū). By Proposition 2, type 3 contract is never optimal, and the

optimal contract form depends only on the sign of MC(0). We immediately have the following

corollary.

Corollary 1. Assume that the agent is risk neutral. The optimal contract is of type 1 (2) if

and only if MC(0) ≥ (≤)0.

Corollary 1 also implies that, when the agent is risk-neutral, either his signal does not affect his

own consumption, or the principal’s signal does not affect her own payment. In other words,
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when the principal and the agent are both risk neutral, one party (whether it is the principal

or the agent depends on the sign of MC(0)) always has the authority over the other’s payoff.6

The intuition behind Proposition 2 is as follows. In the absence of the truthful-revelation

constraints (TRP) and (TRA), the optimal contract would be wts = cts for all t, s ∈ {0, 1}, and

that c11 > c10 > c00 and c11 > c01 > c00.
7 In other words, both the principal’s and the agent’s

signals (if truthfully reported) are fully utilized to provide incentives for the agent. In this case,

however, both parties have incentives to misreport: the principal will report t = 0 when she

observes t = 1, and the agent will report s = 1 when he observes s = 0.

In order to exploit the agent’s information while at the same time prevents him from inflating

his signal, there must be at least one contingency under which the agent’s wage is lower when

he reports s = 1 than s = 0. However, since there is only two signals, this must occur only

in exactly one contingency, otherwise reporting s = 0 will be the agent’s dominant strategy.

Because of the correlation of signals, s = 1 will be more likely to be a misreport from the agent

when t = 1 than when t = 0. Therefore, it should be the case that c11 > c10 and c00 > c01.

Since rewarding the agent in this fashion is adversarial to incentive provision (because α′00 < 0),

this implies a conflict between the efficiency of incentive provision and the truthfulness of the

agent’s report. Similarly, in order to prevent the principal from mis-reporting, there must be at

least one contingency under which she pays more when she reports t = 0 than t = 1. Because

of the correlation of signal, t = 0 will be more likely to be a misreport when s = 1. Therefore,

w01 > w11. This is exactly the case for the Type 3 contract.

Note that unlike the case for the agent, inducing the principal to truthfully report does

6 It should be emphasized here that, even if the principal’s signal is a sufficient statistic of the agent’s,

MacLeod’s (2003) Proposition 3 is true only when there are two levels of output. When there are one more than

two levels of output, the agent’s wage can still depend on his own signal. See the counter-example following our

proposition 3.
7 By the MLRP, better outcome corresponds to higher wage.
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not impare incentive provision. Note that when wts’s and cts’s are disentangled, the role of

{wts} is not to provide incentive ({cts} does the job). Rather, wts’s are chosen to minimize

the principal’s cost, subject only to her trustful-revelation constraint and the requirement that

wts ≥ cts, the former of which results in money-burning under certain contingency (namely,

w01 > c01). The amount of money burnt, w01 − c01, therefore measures the cost of truthful

revelation constraint for the principal.

Type 3 contract, however, is not the only solution. There are also two possible corner

solutions. Recall that MC(0) is the marginal cost for the principal to increase the agent’s

utility of c00, when c00 = 0. That means, although the principal can further decrease cost by

decreasing the value of c00, she cannot do it because c00 is already 0. Furthermore, since c01

cannot be greater than c00, we have a corner solution where c00 = c01. In this case, ct1 = ct0 so

that the agent’s report does not affect his own consumption. As already mentioned, exploiting

the agent’s information forces the principal to reward the agent when the worst signals are

received, and the magnitude of this reward (i.e., u00) determines the degree of the exploitation

(i.e., u11 − u10) through (TRA). Proposition 2 essentially says that the form of the optimal

contract depends on how worthy to put money on the worst signals. Putting money on the

worst signals has three effects: i) reducing the efficiency of incentive provision, ii) increasing the

degree of exploiting the agent’s information, and iii) affecting the cost of inducing the principal

to report truthfully—the amount of money burnt—through (TRP). These three effects together

determine the marginal cost of u00.

Because the marginal cost of u00, MC (u00), is increasing as proven in Proposition 2, when

the marginal cost of u00 is high such that MC (0) ≥ 0, it is not worthy to put any money on

the worst signals. As a result, the optimal contract entails that c00 = 0 = c01, and accordingly
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c10 = c11 by (TRA). Adjusting the corresponding wts’s, the optimal contract becomes

s

c00 = c01

t ∧ ∧

c10 = c11

s

w00 < w01

t ∧ ∨

w10 = w11

,

which is the contract of Regime 1.

When the marginal cost of u00 is low such that MC (ū) ≤ 0, it is worthwhile to put money

on the worst signals even to the extent that c00 = c10. Since c00 = c10 implies w00 = w10, the

contract specifies that w01 = w11 by (TRP). The optimal contract thus takes the form:

s

c00 > c01

t q ∧

c10 < c11

s

w00 < w01

t q q

w10 < w11

,

which is the contract of Regime 2.

There are two characteristics across the three regimes deserving closer attention. First, the

agent’s compensation is (weakly) increasing in the principal’s report, while the principal’s wage

payment is (weakly) increasing in the agent’s report. Second, Regime 1 and Regime 2 are

symmetric in the following sense: in Regime 1 the agent’s compensation solely depends on the

principal’s signal ( c∗11 = c∗10 and c∗01 = c∗00), while in Regime 2 the principal’s wage payment

only relies on the agent’s signal ( w∗11 = w∗01 and w∗10 = w∗00). Regime 3 is a mixture of these

two regimes.
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3.1 The Influence of the Information Structure

In the following, we investigate how the prevalence of various regimes is influenced by the

information structure. We divide this investigation into two parts: the effect of the disincentive

power of the worst signal and then the effect of the relative informativeness of the parties’

signals.

As discussed earlier, exploiting the agent’s information calls for a positive compensation

when both parties receive bad signals, which in turn reduces the agent’s incentives to exert

effort. The level of |α′00| measures the disincentive power of putting money on the worst signal:

the larger the |α′00|, the more reluctant the agent to work in anticipation of a reward in the

worst state, and therefore the more costly to exploit the agent’s information. Clearly, when

|α′00| increases from a low initial value, the optimal contract will transit from Regime 2 to 3,

and then eventually to 1. The following corollary summarizes this result.

Corollary 2. If |α′00| and α′01 increase with the same amount so that α′10 and α′11 remain

unchanged, then the optimal contract will transit from Regime 2 to 3, and then to 1 provided

that the initial contract falls into Regime 2.

Proof. Notice that
∑

t,s∈{0,1} dα
′
ts = 0, and we have restricted our attention to the case that

dα′00 + dα′01 = 0 and dα′10 = dα′11 = 0. Thus we have

dMC (u00) =
∑

t,s∈{0,1}

∂MC (u00)

∂α′ts
dα′ts

=
−1

α′11 + α′10

[
(α11 + α01) ũ

′(u11) +

(
α10 +

α10

α11

α01

)
ũ′(u10)

]
dα′00

< 0,

and the result follows by Proposition 2.
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We proceed to analyze the effect of the relative informativeness of the parties’ signals. We

begin with two extreme cases:

Definition 1. t is a sufficient statistic for s with respect to e if α′t1/αt1 = α′t0/αt0 for t ∈ {0, 1};

s is a sufficient statistic for t with respect to e if α′1s/α1s = α′0s/α0s for s ∈ {0, 1}.

t (s) being a sufficient statistic for s (t) means that the principal’s (agent’s) signal carries

all the relevant information about the effort level, and the agent’s (principal’s) signal is non-

informative in the sense that it adds nothing to the inference power (Hölmström, 1979). When

the agent’s signal is non-informative for the effort level, exploiting the agent’s information does

not worth its cost, and it should be expected that Regime 1 prevails. In contrast, when the

agent’s signal conveys all the relevant information about the effort level, the agent’s information

should be exploited to the greatest extent possible, and Regime 2 should prevail.

To measure the relative informativeness of the parties’ signals, we parameterize their beliefs

about the value of the agent’s information. In particular, suppose that both parties commonly

believe that t is a sufficient statistic for s with probability p, and s is a sufficient statistic for

t with probability 1 − p. The parameter p thus measures the relative informativeness of the

agent’s (or the principal’s) signal: the larger the p, the less (more) informative the agent’s (the

principal’s) signal. When p approaches 1 from 0, we would expect that the optimal contract

will transit from Regime 2 to 3, and then to 1. The following proposition verifies this intuition.

Proposition 3. Assume that, with probability p, t is a sufficient statistic for s, while with

probability 1− p, s is a sufficient statistic for t , then there exists a lower cutoff p ∈ (0, 1) and

an upper cutoff p̄ ∈ (p, 1), such that for 0 ≤ p ≤ p, Regime 2 prevails; for p < p < p̄, Regime 3

prevails; and for p̄ ≤ p ≤ 1, Regime 1 prevails.

Proof. See Appendix A.
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Proposition 3 shows that the main result (Proposition 3) in MacLeod (2003)—the agent’s

compensation does not depend on his own report when the principal’s signal is a sufficient statis-

tic of the agent’s—is correct for binary-signal case. However, this result is incorrect for 3-signal

case. For example, let u(c) = c, V ′ = 1, α = (0.0088, 0.0327, 0.0399, 0.0327, 0.1277, 0.1596,

0.0399, 0.1596, 0.399), and α′ = (−0.11, 0.0308, 0.048,−0.41, 0.12, 0.1918,−0.5, 0.15, 0.4795), where

α ≡ (α00, α01, α02, α10, α11, α12, α20, α21, α22) and α′ ≡ (α′00, α
′
01, α

′
02, α

′
10, α

′
11, α

′
12, α

′
20, α

′
21, α

′
22).

In this case, the unique optimal solution is w = (11.27, 0, 9.85, 6.79, 3.36, 8.08, 0, 5.3, 7.98) and

c = (11.27, 0, 0, 6.79, 3.36, 0, 0, 5.3, 7.98), where w ≡ (w00, w01, w02, w10, w11, w12, w20, w21, w22)

and c ≡ (c00, c01, c02, c10, c11, c12, c20, c21, c22). That is, the agent’s compensation depends on

both parties’ signals even if the principal’s signal is a sufficient statistic of the agent’s.

3.2 The Influence of Effort Level in the Binary Output Case

In this section, we investigate how the prevalence of various regimes is influenced by the effort

level. We concern the binary output case, that is, the output is either success or failure.

Following MacLeod (2003), let joint probabilities αts to be linear in effort level:

Assumption 4. αts(e) = βtse+ γts, where βts, γts > 0, ∀t, s ∈ {0, 1}.

Under Assumption 4, we may regard the effort level, e ∈ [0, 1], as the probability of suc-

cess. The success output induces the probability distribution βts + γts on the signal space

{(t, s)|t, s = 0, 1}, while the failure output induces the probability distribution γts on the signal

space {(t, s)|t, s = 0, 1}. Hence, αts(e) = βtse+ γts denotes the probability of signal (t, s) being

realized given effort level e.

It is intuitive, that the higher the effort level being implemented, the more power the

principal has. Specifically, we may assume that the expected net benefit to the principal is
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Π(ẽ;B) = ẽB − C∗(ẽ), where B denotes the benefit when the project is successful, and C∗(ẽ)

denote the cost minimization function in the first step. It is easy to show that the optimal

effort level ẽ = e is increasing in B.8 Hence, if a principal proposes a project with higher B,

she may be regarded as one with more power. Such power comes from the principal’s vision (to

delegate a good project), but not from the cost function, and hence we call it power of vision.

From the discussion in the previous section, we know that, if the principal’s signal has more

power, that is, the principal’s information is more precise than the agent’s, Regime 1 prevails.

Such power, which we call power of information, directly affects the cost function. We have

no idea that if a principal with greater power of vision is also equipped with greater power of

information. However, we may expect that, the principal with greater power of vision, who

tends to implements higher effort level, is more likely to adopt Regime 1. It is verified in the

following proposition.

Proposition 4. Assume that the agent is risk-neutral. If there exists an effort level, e1, such

that the optimal contract implementing e1 is in Regime 1, then the optimal contract implement-

ing any higher effort level than e1 is also in Regime 1.

Proof. See Appendix A.

We offer an explanation for Proposition 3 from the viewpoint of information structure. Since

Corollary 1 rules out the possibility of Regime 3, we just need to show that Regime 2 is less

preferred as the implemented effort level gets higher. If the agent sees the signal s = 0, he

would think that (t, s) = (1, 0) is more likely to revealed if e increases, since MLRC says that

α10(e)/α00(e) increases with e. He then would like to misreport s = 1 since c11 > c10 in Regime

2. In order to restore such condition, by considering (TRA) (or Lemma 5), the principal shall

8 Since ∂2Π
∂ẽ∂B = 1 > 0, Π(ẽ;B) satisfies strictly increasing differences in (e,B). Then, the optimal effort level

ẽ = e is increasing in B. See Sundaram (1996): Theorem 10.4, Theorem 10.7, and Theorem 10.12.
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either reduce the gap between c11 and c10, or keep the gap by increasing c00 at the same time.

In the latter case, note that wl0 = c10 = w00 = c00 in Regime 2, (TRA) (or Lemma 5) implies

w11 = c11 increases, which in turn results in a higher w01 through (TRP) (or Lemma 3). In

sum, the principal pays more in all the contingencies, which is unattractive and less likely to

be optimal. In the former case, Regime 1 (c11 = c10) is more likely to emerge.

In view of Proposition 4, we know that, if the agent is risk-neutral, three patterns may

emerge, and each pattern reflects how the prevalence of various regimes is influenced by the

effort level. We summarize in the following corollary.

Corollary 3. If the agent is risk-neutral, and given Assumption 4, there are three patterns

reflecting the relationship of regimes and effort level: (i) Regime 1 prevails for any implemented

effort level e ∈ (0, 1); (ii) Regime 2 prevails for any implemented effort level e ∈ (0, 1); (iii)

there exists a cutoff point e0 ∈ (0, 1), such that Regime 1 prevails for high effort level e ∈ (e0, 1),

and Regime 2 prevails for low effort level e ∈ (0, e0). In sum, the implemented effort level ranks

higher in Regime 1 than in Regime 2. 9

If the agent is risk-averse, Regime 3 may prevail. Since Regime 3 could be thought as a

mixture of Regime 1, in which principal has more authority, and Regime 2, in which agent has

more authority, we may conjecture that, as the implemented effort level increases, Regime 2

comes first, Regime 3 follows, and Regime 1 finally emerges. However, the explicit result is not

so definite as the risk-neutral case. In general, the second derivatives of utility function u(·)

and cost function C(·) affect the result. Roughly speaking, if ũ′′(·)C ′′(·) is sufficiently small,

i.e., u(·) or C(·) tends to be linear, then the aforementioned conjecture holds. The detailed

9 A numerical example to verify this statement is given as follows: u(c) = c, v(e) = e2, (β00, β01, β10, β11) =

(−0.08,−0.02,−0.04, 0.14), (γ00, γ01, γ10, γ11) = (0.34, 0.16, 0.22, 0.28). Then, the cutoff point is e0 ' 0.8100,

that is: Regime 1 prevails for any effort level e > e0 to be implemented, while Regime 2 prevails for any effort

level e < e0 to be implemented.
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discussion is left in Appendix B.

4 Conclusion

This paper revisits the properties of the static optimal contract with subjective performance

measures when the principal’s and the agent’s signals are correlated. We show that, because of

the truthful revelation requirement, the optimal contract always entails loss of information: it is

always true that one party’s pay (or cost) depends on the other party’s information only, despite

that its private signal also has informational value. Whether the agent’s compensation is a

function of his own information depends on the relative precision of the principal’s information.

Moreover, even if a party’s information is not fully incorporated into the contract, it nonetheless

is used as an instrument to prevent the other party from strategically manipulating its signal.

Our model is of binary outcomes. An extension to the general n-outcome case may be

difficult, but it is interesting and worthy of further study.
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Appendix A. Omitted Proofs

Proof of Proposition 2

We first prove a series of lemmas which characterize the optimal contract. The strategy of

the proof is to reduce the original optimization problem into one with a single variable with a

single constraint.

Lemma 2. c11 > 0, c01 = 0.

Proof. Lemma 1 implies that either u(c11)−u(c10) = u(c00)−u(c01) = 0 or both u(c11)−u(c10) >

0 and u(c00) − u(c01) > 0. In the former case, V ′(e) = [u(c10) − u(c01)][α
′
11(e) + α′10(e)] > 0.

Since α′11(e)+α′10(e) > 0 by Assumption 2, we have c10 > 0. Hence, c11 = c10 > 0. In the latter

case, c11 > c10 ≥ 0. To show that c01 = 0, suppose instead that c01 > 0. Note that c00 ≥ c01 by

Lemma 1, we first reduce c00 and c01 slightly such that u(c00)− u(c01) remains unchanged and

(IR) still holds. Then, (TRA), or equivalently, (2), is not affected. Now, consider (ICF) with the

new values of c00 and c01. The right-hand side of (ICF) increases because α′11(e) + α′10(e) > 0

by Assumption 2. It follows that V ′(e) =
∑

t,s∈{0,1} ku(cts)α
′
ts(e) for some k ∈ (0, 1). Let

ĉts ∈ [0, cts] such that u(ĉts) = ku(cts). Then, {ĉts}t,s∈{0,1} satisfies (TRA) and (ICF). Moreover,

the reconfiguration can be made so slight that k is so close to 1, and that (IR) still holds.

By Assumption 1, c11 > 0, and thus ĉ11 < c11. Note also that ĉ01 < c01. Then, we reduce

w11 and w01 with the same amount such that (LL) holds and (TRP), or equivalently, (1), is not

affected. Let ŵts denote the new values of wage payment. The new contract {ŵts, ĉts}t,s∈{0,1}

is a feasible solution to (P) and yields a lower expected payment. Hence, c01 > 0 cannot be

optimal.

Lemma 2 shows that, when the agent reports the good signal, he receives positive wage

only if the principal concurs: The principal’s signal is essentially used to restrain the agent’s
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incentive to strategically misreport.

Lemma 3. w01−w11 = (w10−w00)
α10(e)
α11(e)

. That is, the principal is indifferent between reporting

t = 0 and t = 1 when she observes t = 1.

Proof. The lemma just says that the first inequality of (1) is binding. If w01 = 0, Lemma 1

implies that w11 = 0, then all the inequalities of (1) are binding. If w01 > 0 and the inequality is

slack, we can reduce the value of w01 so that (1) and (LL) still hold (because c01 = 0 by Lemma

2), while the expected wage payment is reduced. Therefore, at the optimum the inequality

must be binding.

Let x† ≡ max{x, 0}, we can express wts in terms of cts in the next lemma.

Lemma 4. w11 = c11, w00 = c00, w10 = max{c10, c00} , and w01 = c11 + (c10 − c00)† · α10(e)
α11(e)

.

Proof. By Lemma 3, the principal’s objective function can be rewritten as

C =w11α11(e) + w10α10(e) + w00α00(e) +

[
w11 + (w10 − w00)

α10(e)

α11(e)

]
α01(e)

=w11 [α11(e) + α01(e)] + w10

[
α10(e) +

α10(e)α01(e)

α11(e)

]
+ w00

[
α00(e)−

α10(e)α01(e)

α11(e)

]
. (3)

By Assumption 2, the coefficient of w00 is positive, so are that of w11 and w10. The constraints

concerning wts are (1) and (LL). Since Lemma 3 is implemented, it suffices to check (LL) and

w10 ≥ w00 with w01 ≥ w11. Accordingly, for the objective function being minimum, w11 = c11,

and w00 = c00. Then, w10 = max{w00, c10} = max{c00, c10} . Moreover, again by Lemma 3, we

have w01 = c11 + (max{c00, c10} − c00)α10(e)
α11(e)

= c11 + (c10 − c00)† · α10(e)
α11(e)

.

Lemma 5. u(c11) − u(c10) = u(c00)
α00(e)
α10(e)

. That is, the agent is indifferent between reporting

s = 0 and s = 1 when he observes s = 0.
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Proof. By Lemma 2, c01 = 0, this lemma just says that the second inequality of (2) is binding.

If c00 = 0, all the inequalities of (2) are binding. If c00 > 0 and the inequality is slack, we can

decrease the value of c00 slightly so that (2) and (IR) still hold. Now, consider (ICF) with the

new value of c00. The right-hand side of (ICF) increases because α′00(e) < 0 by Assumption 2.

Follow the same arguments as that of Lemma 2, there exist ĉts ∈ [0, cts] such that {ĉts}t,s∈{0,1}

satisfies (TRA), (ICF), and (IR). The change of the principal’s payment, which follows from

Lemma 4 and (3), is

∆11 [α11(e) + α01(e)] + ∆10

[
α10(e) +

α10(e)α01(e)

α11(e)

]
+ ∆00

[
α00(e)−

α10(e)α01(e)

α11(e)

]
,

where ∆11 = ĉ11 − c11 < 0, ∆00 = ĉ00 − c00 < 0, and ∆10 = max{ĉ00, ĉ10} −max{c00, c10} < 0.

Hence, we find a new contract which reduces the principal’s wage payment. Then, at the

optimum the inequality must be binding.

Lemma 6. c10 ≥ c00.

Proof. Suppose that c00 > c10(≥ 0). By Lemma 2, c00 > 0 = c01. Then, by Lemma 1, c11 > c10.

We first raise c10 slightly such that both c00 and c11 are still strictly greater than c10, and (2)

still holds, which can be done since the second inequality of (2) is binding by Lemma 5, and

so the first inequality of (2) is slack. Note that the the principal’s wage payment is unaffected,

because, by Lemma 4, no expression of wts is regarding c10 while c00 > c10.

Now, consider (ICF) with the new value of c10. The right-hand side of (ICF) increases

because α′11(e) + α′10(e) > 0 by Assumption 2. Follow the same arguments as that of Lemma

2, we can find another feasible contract entailing a lower expected payment. Hence, c00 > c10

cannot be optimal.

Combining Lemmas 2, 4, and 6, we know that w01 ≥ c11 > 0 = c01, and w10 = c10. That is,

the only case in which money burning occurs is when the principal reports t = 0 and the agent
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reports s = 1.

Let uts = u(cts), ∀t, s ∈ {0, 1}. Lemma 1 through 6 allow us to rewrite the principal’s

expected payment as a function of a single variable, u00. To simplify notations, we now write

αij(e) as αij, and c∗(e) as c∗. Rearranging Lemma 5 and (ICF), we have α′10 α′11

−1 1


 u10

u11

 =

 V ′ − u00α′00

u00
α00

α10

 . (4)

Solving (4), we obtain

u10 =
V ′ −

(
α′00 + α00

α10
α′11

)
u00

α′11 + α′10
; (5)

u11 =
V ′ +

(
α00

α10
α′10 − α′00

)
u00

α′11 + α′10
. (6)

By Lemmas 4 and 6, the principal’s objective function can be rewritten in terms of cts’s:

C∗ = c11α11 + c10α10 +

[
c11 + (c10 − c00)

α10

α11

]
α01 + c00α00 (7)

= (α11 + α01)c11 + (α10 +
α10

α11

α01)c10 + (α00 −
α10

α11

α01)c00

= (α11 + α01)ũ(u11) + (α10 +
α10

α11

α01)ũ(u10) + (α00 −
α10

α11

α01)ũ(u00),

where ũ(·) is the inverse function of u(·), i.e., ũ(uts) = cts, ∀t, s ∈ {0, 1}. Since u10 and u11 are

functions of u00 only by (5) and (6), C is then a function of a single variable u00. Note that

the constraints regarding the relationship between cts’s, which can be summarized as Lemma

5 and 0 ≤ c00 ≤ c10, are now transformed in uts’s. Since Lemma 5 has been replaced by

(4), it remains to consider 0 ≤ c00 ≤ c10, which now reads as 0 ≤ u00 ≤ u10, or equivalently,

0 ≤ u00 ≤ V ′
α00
α10

α′11−α′01
≡ ū (by (5) and the fact that

∑
ij α
′
ij = 0). The principal’s problem

therefore reduces to choosing u00 to minimize C, subject to the constraint that 0 ≤ u00 ≤ ū.
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The marginal cost of u00 for the principal is

MC(u00) ≡
dC

du00
=

1

α′11 + α′10

 (α11 + α01)
(
α00

α10
α′10 − α′00

)
ũ′(u11)

−
(
α10 + α10

α11
α01

)(
α′00 + α00

α10
α′11

)
ũ′(u10)


+ (α00 −

α10

α11

α01)ũ
′(u00). (8)

Note that C is convex in u00 because

d2C

du200
=

(
1

α′11 + α′10

)2

 (α11 + α01)
(
α00

α10
α′10 − α′00

)2
ũ′′(u11)

+
(
α10 + α10

α11
α01

)(
α′00 + α00

α10
α′11

)2
ũ′′(u10)

+ (α00 −
α10

α11

α01)ũ
′′(u00)

≥ 0,

where the inequality follows from Assumption 1. Recall that the domain of u00 is [0, ū]. There-

fore, if MC(0) ≥ 0, the minimizer is u00 = 0; if MC(ū) ≤ 0, the minimizer is u00 = ū; if

MC(0) < 0 < MC(ū), the minimizer is some u00 ∈ (0, ū). For each case, we can summarize

the ranking of wts’s and cts’s, as shown in Proposition 2, by Lemma 1, Lemma 2, and Lemma

4.

Proof of Proposition 3:

The marginal cost function of u00 (see (8)) can be rewritten as

MC(u00) =
α11 + α01

α11 (α′11 + α′10)

[
α11

(
α00

α10

α′10 − α′00
)
ũ′(u11)− α10

(
α′00 +

α00

α10

α′11

)
ũ′(u10)

]
+(α00 −

α10

α11

α01)ũ
′(u00).

Let MC(u00) = MCP (u00) when t is a sufficient statistic for s. We have

MCP (u00) ≥
α11 + α01

α11 (α′11 + α′10)

[
α11

(
α00

α10

α′10 − α′00
)
− α10

(
α′00 +

α00

α10

α′11

)]
ũ′(u10)

= − α11 + α01

α11 (α′11 + α′10)
(α11 + α10)α

′
00ũ
′(u10)

> 0,
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where the first inequality holds because u11 ≥ u10,
α00

α10
α′10−α′00 > 0 by Assumption 3, α′11+α′10 >

0 by Assumption 2, and α00 − α10

α11
α01 > 0 by Assumption 1; the second equality follows from

α′11
α11

=
α′10
α10

; and the third inequality follows from α′00 < 0. Therefore, when t is a sufficient

statistic for s, regime (i) prevails by Proposition 2.

Let MC(u00) = MCA (u00) when s is a sufficient statistic for t. We have

MCA(u00) = −α11 + α01

α11

α00ũ
′(u10) + (α00 −

α10

α11

α01)ũ
′(u00)

≤ −α01 (α10 + α00)

α11

ũ′(u00)

< 0,

where the first equality follows from
α′10
α10

=
α′00
α00

, and the second inequality follows from u00 ≤ u10.

Consequently, when s is a sufficient statistic for t, regime (ii) prevails by Proposition 2.

The marginal cost function of u00 with parameterized belief p is

MC (u00; p) = pMCP (u00) + (1− p)MCA(u00).

Note that MC (u00; p) is strictly increasing in p because ∂MC(u00;p)
∂p

= MCP (u00)−MCA (u00) >

0. Since MCA (ū) < 0 < MCP (ū), there exists a 0 < p < 1 such that MC
(
ū; p
)

= 0. For

the similar reason, there exists a 0 < p̄ < 1 such that MC (0; p̄) = 0. In addition, because

MC (u00; p) is strictly increasing in both u00 and p, we know that p < p̄ . Accordingly, for

0 ≤ p ≤ p, MC (ū; p) ≤ 0; for p < p < p̄, MC (0; p) < 0 < MC (ū; p); for p̄ ≤ p ≤ 1,

MC (0; p) ≥ 0, and the result follows by Proposition 2.

Proof of Proposition 4:

By Corollary 1, we only need to compare the cost in Regime 1 (which is denoted by C1) and

28



that in Regime 2 (which is denoted by C2). In Regime 1, we have

w∗01 =
V ′(e)

(
1 + α10(e)

α11(e)

)
β11 + β10

;

c∗11 = c∗10 = w∗11 = w∗10 =
V ′(e)

β11 + β10
;

c∗00 = c∗01 = w∗00 = 0.

Hence,

C1 =

(
α11 + α10 + α01 +

α10α01

α11

)
V ′

β11 + β10
.

In Regime 2, we have

c∗11 = w∗11 = w∗01 =
V ′(e)

(
1 + α00(e)

α10(e)

)
β11

α00(e)
α10(e)

− β01
;

c∗00 = c∗10 = w∗00 = w∗10 =
V ′(e)

β11
α00(e)
α10(e)

− β01
;

c∗01 = 0.

Hence,

C2 = (α11 + α10 + α01)
V ′

β11 + α10

α10+α00
(β10 + β00)

.

If regime 1 is preferred, C1 ≤ C2, and it is equivalent to[
1 +

α10α01

α11(α11 + α10 + α01)

] [
β11 +

α10

α10 + α00

(β10 + β00)

]
≤ β11 + β10. (9)

Note that the RHS of (9) is positive constant. Hence the proposition is equivalent to: if

LHS ≤ β11 + β10 for some e1 ∈ (0, 1), then, ∀e > e1, LHS ≤ β11 + β10.

We just need to consider the case that the term in the second brackets is positive, for the

other case the inequality obviously holds. It suffices to show that, under this premise, LHS is

decreasing in e. The term in the first brackets can be rewritten as

1 +
1

α11

α10
· α11

α01
+ α11

α10
+ α11

α01

,
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where Assumption 3 implies that the denominator is increasing in e . Hence, this term decreases

with e. The term in the second brackets also decreases with e since Assumption 3 implies that

α10

α10+α00
is increasing in e and Assumption 1 says that β10 + β00 is negative. Since the term in

both brackets are positive, we conclude that LHS is decreasing in e, attaining our goal.

Appendix B. The Influence of Effort Level: General Discussion

Note that Proposition 2 provides criteria to determine which regime prevails by MC(0) and

MC(ū). We shall check how these two values change with e. First, we have

MC(0) =
α11 + α01

α′11 + α′10

(
−(α11 + α10)α

′
00 +

α11α00

α10

α′10 − α00α
′
11

)
ũ′
(

V ′

α′11 + α′10

)
+ (α11α00 − α10α01)ũ

′(0).

Let M1 ≡M1(e), respectively N1 ≡ N1(e), denote the coefficient of ũ′( V ′

α′11+α
′
10

), respectively the

coefficient of ũ′(0). Let κ1 ≡ κ1(e) ≡
ũ′( V ′

α′11+α
′
10

)

ũ′(0)
. Then, MC(0) ≥ 0 is equivalent to

f1(e) ≡M1κ1 +N1 ≥ 0. (10)

Our first goal is to offer a sufficient condition to make the following statement hold:

P1. If Regime 1 prevails for effort level e1 ∈ (0, 1) to be implemented, then Regime 1 prevails

for any effort level e ∈ (e1, 1) to be implemented.

Note that P1 holds if and only if the following statement holds:

Q1. If there exists e1 ∈ (0, 1) such that f1(e1) = 0, then f ′1(e1) ≥ 0.

Hence, we may transform our goal to make Q1 hold.

At e = e1, (10) takes equality, we have κ1(e1) = −N1(e1)
M1(e1)

> 0. Then, it follows that

f ′(e1) = M ′
1(e1)κ1(e1) +M1(e1)κ

′
1(e1) +N ′1(e1)

= −M
′
1(e1)

M1(e1)
N1(e1) +M1(e1)κ

′
1(e1) +N ′1(e1).
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Denote ξ1(e) = −N1(e)
M1(e)

. Then, f ′(e1) = −M1(e1)(ξ
′
1(e1) − κ′1(e1)). Note that −M1(e1) > 0,

then f ′(e1) ≥ 0 if and only if

ξ′1(e1) ≥ κ′1(e1), (11)

which is the exact criterion to make Q1, or P1 hold. We shall note that ξ1(e) ≡ −N1(e)
M1(e)

is fully

determined by αts’s, while κ1(e) involves the utility and cost function.

When αts(e) is linear, we know

κ′1(e1) =
1

(α′11 + α′10)ũ(0)
ũ′′
(

V ′(e1)

α′11 + α′10

)
V ′′(e1).

Hence, κ′1(e1) is zero if the agent is risk-neutral, then (11) reads as ξ′1(e1) ≥ 0. However, we

have confirmed this (strict) inequality by Proposition 4 (and its proof), i.e., ξ′1(e1) is positive.

Then, (11) holds if ũ′′
(

V ′(e1)
α′11+α

′
10

)
V ′′(e1) is sufficiently small, which justified we mentioned in the

main text. We Summarize the first part, as follows:

S1. If ũ′′
(

V ′(e1)
α′11+α

′
10

)
V ′′(e1) is sufficiently small, then P1 holds.

In the second part, we shall calculate MC(ū) first:

MC(ū) =
α11 + α01

α′11 + α′10
α11

(
α00

α10

α′10 − α′00
)
ũ′
(

α10 + α00

α00α′11 − α10α′01
V ′
)

+

(
α11α00 − α10α01 −

α11 + α01

α′11 + α′10
(α10α

′
00 + α00α

′
11)

)
ũ′
(

α10

α00α′11 − α10α′01
V ′
)
.

Let M2 ≡ M2(e), respectively N2 ≡ N2(e), denote the coefficient of ũ′( α10+α00

α00α′11−α10α′01
V ′), re-

spectively the coefficient of ũ′( α10

α00α′11−α10α′01
V ′). Let κ2 ≡ κ2(e) ≡

ũ′(
α10+α00

α00α
′
11−α10α

′
01
V ′)

ũ′(
α10

α00α
′
11−α10α

′
01
V ′)

. Then,

MC(ū) ≤ 0 is equivalent to

f2(e) ≡M2κ2 +N2 ≥ 0. (12)

Our second goal is to offer a sufficient condition to make the following statement hold:
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P2. If Regime 2 prevails for effort level e2 ∈ (0, 1) to be implemented, then Regime 2 prevails

for any effort level e ∈ (0, e2) to be implemented.

Note that P2 holds if and only if the following statement holds:

Q2. If there exists e2 ∈ (0, 1) such that f2(e2) = 0, then f ′2(e2) ≥ 0.

Hence, we may transform our goal to make Q2 hold.

Making use similar argument and similar notations in the first part, we know that, f ′2(e2) ≥

0, if and only if,

ξ′2(e2) ≥ κ′2(e2), (13)

where ξ2(e2) = −N2(e)
M2(e)

. This is the exact criterion to make Q2, or P2 hold.

Note that κ′2(e2) is zero if the agent is risk-neutral, then (13) reads as ξ′2(e2) ≥ 0. However,

we have confirmed this (strict) inequality by Proposition 4 (and its proof). 10 That is, ξ′2(e2)

is positive. Then, (13) holds if κ′2(e2) is sufficiently small. We Summarize the second part as

follows:

S2. If κ′2(e2) is sufficiently small, then P2 holds.

Given P1 an P2, we conclude, that Regime 2 comes first, Regime 3 follows, and Regime 1

finally emerges, as the implemented effort level increases.

10 Proposition 4 is equivalent to the following: Assume that the agent is risk-neutral. If there exists an effort

level, e2, such that the optimal contract implementing e2 is in Regime 2, then the optimal contract implementing

any lower effort level than e2 is also in Regime 2.
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