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Abstract

Empirical evidence has constantly rejected the uncovered interest rate parity (UIP)

condition, well known as the UIP puzzle. We evaluate the empirical performance of

a small open-economy model for Canada incorporating an endogenous risk premium

on foreign bond holdings so that the resulting modified UIP condition can exhibit a

negative relationship between expected exchange rate depreciation and interest rate dif-

ferentials as the UIP puzzle suggests. Because the model is susceptible to equilibrium

indeterminacy, we estimate it with Bayesian methods allowing for both determinacy

and indeterminacy of equilibrium. Our results show that the data strongly favor in-

determinacy over determinacy and that the estimated model can account for the UIP

puzzle both unconditionally and conditionally. Variance decompositions demonstrate

that a shock to the modified UIP condition is the main driving force of exchange rate

fluctuations whereas sunspot shocks play a secondary role.
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1 Introduction

The uncovered interest rate parity (UIP) condition constitutes a fundamental building block

in modern open-economy models. It states that countries with relatively high interest rates

should expect subsequent currency depreciations to ensure zero expected excess returns from

cross-border financial investments. However, as is well known since Fama (1984), a wide

range of international data have empirically rejected this condition and often exhibit almost

zero or negative correlations between expected exchange rate depreciation and interest rate

differentials, giving rise to the UIP puzzle.

From a theoretical perspective, Beaudry and Lahiri (2019) indicate that a perfect-foresight

equilibrium in a small open economy is indeterminate if the UIP condition fails and exhibits

a negative relationship between expected exchange rate depreciation and interest rate differ-

entials as the UIP puzzle suggests. Their finding is quite novel and relevant to the empirical

regularities. However, their analysis is based on a small open-economy version of a sim-

ple (continuous-time) sticky-price model, where the modified UIP equation is specified in

a reduced-form manner, and the empirical validity of their model is not examined formally

through model estimation.

This paper explores the empirical performance of a fully specified dynamic stochastic

general equilibrium (DSGE) model of the Canadian economy incorporating a modified UIP

condition that shares the same spirit as the one considered in Beaudry and Lahiri (2019).

To derive the modified UIP equation structurally, we introduce an endogenous risk premium

on foreign bond holdings à la Adolfson et al. (2008) into a small open-economy version

of the standard New Keynesian model so that the resulting modified UIP condition can

exhibit a negative relationship between expected exchange rate depreciation and interest

rate differentials. In the model, the endogenous risk premium is specified as a function of

an expected change in the exchange rate, a net foreign asset position, and a shock. Then,

the coefficient on interest rate differentials in the modified UIP equation can be negative,

leading to equilibrium indeterminacy, if the parameter on the risk premium associated with

exchange rate changes is sufficiently large.1

1Christiano et al. (2011) specify the risk premium as a function of interest rate differentials instead of
the expected exchange rate changes and derive the modified UIP equation in the same form as ours so that
its coefficient on the interest differentials can be negative. However, they estimate their model only in the
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A notable feature of our analysis is that we estimate the model over the parameter space in

which the coefficient on interest rate differentials in the modified UIP equation can be either

positive or negative, leading to either determinacy or indeterminacy of equilibrium.2 If we

restricted our model’s parameter space to one that leads only to equilibrium determinacy, the

estimated model would be unlikely to replicate the observed pattern between the exchange

rate and interest rate differentials. Therefore, we estimate the model using full-information

Bayesian methods that allow for both determinacy and indeterminacy of equilibrium. To this

end, following Lubik and Schorfheide (2004), we construct the model’s likelihood function

not only for the determinacy region of its parameter space but also for the indeterminacy

region. While Lubik and Schorfheide (2004) conduct model estimation separately for each

region, we estimate the model for both the determinacy and indeterminacy regions in one

step by adopting a sequential Monte Carlo (SMC) algorithm, as implemented by Hirose et al.

(2020). In contrast to the widely used Metropolis–Hastings algorithm, the SMC algorithm

can deal with discontinuity in the likelihood function at the boundary of each region and

help us find the entire posterior distribution of model parameters.

Based on the estimated model, we investigate the sources of macroeconomic fluctuations,

in particular, Canada–US exchange rate dynamics. Lubik and Schorfheide (2006), Hirose

(2013), and Chen et al. (2021) document that, because of the empirical failure of the UIP

relationship, estimations of open-economy DSGE models typically find fluctuations in nom-

inal exchange rates mostly unrelated to macroeconomic fundamentals and attributed to a

wedge to the standard UIP condition, called a UIP shock. Our empirical analysis may alter

this prevailing view because the modified UIP condition in our model can exhibit a negative

relationship between the expected exchange rate depreciation and interest rate differentials

as observed in the data. Moreover, because we allow for equilibrium indeterminacy, sunspot

shocks, which are nonfundamental disturbances to agents’ expectations, can affect the ag-

gregate fluctuations. Under indeterminacy, the contribution of UIP shocks to the exchange

rate may be partly replaced with that of sunspot shocks.

The main results of this paper are as follows. First, the posterior distributions of the

determinacy region of the parameter space without considering the possibility of indeterminacy.
2Equilibrium indeterminacy does not arise in the model with Adolfson et al. (2008)’s original specification

of the endogenous risk premium on foreign bond holdings, in which the risk premium depends on expected
consecutive currency depreciation (changes from t− 1 to t+ 1).
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model parameters indicate that the parameter on the risk premium on foreign bond holdings

associated with the exchange rate is so large that the coefficient on interest rate differentials

in the modified UIP equation is negative, leading to equilibrium indeterminacy. Compar-

ing the baseline estimation results with those obtained by estimating the model only in the

determinacy region of its parameter space, we find that the baseline model allowing for in-

determinacy fits the data much better than the model estimated only under determinacy.

We also show that the propagation of shocks can be remarkably different between the base-

line model and its counterpart estimated only under determinacy. These differences are

attributed to the estimated arbitrary components—which work as an equilibrium selection

device—in the solution under indeterminacy.

Second, stochastic simulations demonstrate that the estimated baseline model can repli-

cate the observed negative correlation between expected exchange rate depreciations and

interest rate differentials, both unconditionally and conditionally. In other words, the model

accounts for the UIP puzzle not only when the economy is driven by all shocks but also

when it is driven by each single shock. Indeed, each of all shocks can generate a negative

correlation in the baseline model, because of the negative slope coefficient in the modified

UIP equation. In the model estimated only under determinacy, however, only the UIP shock

can generate such a negative correlation, and the other shocks cannot.

Third, forecast error variance decompositions based on the estimated model show that

the UIP shock is the main driving force of exchange rate fluctuations. Thus, conventional

wisdom in the literature that indicates the importance of a direct shock to the UIP condition

is not overturned. Moreover, we find that the UIP shock can account for fluctuations in

other observed variables, as is consistent with the argument in Itskhoki and Mukhin (2021),

who offer microfoundations for a direct shock to the UIP condition and demonstrate the

importance of the shock in explaining aggregate variables including exchange rates. Our

empirical analysis enhances their argument further, showing that the contributions of the

UIP shock to inflation and the nominal interest rate are much larger under indeterminacy

than under determinacy.

Finally, a novel finding in the variance decomposition analysis is that sunspot shocks play

a secondary role in explaining exchange rate dynamics for all forecast horizons. We also find

that sunspot shocks play a nonnegligible role in fluctuations in output growth, inflation, and
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the nominal interest rate. In particular, their contribution to the interest rate is remarkable

for relatively short horizons.

The remainder of this paper proceeds as follows. Section 2 provides a brief overview

of the related literature. Section 3 presents the small open-economy DSGE model used

for our empirical analysis and analyzes the determinacy regions in the model’s parameter

space. Section 4 explains the estimation strategy and data. Section 5 presents and discusses

the results of the empirical analysis. Section 6 conducts robustness analysis for various

estimation settings. Section 7 concludes.

2 Related Literature

This paper is most closely related to the following three strands of literature in the field of in-

ternational finance: the UIP puzzle, accounting for exchange rate dynamics, and equilibrium

indeterminacy in open economies.

UIP puzzle When agents are risk-neutral and there are no frictions in international finan-

cial markets, a no-arbitrage condition for home and foreign bond holdings implies the UIP

condition:

logEtSt+1 − logSt = log it − log i∗t ,

where St denotes the nominal exchange rate (price of foreign currency in terms of domestic

currency), and it and i∗t are respectively the home and foreign (gross) nominal interest

rates. Assuming the rational expectations, this UIP condition can be empirically tested by

conducting the so-called UIP regression:

logSt+1 − logSt = α0 + α1(log it − log i∗t ) + vt,

with the null hypothesis H0 : α0 = 0 and α1 = 1, where α0 and α1 are regression coefficients

and vt is an error term. Since the seminar paper by Fama (1984), numerous papers have

rejected this null hypothesis using a wide rage of international data and have found the

estimated slope coefficient α1 to be significantly below unity, and often negative.

In line with these findings, Lustig and Verdelhan (2007) and Burnside et al. (2008) find
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sizable gains from the carry trade, an investment strategy by investing in high interest rate

currencies with funding from low interest rate currencies. Eichenbaum and Evans (1995)

and Scholl and Uhlig (2008) provide the empirical pattern called the delayed overshooting :

a country’s currency tends to appreciate for a while after a positive monetary policy shock.

Grilli and Roubini (1996) and Kim and Roubini (2000) find the same pattern for Canadian

data.

There have been many attempts to replicate this failure of the UIP condition in a the-

oretical framework. Backus et al. (2001), Duarte and Stockman (2005), Verdelhan (2010),

Colacito and Croce (2011), Bansal and Shaliastovich (2012), Benigno et al. (2011), Backus

et al. (2010), Gourio et al. (2013), Engel (2016), and Chen et al. (2021) aim to solve the UIP

puzzle through risk corrections, namely the covariance between the stochastic discount fac-

tor and payoffs. Bacchetta and van Wincoop (2021) show that delayed portfolio adjustment

can account for the UIP puzzle. In these studies, structural or macroeconomic fundamental

shocks can raise interest rates and appreciate the nominal exchange rates simultaneously.

Gourinchas and Tornell (2004), Chakraborty and Evans (2008), Burnside et al. (2011), Ilut

(2012), and Candian and Leo (2021) explain the UIP puzzle by deviating from the rational

expectations.

Accounting for exchange rate dynamics Because the standard UIP condition fails

to replicate the observed pattern between expected exchange rate depreciation and interest

rate differentials, the literature finds that exchange rate dynamics are mostly explained by

a wedge to the UIP condition, called a UIP shock. Itskhoki and Mukhin (2021) provide

microfoundations for a direct shock to the UIP condition and demonstrate its importance in

accounting for aggregate fluctuations including exchange rate dynamics.

Lubik and Schorfheide (2006) and Hirose (2013) estimate a two-country open-economy

model for the U.S. and the Euro economies in a linear setting and find that a shock to the

purchasing power parity (PPP) condition, which works in a similar way to the UIP shock,

explains more than 80% of the exchange rate fluctuations. Chen et al. (2021) extend their

analysis by allowing for stochastic volatilities in fundamental shocks and estimate their model

approximated up to the third order. Albeit with the consideration of nonlinearity and risk

components, they report that the UIP shock still plays a significant role in accounting for
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exchange rate dynamics.

Adolfson et al. (2008) introduce an endogenous risk premium on foreign bond holdings

into a small open-economy model as a function of the aggregate net foreign asset position

of domestic households and expected consecutive depreciation (changes from t− 1 to t+ 1)

and show that their estimated model can better replicate the observed properties of Swedish

macroeconomic data including the exchange rate.

Indeterminacy in open economies While Kareken and Wallace (1981) discuss the

steady-state indeterminacy in an open economy, our paper focuses on dynamic indeter-

minacy, i.e., the possibility of multiple equilibrium paths toward a unique steady state.

In a small open-economy setting, Carlstrom and Fuerst (2002) report that determinacy

conditions in a closed economy framework carry over to a small open economy, whereas

De Fiore and Liu (2005) point out the importance of trade openness for a determinate

equilibrium. In a multi-country setting, Bullard and Singh (2008) and Bullard and Schaling

(2009) demonstrate that the worldwide equilibrium can be indeterminate when one country

satisfies the determinacy condition but when one of the others does not. Hirose (2013)

estimates a two-country model for the U.S. and the Euro area allowing for both determinacy

and indeterminacy of equilibrium.

Beaudry and Lahiri (2019) is the most closely related paper to ours. They show that

the perfect-foresight equilibrium is indeterminate if a modified interest rate parity condition

exhibits a negative relationship between exchange rate depreciations and interest rate dif-

ferentials in a small open-economy version of a simple (continuous-time) sticky-price model.

In contrast, we demonstrate that the negative relationship is not a sufficient condition for

equilibrium indeterminacy in a more general stochastic setting.

3 The Model

The model estimated in this paper is a small open-economy version of the standard New

Keynesian model, as in Gaĺı and Monacelli (2005) but incorporates an endogenous risk pre-

mium on the foreign bond holdings à la Adolfson et al. (2008) so that the resulting modified

UIP condition can exhibit a negative relationship between expected exchange rate deprecia-
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tion and interest rate differentials as observed in the data. A representative household gains

utility from aggregate consumption composed of home and foreign goods, and trades both

home and foreign bonds in domestic and international asset markets. Monopolistically com-

petitive firms produce differentiated goods, and are subject to a price adjustment cost. The

central bank adjusts the nominal interest rate in response to inflation, output growth, and

nominal exchange rate depreciation. For a better fit to the macroeconomic data, the model

features habit persistence in consumption preferences, price indexation to past inflation, and

monetary policy smoothing.

3.1 Household

A representative household in the home country maximizes the utility function:

E0

∞∑
t=0

βt
[
log
(
Ct − bC̄t−1

)
− h1+ηt

1 + η

]
,

where Ct is aggregate consumption, bC̄t−1 is an external habit taken as given by the house-

hold, ht is labor supply, β is the subjective discount factor, and η is the inverse of the labor

supply elasticity. Aggregate consumption Ct is a composite of home- and foreign-produced

goods, CH,t and CF,t, given by

Ct =

(
CH,t
λ

)λ(
CF,t

1− λ

)1−λ

,

with

CH,t =

[∫ 1

0

CH,t (i)1−
1
ε di

] ε
ε−1

,

CF,t =

[∫ 1

0

CF,t (i∗)1−
1
ε di∗

] ε
ε−1

,

where CH,t(i) and CF,t(i
∗) are differentiated consumption goods produced by home and

foreign firms, each of which is indexed by j and j∗, respectively. λ is the relative weight

on the domestically produced goods in aggregate consumption, and ε is the elasticity of

substitution among differentiated products in each country.
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The household’s utility maximization is subject to the budget constraint:

PtCt + At + StA
∗
t = Wtht + it−1At−1 + StΦt−1i

∗
t−1A

∗
t−1 + Tt,

where Pt is the consumer price index, At and A∗t are respectively the holding of home and

foreign bonds, St denotes the nominal exchange rate (price of foreign currency in terms of

domestic currency), Wt is the nominal wage, it and i∗t are respectively the home and foreign

nominal interest rates, Φt is a risk premium on the foreign bond holdings, and Tt is the net

transfer from firms and the government.

Following Adolfson et al. (2008), the risk premium depends on the net foreign asset

position of the domestic household, the expected change in the exchange rate, and a shock.

Specifically, Φt is of the form

Φt := exp

[
−φa

(
StA

∗
t

PtZt
− a∗

)
− φs

(
EtSt+1

St
− π

π∗

)
+ ψt

]
, (1)

where Zt is a nonstationary trend component explained below. a∗, π, and π∗ are the steady-

state values of detrended real net foreign assets in the home currency and home and foreign

inflation. φa and φs are parameters. ψt is a shock to the risk premium. We call this shock a

UIP shock because it will appear as a direct shock to the resulting modified UIP condition.

The first term −φa (StA
∗
t/(PtZt)− a∗) is needed to ensure stationarity of the small-open

economy model with incomplete asset markets. The second term −φs (EtSt+1/St − π/π∗) is

based on the empirical regularity that risk premia are negatively correlated with expected

currency depreciations (e.g., Fama, 1984; Duarte and Stockman, 2005).3

3.2 Firms

In the home country, each firm, indexed by j, produces one kind of differentiated good Yt(j)

by choosing a cost-minimizing labor input ht(j), given the wage, subject to the production

3Assuming that π = π∗, Adolfson et al. (2008) specify the second risk-premium term as
−φs [(EtSt+1/St)(St/St−1)− 1], in which the risk premium depends on expected consecutive depreciation,
or expected changes in the exchange rate from two periods ago. Our specification is simpler than theirs but
straightforwardly captures the empirical regularity found in the literature.
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function:

Yt(j) = exp(zt)Ztht (j) ,

where zt is a stationary technology shock, and Zt is a nonstationary trend component that

grows at a constant rate γ, i.e.,
Zt
Zt−1

= γ.

In a monopolistically competitive market, each firm sets the price of its products in the

presence of a Rotemberg (1982)-type adjustment cost and indexation to a weighted average

of the past inflation rate for the domestically produced goods πH,t−1 := PH,t−1/PH,t−2 and

the steady-state inflation rate π to maximize the present discounted value of its profit:

Et
∞∑
n=0

mt,t+n

PH,t+n (j)

PH,t+n
− exp(µt)Wt+n

exp(zt)ZtPH,t+n
− φ

2

(
PH,t+n (j)

πωH,t+n−1π
1−ωPH,t+n−1 (j)

− 1

)2
Yt+n(j),

subject to the firm-level resource constraint

Yt (j) = CH,t (j) + C∗H,t (j) +
φ

2

(
PH,t (j)

πωH,t−1π
1−ωPH,t−1 (j)

− 1

)2

Yt (j) ,

and the downward sloping demand curves, which are obtained from the household’s opti-

mization problem in each country,

CH,t (j) =

[
PH,t (j)

PH,t

]−ε
CH,t,

C∗H,t (j) =

[
P ∗H,t (j)

P ∗H,t

]−ε
C∗H,t,

where mt,t+n is the stochastic discount factor, C∗H,t is the demand for the domestically pro-

duced goods in the foreign country, P ∗H,t is the export price of the domestically produced

goods in terms of the foreign currency, φ is the adjustment cost parameter, and ω ∈ [0, 1] is

the weight of price indexation to past inflation relative to steady-state inflation. Note that

a marginal cost shock µt is embedded to capture exogenous cost-push factors.
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Assuming the law of one price and the symmetric equilibrium, we obtain

PH,t = StP
∗
H,t.

Let pH,t := PH,t/Pt. Then, πH,t := PH,t/PH,t−1 can be expressed as

πH,t =
pH,tπt
pH,t−1

,

where πt := Pt/Pt−1. The real exchange rate et is defined as

et :=
StP

∗
t

Pt
.

Aggregating the firm-level resource constraint leads to

Yt = CH,t + C∗H,t +
φ

2

(
πt

πωt−1π
1−ω − 1

)2

Yt.

The balance of payments identity is given by

PH,tY
∗
H,t − PF,tYF,t = St

(
A∗t − Φt−1i

∗
t−1A

∗
t−1
)
,

where Y ∗H,t is exports of the domestically produced goods, PF,t is the import price of the

foreign goods expressed in foreign currency, and YF,t is imports of the foreign goods.

3.3 Monetary policy

The central bank in the home country adjusts the nominal interest rate in response to

deviations of inflation, output growth, and nominal exchange rate depreciation from their

steady state values with policy smoothing:4

it = iρt−1

[
i
(πt
π

)απ ( Yt
γYt−1

)αy ( Stπ
∗

St−1π

)αs]1−ρ
exp (ut) ,

4Our model does not explicitly consider the zero lower bound on the nominal interest rate because the
policy interest rate in Canada was constrained at its effective lower bound only for four quarters after the
global financial crisis.
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where ρ is the degree of interest rate smoothing, and απ, αy, and αs are the degrees of

monetary policy responses to their target variables. ut is a monetary policy shock. We

include exchange rate depreciation in the policy rule following Justiniano and Preston (2010),

who estimated a small open-economy model similar to ours for the Canadian economy.

3.4 Equilibrium conditions and detrending

The equilibrium conditions of the model are presented in Appendix A. To ensure the sta-

tionarity of the system of equations, real variables are detrended by the nonstationary trend

component Zt as follows: yt := Yt/Zt, yH,t := YH,t/Zt, yF,t := YF,t/Zt, y
∗
t := Y ∗t /Zt, and

ct := Ct/Zt. The steady-state conditions in terms of detrended variables are presented in

Appendix B, whereas the log-linearized version of the detrended system of equations is shown

in Appendix C.

3.5 Exogenous shock processes

In addition to the fundamental shocks mentioned above, we treat the foreign output ŷ∗t ,

inflation π̂∗t , and the nominal interest rate î∗t as exogenous shocks.5 We assume that all the

shocks except for the monetary policy shock follow stationary AR(1) processes:

ψ̂t = ρψψ̂t−1 + εψ,t,

zt = ρzzt−1 + εz,t,

µ̃t = ρµµ̃t−1 + εµ,t,

ut = εu,t,

ŷ∗t = ρy∗ ŷ
∗
t−1 + εy∗,t,

π̂∗t = ρπ∗π̂∗t−1 + επ∗,t,

î∗t = ρi∗ î
∗
t−1 + εi∗,t,

5Justiniano and Preston (2010) endogenize these foreign variables by adding a small-scale New Keynesian
model into the system of equations. We treat them as exogenous because our estimation sample includes
the zero lower bound periods in the US, which cannot be well captured by linearized equations.
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where µ̃t = (ε − 1)/{φ (1 + βω)}µt, ρx for x ∈ {z, µ, ψ, y∗, π∗, i∗} are the autoregressive

parameters and εx,t ∼ i.i.d. N(0, σ2
x) for x ∈ {z, µ, u, ψ, y∗, π∗, i∗}.

3.6 Modified UIP condition and equilibrium indeterminacy

3.6.1 Modified UIP condition

From the optimality conditions for home and foreign bond holdings, we can derive the

modified UIP condition as follows:

it = Et
{
st+1 exp

[
−φa (a∗t − a∗)− φs

(
st+1 −

π

π∗

)
+ ψt

]
i∗t

}
,

where st := St/St−1 represents the depreciation of the nominal exchange rate and a∗t :=

StA
∗
t/PtZt is detrended real net foreign assets in the home currency.

Assuming that π = π∗, log-linearizing this equation around the steady state gives

Etŝt+1 =
1

1− φs
(̂it − î∗t ) +

1

1− φs
(φaa

∗â∗t − ψ̂t), (2)

where hatted variables denote percentage deviation from their corresponding steady-state

values. Note that setting φs = φa = 0 leads to the standard UIP condition:

Etŝt+1 = ît − î∗t − ψ̂t. (3)

As addressed in Section 2, the UIP relationship given by (3) has been frequently rejected

for various international data by conducting the UIP regression:

logSt+1 − logSt = α0 + α1(log it − log i∗t ) + vt, (4)

with the null hypothesis H0 : α0 = 0 and α1 = 1. Indeed, the OLS estimator of α1 is −0.012

with the standard error of 0.702 according to our preliminary estimation of (4) using a

Canada–US data set, described in Section 4.3, ranging from 1984:Q1 to 2019:Q4. Assuming

rational expectations and ignoring the endogeneity of â∗t ,
6 the regression coefficient α1 is

6We can ignore the endogeneity of â∗t because this term is needed to ensure stationarity of the small-open
economy model with incomplete asset markets and because φa is commonly set at very small values less than
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consistent with 1/(1−φs) in the modified UIP condition given by (2). A novel feature of our

analysis is that we allow for values of φs greater than one so that the modified UIP condition

given by (2) can be consistent with negative coefficients in the UIP regressions.

Because of the empirical failure of the standard UIP relationship, the literature that

estimates open-economy DSGE models with a UIP equation such as (3) finds very large

contributions of the UIP shocks ψ̂t to exchange rate fluctuations.7 This conventional wisdom

in the literature might be overturned once we embed the modified UIP condition (2) into

the model and allow for the observed negative relationship between expected exchange rate

depreciation Etŝt+1 and the interest rate differential ît − î∗t .

3.6.2 Equilibrium indeterminacy

In dynamic general equilibrium economies, equilibrium can be indeterminate, depending on

model structures and parameters that characterize them, and in such a case, sunspot shocks,

which are nonfundamental disturbances, can affect economic fluctuations. In what follows,

we demonstrate that the equilibrium can be indeterminate, depending on the parameters in

the modified UIP condition (2):

Etŝt+1 =
1

1− φs
(̂it − î∗t ) +

1

1− φs
(φaa

∗â∗t − ψ̂t). (5)

Figure 1 presents the equilibrium determinacy regions in the parameter space for (φs, απ)

and (φs, λ), respectively, given the prior means of the other parameters reported in Table 1

(Section 4). The first panel illustrates that sufficiently large values of φs lead to equilibrium

indeterminacy and that its threshold value for indeterminacy increases as απ (monetary

policy reaction to inflation) increases. Likewise, the second panel shows that large values of φs

give rise to indeterminacy, although decreases in λ (relative weight on domestically produced

goods in aggregate consumption) expand the determinacy region. A notable finding from

these two panels is that, regardless of the values of απ and λ, indeterminacy arises for such

large values of φs that the modified UIP condition exhibits a negative relationship between

expected exchange rate depreciation Etŝt+1 and interest rate differential ît − î∗t as observed

0.01.
7See Lubik and Schorfheide (2006), Hirose (2013), and Chen et al. (2021).
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Figure 1: Determinacy regions in the parameter space

Notes: Each panel of this figure displays the equilibrium determinacy region in the parameter space for

(φs, απ) and (φs, λ), respectively, given the prior mean of the other parameters reported in Table 1. ‘×’

denotes the region for nonexistence of equilibrium.

in international data.

To understand why large values of φs generate equilibrium indeterminacy, consider the

case in which the monetary policy rule is of the simple form:

ît = αππ̂t. (6)

In the model, the aggregate price is given by

Pt = P λ
H,t (StP

∗
t )1−λ ,

which can be written in log-linearized form in terms of change rates and be solved for the

exchange rate depreciation ŝt:

ŝt =
1

1− λ
π̂t −

λ

1− λ
π̂H,t − π̂∗t . (7)
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Substituting (6) and (7) into the modified UIP condition (2), we obtain

1

1− λ
Etπ̂t+1 −

λ

1− λ
Etπ̂H,t+1 − Etπ̂∗t+1 =

1

1− φs
(αππ̂t − î∗t ) +

1

1− φs
(φaa

∗â∗t − ψ̂t). (8)

Isolating the relationship between Etπ̂t+1 and π̂t from this equation under the assumption

that the stability of the other variables is guaranteed by other equations in the system, we

have

Etπ̂t+1 = %π̂t,

where % = απ(1 − λ)/(1 − φs). In the analogy of Blanchard and Kahn (1980) conditions,

expected inflation is uniquely pinned down (i.e., determinate) if the composite parameter

% is outside the unit circle.8 In a limiting case where απ = 1 and λ = 0, this condition is

not satisfied for φs ≥ 2. Thus, sufficiently large values of φs lead to the equilibrium being

indeterminate. As each of απ and λ increases from the limiting case, the threshold value of

φs for |%| ≤ 1 increases and decreases, respectively. This is consistent with the determinacy

regions illustrated in Figure 1.

To gain intuition about why the negative relationship between Etŝt+1 and ît − î∗t in the

modified UIP condition gives rise to equilibrium indeterminacy, suppose that agents believe a

rise in future inflation without any changes in fundamentals. Then, taking one-period-ahead

expectations for the both sides of (7), the future exchange rate is expected to depreciate

(i.e., Etŝt+1 increases). If the coefficient on ît− î∗t in the modified UIP condition is negative,

expected future depreciation must coincide with a decrease in the domestic nominal interest

rate, given the foreign one. The low interest rate stimulates the demand side of the economy

and increases both output and inflation. Therefore, the non-fundamental belief on inflation

can be self-fulfilling as an equilibrium. On the other hand, if the modified UIP equation

exhibits a positive relationship between Etŝt+1 and ît − î∗t , expected future depreciation is

accompanied by an increase in the domestic nominal interest rate, which dampens output

and inflation. Thus, the non-fundamental belief on inflation does not materialize and cannot

be an equilibrium.

8Conditions for determinacy depend on eigenvalues in the autoregressive coefficient matrix of the whole
system. In the present setting, however, we cannot characterize them analytically because of the high
dimensionality of the system. Thus, we focus on the univariate relationship between Etπ̂t+1 and π̂t to
illustrate the source of indeterminacy.
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If we allow for indeterminacy, sunspot shocks, which are nonfundamental disturbances

to the economy, can arise and affect equilibrium dynamics. As addressed above, the lit-

erature that estimates open-economy DSGE models has found that almost all fluctuations

in exchange rates are driven by wedges to the UIP condition, i.e., UIP shocks, reflecting

the empirical failure of the standard UIP equation. Under indeterminacy, however, some

portion of its contribution might be replaced with that from sunspot shocks. This point is

also examined in the subsequent empirical analysis.

It should be noted that equilibrium indeterminacy does not occur for any φs > 0 if we

employ Adolfson et al. (2008)’s original specification for the endogenous risk premium on

foreign bond holdings:

Φt := exp

[
−φa

(
StA

∗
t

PtZt
− a∗

)
− φs

(
EtSt+1

St

St
St−1

− π

π∗

)
+ ψt

]
,

where, differently from our specification (1), the risk premium depends on expected consec-

utive depreciation, or expected changes in the exchange rate from t− 1 to t+ 1. Under this

specification, the modified UIP condition is of the log-linearized form:

Etŝt+1 =
1

1− φs
(̂it − î∗t ) +

φs
1− φs

ŝt +
1

1− φs
(φaa

∗â∗t − ψ̂t).

Our preliminary estimation of the model with this modified UIP condition has confirmed

that the model fits the data much worse than our baseline model. Moreover, we consider

the hybrid specification between Adolfson et al. (2008)’s and ours:

Φt := exp

[
−φa

(
StA

∗
t

PtZt
− a∗

)
− φs

((
EtSt+1

St

)φ1 ( St
St−1

)1−φ1
− π

π∗

)
+ ψt

]
,

which gives another modified UIP condition:

Etŝt+1 =
1

1− φsφ1

(̂it − î∗t ) +
φs(1− φ1)

1− φsφ1

ŝt +
1

1− φsφ1

(φaa
∗â∗t − ψ̂t).

This specification coincides with our baseline specification when φ1 = 1. We estimated the

model under this hybrid specification with a beta prior for φ1 with mean 0.5 and standard

deviation 0.2 and the other priors being the same as in the baseline estimation shown in
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Section 4.3 (Table 1). According to the estimation results, the posterior mean estimate of φ1

is very close to 1 (0.977), supporting our baseline specification. These preliminary estimation

results are reported in Appendix D.

4 Estimation Strategy

As shown in the previous section, equilibrium indeterminacy can occur when the modified

UIP condition exhibits a negative relationship between expected exchange rate depreciation

Etŝt+1 and the interest rate differential ît − î∗t , often found in the UIP regressions. If we

restricted the model’s parameter space to the determinacy region in estimation, it would be

unlikely that the estimated model could replicate the observed pattern between the two.

To overcome this issue, we estimate the model allowing for indeterminacy, using full-

information Bayesian methods based on Lubik and Schorfheide (2004). Specifically, the

model’s likelihood function is constructed not only for the determinacy region of its pa-

rameter space but also for the indeterminacy region. While Lubik and Schorfheide (2004)

conduct model estimation separately for each region, we estimate the model for both the

determinacy and indeterminacy regions in one step by adopting a sequential Monte Carlo

(SMC) algorithm, as implemented by Hirose et al. (2020). This algorithm can deal with

discontinuity in the likelihood function at the boundary of each region and help us find the

entire posterior distribution of model parameters.

In this section, we begin by presenting solutions to linear rational expectations models,

then explain how Bayesian inference over both the determinacy and indeterminacy regions

of the model parameter space are made with the SMC algorithm, and lastly describe the

data and prior distributions used in the model estimation.

4.1 Rational expectations solutions under indeterminacy

Lubik and Schorfheide (2003) derive a full set of solutions to the models under indeterminacy

of the form

st = ΦI
1(θ) st−1 + ΦI

ε(θ, M̃) εt + ΦI
ζ(θ) ζt, (9)

where ΦI
1(θ), ΦI

ε(θ, M̃), and ΦI
ζ(θ) are coefficient matrices that depend on the vector θ
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of model parameters and an arbitrary matrix M̃; st is a vector of endogenous variables;

εt is a vector of fundamental shocks; and ζt ∼ i.i.d.N(0, σ2
ζ ) is a reduced-form sunspot

shock.9 The indeterminacy solution (9) displays three characteristics. First, the equilibrium

dynamics are driven not only by the fundamental shocks εt but also by the sunspot shock

ζt. Second, the solution is not unique because of the presence of the arbitrary matrix M̃.

Third, the coefficient matrix ΦI
1(θ) in the solution induces more persistent dynamics than its

counterpart ΦD
1 (θ) in the determinacy solution presented below, because fewer autoregressive

roots (i.e., eigenvalues) in the matrix ΦI
1(θ) are being suppressed to zero.10

In the case of determinacy, the solution form is reduced to

st = ΦD
1 (θ) st−1 + ΦD

ε (θ) εt, (10)

where the coefficient matrices ΦD
1 (θ) and ΦD

ε (θ) depend only on the model parameters θ.

Thus, the solution is uniquely determined and driven by only the fundamental shocks εt.

Under indeterminacy, the matrix M̃ must be determined to specify the law of motion

of the endogenous variables st. Following Lubik and Schorfheide (2004), we estimate the

components of M̃ along with the other parameters in the model. The prior distribution for

M̃ is set so that it is centered around the matrix M∗(θ) given in a particular solution. That

is, M̃ is replaced with M∗(θ) +M, and the components of M are estimated with prior mean

zero. As proposed by Lubik and Schorfheide (2004), the matrix M∗(θ) is selected so that

the contemporaneous impulse responses of endogenous variables to fundamental shocks (i.e.,

∂st/∂εt) are continuous at the boundary between the determinacy and indeterminacy regions

of the model parameter space, which is called a “continuity solution.” More specifically, for

each set of θ, the procedure searches for a vector θ∗ that lies on the boundary of the determi-

nacy region, and selects M∗(θ) that minimizes the discrepancy between ∂st/∂εt(θ,M
∗(θ)),

and ∂st/∂εt(θ
∗) using a least-squares criterion. In searching for θ∗, the procedure finds θ∗

numerically by perturbing the risk-premium parameter φs in the modified UIP condition (2),

9Instead of the term ΦI
ζ(θ) ζt in the indeterminacy solution (9), Lubik and Schorfheide (2003) originally

consider ΦI
ζ(θ,Mζ) ζt, where Mζ is an arbitrary matrix and ζt is a vector of sunspot shocks. For identifica-

tion, however, Lubik and Schorfheide (2004) impose normalization on Mζ with the dimension of the sunspot
shock vector being unity. Such a normalized shock is referred to as a “reduced-form sunspot shock” in that
it contains beliefs associated with all the expectational variables.

10For details, see Lubik and Schorfheide (2003, 2004).

19



which is crucial for determinacy or indeterminacy, given the other parameters in θ.11

4.2 Bayesian inference

To conduct Bayesian inference over both the determinacy and indeterminacy regions of the

model parameter space, we construct the likelihood function for a sample of observations

YT = [Y1, ...,YT ]′ as

p(YT |θ,M) = 1{θ ∈ ΘD} pD(YT |θ) + 1{θ ∈ ΘI} pI(YT |θ,M),

where ΘD and ΘI are the determinacy and indeterminacy regions of the model parameter

space; 1{θ ∈ Θi}, i ∈ {D, I} is the indicator function that is equal to one if θ ∈ Θi and zero

otherwise; and pD(YT |θ) and pI(YT |θ,M) are the likelihood functions of the state-space

models that consist of observation equations and either the determinacy solution (10) or the

indeterminacy solution (9). Then, by Bayes’ theorem, updating a prior distribution p(θ,M)

with the sample observations YT leads to the posterior distribution

p(θ,M|YT ) =
p(YT |θ,M)p(θ,M)

p(YT )
=

p(YT |θ,M)p(θ,M)∫
p(YT |θ,M)p(θ,M)dθdM

.

To approximate the posterior distribution, we adopt the generic SMC algorithm with

likelihood tempering described in Herbst and Schorfheide (2014, 2015). The details of the

algorithm are described in Appendix E. Based on particles from the final importance sam-

pling in the algorithm, we make inferences on parameters and approximate the marginal

data densities.

4.3 Data and prior distributions

The data used in the model estimation are seven quarterly time series on ∆ log Yt, log πt,

log it,∆ logSt, ŷ
∗
t , π̂

∗
t , and î∗t . The first four series are constructed from Canadian data: per

11In estimating a closed-economy New Keynesian model with nonzero trend inflation under both deter-
minacy and indeterminacy, Hirose et al. (2020) employ a similar procedure, which finds θ∗ by perturbing a
monetary policy reaction parameter on inflation. In this paper, the prior distribution for this parameter is
truncated so that it does not cause indeterminacy (see Section 4.3), and hence the risk-premium parameter
φs is the primary source of indeterminacy.
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capita real GDP, GDP deflator, the Bank of Canada’s policy rate (overnight rate), and the

Canadian to US dollar exchange rate. The other series are proxied by the US data. In the

model, foreign variables are treated as exogenous shocks that follow AR(1) processes. To

identify these exogenous processes directly without considering the differences in trends and

the steady states between Canada and the US, the data on ŷ∗t , π̂
∗
t , and î∗t are constructed by

detrending per capita real GDP using the Hodrick-Prescott (HP) filter and demeaning the

GDP deflator inflation rate and the federal funds rate. Thus, the observation equations that

relate the data to the corresponding variables in the model are given by



100∆ log Yt

100 log πt

100 log it

100∆ logSt

ŷ∗t ,

π̂∗t

î∗t


=



γ

π

i

π − π∗

0

0

0


+



ŷt − ŷt−1
π̂t

ît

ŝt

ŷ∗t

π̂∗t

î∗t


,

where γ := 100(γ − 1), π := 100(π − 1), i := 100(i− 1), and π∗ := 100(π∗ − 1). The sample

period is from 1984:Q1 to 2019:Q4, so that we exclude the Great Inflation period and the

COVID-19 pandemic period from the sample.

To avoid any identification issues, we fix two parameters in the model. The steady-state

ratio of net foreign assets to GDP is fixed at a∗/y = −1.2, which is calculated from the

steady-state relationship on the balance of payments identity and the sample average of net

exports in Canada. The elasticity of substitution among differentiated goods is fixed at

ε = 8, following Justiniano and Preston (2010). We assume π∗ = π and estimate π as a

parameter.12

All other parameters in the model are estimated.13 Their prior distributions are presented

in Table 1.

The novelty of this study is that we allow one of the risk premium parameters φs to

12This assumption is supported by the data: in our sample period, the quarterly inflation rates in Canada
and the US are 0.557% and 0.543%, respectively.

13As for the subjective discount factor β, the steady-state condition β = πγ/i is used in estimation.
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Table 1: Prior distributions of parameters

Parameter Distribution Mean S.D.
φs Gamma 0.500 0.500
φa Inverse gamma 0.010 2.000
b Beta 0.500 0.100
η Gamma 1.000 0.300
φ Gamma 40.00 10.00
ω Beta 0.500 0.100
λ Beta 0.710 0.020
ρ Beta 0.600 0.200
απ Gamma 1.800 0.300
αy Gamma 0.300 0.200
αs Gamma 0.300 0.200
γ Normal 0.290 0.050
π Normal 0.557 0.050
i Gamma 1.194 0.050
ρψ Beta 0.500 0.200
ρz Beta 0.500 0.200
ρµ Beta 0.500 0.200
ρy∗ Beta 0.500 0.200
ρπ∗ Beta 0.500 0.200
ρi∗ Beta 0.500 0.200
σψ Inverse gamma 0.500 4.000
σz Inverse gamma 0.500 4.000
σµ Inverse gamma 0.500 4.000
σu Inverse gamma 0.500 4.000
σy∗ Inverse gamma 0.500 4.000
σπ∗ Inverse gamma 0.500 4.000
σi∗ Inverse gamma 0.500 4.000
σζ Inverse gamma 0.500 4.000
Mψ Normal 0.000 1.000
Mz Normal 0.000 1.000
Mµ Normal 0.000 1.000
Mu Normal 0.000 1.000
My∗ Normal 0.000 1.000
Mπ∗ Normal 0.000 1.000
Mi∗ Normal 0.000 1.000

Notes: The prior probability of equilibrium determinacy is 0.921. Inverse gamma distributions are of the

form p(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

, where ν and s are respectively set at the values of Mean and S.D. in the

table.
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exceed one so that the modified UIP condition exhibits a negative relationship between the

expected exchange rate depreciation and the interest rate differential. Thus, we impose a

gamma distribution with mean 0.5 and standard deviation 0.5, while Adolfson et al. (2008)

use a beta distribution with mean 0.5 and standard deviation 0.15. Note that our prior

sets its mean and standard deviation at the same value and that the prior density takes the

largest value at φs = 0, which corresponds to the standard UIP equation as shown in (3).

Hence, our prior strongly favors the conventional parameter values for φs, which is less than

one, so that the equilibrium is determinate.14 For another risk premium parameter φa, we

use the same prior as Adolfson et al. (2008).

The prior mean for price adjustment cost is set at φ = 40 so that the slope of the Phillips

curve is 0.1 when ε = 8 and ω = 0.5. The priors for the other structural parameters on

the household, firms, and central bank follow Justiniano and Preston (2010). We impose a

gamma prior on the degree of monetary policy response to inflation απ, but it is truncated

at one so that this parameter itself cannot be the source of indeterminacy.

The prior means for the steady-state (quarterly) rates of GDP growth, inflation, and

nominal interest are set at the respective averages of the data used in the estimation.

Regarding the shock parameters, the priors for AR(1) shock persistence parameters ρx,

x ∈ {z, µ, ψ, y∗, π∗, i∗} are the same as those in Smets and Wouters (2007). For the shock

standard deviations σx, x ∈ {z, µ, u, ψ, y∗, π∗, i∗, ζ}, we set ν = 0.5 and s = 4 in the inverse

gamma distribution of the form p(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

For the components Mx, x ∈ {z, µ, u, ψ, y∗, π∗, i∗} of the arbitrary matrix M in the inde-

terminacy solution, we use the same priors as those in Lubik and Schorfheide (2004), i.e.,

the normal distributions with mean zero and standard deviation one.

5 Estimation Results

In this section, we begin by presenting the parameter estimates in our baseline model and

compare them with those obtained by estimating the same model only in the determinacy

region of its parameter space. Next, we analyze how the dynamic properties of the model can

differ between the two cases of determinacy and indeterminacy by comparing the impulse

14Indeed, the prior distributions presented here lead to the prior probability of determinacy of 0.921.
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response functions. Furthermore, we conduct UIP regressions using simulated data and

examine whether our model can replicate negative a relationship between expected exchange

rate depreciation and interest rate differentials. Lastly, we conduct variance decompositions

to investigate the source of macroeconomic fluctuations in the estimated model, in particular,

exchange rate fluctuations.

5.1 Parameter estimates

Table 2 compares the posterior estimates of parameters in the baseline model with those

in the model estimated only in the determinacy region of the parameter space. This table

presents four key features.

First, in the baseline model, the posterior mean estimate of φs (risk-premium parameter

associated with exchange rate depreciation in the modified UIP condition) is 3.678, which

gives the negative slope coefficient 1/(1 − φs) = −0.373 in the modified UIP equation (2).

Thus, our modified UIP condition exhibits a negative relationship between the exchange

rate depreciation and interest rate differentials. Because the estimate of φs is far above

one, the equilibrium is indeterminate. Indeed, the posterior probability of determinacy

P{θ ∈ ΘD|YT} shown in the last row of the table is zero, indicating that all the posterior

draws of the model parameters lie in the indeterminacy region. In contrast, when the model

is estimated only under determinacy, φs is estimated to be very small.

Second, the second last row shows that the log marginal data density log p(YT ) is much

larger in the baseline estimation than the case in which we restrict the parameter space to

its determinacy region. This huge difference in the marginal data density indicates that the

data strongly favor indeterminacy over determinacy.

Third, the UIP shock’s persistence parameter ρψ indicates that the shock follows almost

a unit-root process in both the baseline and determinacy cases. This result reflects the

empirical properties of exchange rate dynamics such as its random-walk behavior and very

persistent deviation from the one-to-one relationship between the exchange rate deprecia-

tion and interest rate differentials in the modified UIP condition. A crucial finding here is

that such persistent deviation cannot be resolved even though we allow for a negative UIP

relationship between the two as observed in the data.

Last, regarding the indeterminacy-related parameters, some of the components (Mψ,
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Table 2: Posterior estimates of parameters

Baseline Determinacy
Parameter Mean 90% interval Mean 90% interval
φs 3.678 [3.183, 4.173] 0.093 [0.000, 0.211]
φa 0.006 [0.004, 0.008] 0.004 [0.003, 0.006]
b 0.360 [0.300, 0.430] 0.194 [0.111, 0.268]
η 1.223 [0.827, 1.617] 1.863 [1.151, 2.575]
φ 28.808 [18.361, 39.546] 32.278 [15.887, 49.508]
ω 0.171 [0.084, 0.252] 0.389 [0.244, 0.536]
λ 0.799 [0.778, 0.820] 0.863 [0.847, 0.882]
ρ 0.871 [0.844, 0.894] 0.808 [0.765, 0.851]
απ 1.793 [1.514, 2.065] 2.196 [1.906, 2.506]
αy 0.783 [0.462, 1.130] 0.106 [0.007, 0.193]
αs 0.237 [0.145, 0.329] 0.266 [0.178, 0.363]
γ 0.282 [0.239, 0.322] 0.187 [0.127, 0.251]
π 0.540 [0.474, 0.610] 0.513 [0.447, 0.576]
i 1.194 [1.118, 1.269] 1.200 [1.122, 1.278]
ρψ 0.993 [0.988, 1.000] 0.991 [0.985, 0.998]
ρz 0.506 [0.212, 0.981] 0.993 [0.986, 0.999]
ρµ 0.944 [0.891, 0.998] 0.516 [0.409, 0.618]
ρy∗ 0.840 [0.771, 0.904] 0.869 [0.806, 0.937]
ρπ∗ 0.621 [0.520, 0.729] 0.614 [0.495, 0.745]
ρi∗ 0.951 [0.932, 0.971] 0.922 [0.903, 0.942]
σψ 0.747 [0.510, 0.994] 0.171 [0.145, 0.196]
σz 0.539 [0.295, 0.774] 1.634 [1.365, 1.883]
σµ 0.710 [0.528, 0.864] 1.492 [1.110, 1.867]
σu 0.242 [0.212, 0.275] 0.332 [0.268, 0.394]
σy∗ 0.489 [0.442, 0.535] 0.507 [0.454, 0.561]
σπ∗ 0.205 [0.185, 0.226] 0.210 [0.187, 0.232]
σi∗ 0.151 [0.134, 0.166] 0.156 [0.140, 0.172]
σζ 1.841 [1.038, 2.532] - -
Mψ -1.595 [-2.536, -0.713] - -
Mz -1.238 [-2.600, 0.099] - -
Mµ 0.419 [-0.382, 1.277] - -
Mu 2.203 [1.019, 3.260] - -
My∗ 0.601 [-0.012, 1.225] - -
Mπ∗ 0.258 [-0.800, 1.324] - -
Mi∗ 0.447 [-0.848, 1.795] - -
log p(YT ) -781.985 -1032.170
P{θ ∈ ΘD|YT} 0.000 1.000

Notes: This table reports the posterior mean and 90 percent highest posterior density intervals based on

10, 000 particles from the final importance sampling in the SMC algorithm. In the table, log p(YT ) represents

the SMC-based approximation of log marginal data density and P{θ ∈ ΘD|YT } denotes the posterior

probability of equilibrium determinacy.
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Mz, and Mu) in the arbitrary matrix M are substantially different from zero. This finding

suggests the importance of considering multiplicity of the equilibrium representation under

indeterminacy. As shown in the following subsection, these estimates considerably alter the

impulse response functions under indeterminacy.

5.2 Impulse response functions

Figure 2 depicts the impulse responses of output growth, inflation, interest rate, and ex-

change rate depreciation in terms of percentage deviations from steady-state values, to a

one-standard-deviation shock to the modified UIP condition, technology, marginal cost, mon-

etary policy, US output, US inflation, US interest rate, and sunspot, given the posterior mean

estimates of the parameters in the baseline model allowing for indeterminacy and its coun-

terpart estimated only in the determinacy region of the parameter space. To examine the

effects of the estimated arbitrary matrix M on the propagation of shocks, the figure also

presents the responses in the baseline model with M = 0, given the other parameters fixed

at the same values as in the baseline model.

For all shocks, most of the impulse responses differ remarkably between the baseline (solid

lines) and determinacy (dashed lines) cases, although our solution under indeterminacy is

centered at the continuity solution as addressed in Section 4.1. In particular, the exchange

rate responds in the opposite direction in response to the shocks in technology, marginal

cost, and US output. These differences are attributed to the estimated components in the

arbitrary matrix M, which cause the indeterminacy solution to deviate from the continuity

solution. If we do not allow for such deviation, responses in the opposite direction no longer

occur, as shown by the dotted lines (Baseline, M = 0).

In comparison with the empirical findings in the literature on the Canadian economy

(Grilli and Roubini, 1996; Kim and Roubini, 2000), the panel (d) in Figure 2 shows that

the exchange rate reacts excessively to the monetary policy shock in both the determinate

model (dashed line) and the baseline model with M = 0 (dotted line), approximately four

to five times more strongly (in percentage points) than in the baseline model (solid line). In

contrast, the baseline model exhibit a mild response, owing to the estimated components in

the arbitrary matrix M, which works as an equilibrium selection device under indeterminacy.

As shown in Figure 3, the sunspot shock affects equilibrium dynamics only in the base-
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Figure 2: Impulse response functions

(a) UIP shock

(b) Technology shock

(c) Marginal cost shock

(d) Monetary policy shock
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Figure 2: Impulse response functions (continued)

(e) US output shock

(f) US inflation shock

(g) US interest rate shock

Notes: This figure shows the impulse responses of output growth, inflation, interest rate, and exchange rate

depreciation in terms of percentage deviations from steady-state values to a one-standard-deviation shock

to the modified UIP condition, technology, marginal cost, monetary policy, US output, US inflation, and

US interest rate, given the posterior mean estimates of parameters in the baseline model, in its counterpart

estimated only under determinacy, and in the baseline model with M = 0.
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Figure 3: Impulse responses to sunspot shock

Notes: This figure shows the impulse responses of output growth, inflation, interest rate, and exchange rate

depreciation in terms of percentage deviations from steady-state values to a one-standard-deviation sunspot

shock, given the posterior mean estimates of parameters in the baseline model.

line model, which exhibits equilibrium indeterminacy. Upon impact, the identified sunspot

shock has positive effects on all observables. The sunspot shock in the present model is

constructed as a reduced-form sunspot shock following Lubik and Schorfheide (2004) and

hence has positive effects on all expectational variables, irrelevant to fundamentals. Such

nonfundamental beliefs are self-fulfilling under indeterminacy and have expansionary effects

on their realizations. The rise in the interest rate, however, dampens these effects in the

subsequent periods.

5.3 UIP regressions using simulated data

To examine whether our model can replicate negative a relationship between expected ex-

change rate depreciation and interest rate differentials, we conduct UIP regressions using

simulated data. Figure 4 depicts the scatter plots and regression lines of exchange rate de-

preciation ŝt+1 and the interest rate differential ît − î∗t simulated by the baseline model and

its counterpart estimated only under determinacy.15 This figure illustrates that the baseline

model generates a negative correlation between the two unconditionally in the sense that the

simulated data are driven by all shocks, whereas its determinacy counterpart does not. Thus,

our baseline model can replicate a negative UIP coefficient as an unconditional phenomenon,

as reported in numerous papers for a variety of international data.

15Given the posterior mean estimates of parameters, each model is simulated for 250 periods, and the first
50 observations are discarded.
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Figure 4: UIP regressions based on simulated data driven by all shocks

Notes: This figure shows the UIP regressions based on the simulated data of the exchange rate depreciation
and the nominal interest rate differentials driven by all shocks in the baseline model and in its counterpart
estimated only under determinacy.

In addition to the unconditional failure of the UIP relationship, the literature empiri-

cally demonstrates its failure in a conditional sense, i.e., to a specific fundamental shock.

In particular, Eichenbaum and Evans (1995) and Scholl and Uhlig (2008) show that the re-

sponses of the exchange and interest rates to a monetary policy shock are inconsistent with

the standard UIP condition. To investigate this point, Figure 5 displays the UIP regressions

using simulated data driven by each single shock in each model. The results based on the

baseline model and its determinacy counterpart are shown in blue and red, respectively.

The upper right panel in the figure demonstrates that the monetary policy shock generates

a negative UIP coefficient in the baseline model as is consistent with the findings in Eichen-

baum and Evans (1995) and Scholl and Uhlig (2008) but not in its determinacy counterpart.

Moreover, all the other shocks replicate negative correlations in the baseline model. This is

obviously owing to the negative slope coefficient in the modified UIP equation. In contrast,

only the UIP shock can generate a negative correlation in the model estimated only under

determinacy, where the slope coefficient is positive. Therefore, the negative slope coefficient
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Figure 5: UIP regressions based on simulated data driven by each shock

Notes: This figure shows the UIP regressions based on the simulated data of the exchange rate depreciation
and the nominal interest rate differentials driven by each shock indicated at the top of each panel in the
baseline model and in its counterpart estimated only under determinacy.

in the modified UIP condition is an essential feature for replicating the UIP puzzle both

unconditionally and conditionally.

5.4 Variance decompositions

To assess the relative contribution of each shock to aggregate fluctuations, we conduct vari-

ance decompositions. In particular, we focus primarily on the sources of fluctuations in the

nominal exchange rate. The literature has documented that estimations of open-economy

DSGE models typically find that fluctuations in nominal exchange rates are little related to

macroeconomic fundamentals and are mostly attributed to a direct shock to the exchange

rate such as the UIP shock as specified in the standard UIP condition (3). Such an es-

tablished view might be overturned if the model incorporates the modified UIP equation

that replicates empirical regularities between exchange rate depreciation and interest rate

differentials and allows for sunspot fluctuations, as considered in this paper.
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Figure 6: Forecast error variance decompositions in the baseline model

Notes: This figure shows the forecast error variance decompositions of exchange rate depreciation, output

growth, inflation, and interest rate at various horizons, given the posterior mean estimates of the parameters

in the baseline model. ‘US’ denotes the sum of the contributions of shocks to US output, inflation, and

interest rate.

Figure 6 shows the forecast error variance decompositions of exchange rate depreciation,

output growth, inflation, and the interest rate at various forecast horizons: 1, 4, 8, 16, and 32

quarters, and infinity, given the posterior mean estimates of the parameters in the baseline

model. For comparison, Figure 7 presents the same decompositions based on the model

estimated only in the determinacy region of the parameter space.

The upper-left panels in the two figures show that the UIP shock is the main driving

force of exchange rate fluctuations in both the baseline model and its counterpart estimated

only under determinacy. Thus, the conventional wisdom in the literature is not overturned.

However, a novel finding here is that, in the baseline model, the sunspot shock plays a
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Figure 7: Forecast error variance decompositions in the model under determinacy

Notes: This figure shows the forecast error variance decompositions of exchange rate depreciation, output

growth, inflation, and interest rate at various horizons, given the posterior mean estimates of the parameters

in the model estimated only under determinacy. ‘US’ denotes the sum of the contributions of shocks to US

output, inflation, and interest rate.

secondary role in explaining exchange rate dynamics. The contributions of 16–18% for all

the forecast horizons are considered to be substantial. Moreover, the sunspot shock plays

nonnegligible roles for fluctuations in output growth, inflation, and nominal interest rate. In

particular, its contribution to the interest rate is remarkable for short horizons of up to 16

quarters.

Why is the UIP shock still the primary source of exchange rate variability even though we

allow for a negative slope coefficient in the modified UIP equation and sunspot fluctuations?

This is because the UIP shock works as a direct shock to the exchange rate and can directly
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track exchange rate fluctuations. On the other hand, the sunspot shock can affect the

exchange rate dynamics through non-fundamental revisions in expectations, so that its pass-

through to the exchange rate is limited. Moreover, as addressed in Section 5.1 (Table 2), the

estimated persistence parameter ρψ in the UIP shock process is very close to one (0.993),

indicating almost a unit-root process. In addition, the estimated standard deviation of the

UIP shock σψ is much larger (0.747) in the baseline model than in its counterpart estimated

only under determinacy (0.171). Both of these estimates contribute to enhancing the effect of

the UIP shock. However, the sunspot shock has no persistency, i.e., i.i.d. by its construction.

The contribution of such an i.i.d. shock is, ceteris paribus, smaller than that of a persistent

shock.

The UIP shock accounts for not only exchange rate fluctuations but also the other aggre-

gate fluctuations to a substantial extent under both determinacy and indeterminacy. Under

determinacy (Figure 7), we find notable contributions of the UIP shock to inflation and the

nominal interest rate. This finding is consistent with the argument in Itskhoki and Mukhin

(2021), who offer microfoundations for a direct shock to the UIP condition and demonstrate

the importance of the shock in explaining aggregate variables including exchange rates. Our

results under indeterminacy enhance their argument further. Under indeterminacy (Figure

6), the contributions of the UIP shock to inflation and the nominal interest rate are much

larger than under determinacy, and its substantial contribution to output growth emerges

for horizons over four quarters.

6 Robustness Analysis

In this section, we investigate whether the results obtained from our baseline estimation are

robust to alternative solution methods under indeterminacy and subsamples before and after

the global financial crisis.
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6.1 Alternative solutions under indeterminacy

6.1.1 Belief-shock specification

In the baseline estimation, we follow the approach of Lubik and Schorfheide (2004) to derive

the full set of solutions for the linear rational expectations system under indeterminacy, in

which we construct a reduced-form sunspot shock in that it contains beliefs associated with

all the expectational variables. Lubik and Schorfheide (2003) propose another approach to

constructing a sunspot shock called “a belief shock.” In this approach, sunspots trigger a

belief shock ζbt that leads to a revision of the forecast of a specific expectational variable,

say, Etxt+1. Then, the definition of the rational expectations forecast error gives

xt = (Et−1xt + ζbt ) + η̃xt ,

where Et−1xt + ζbt is the revised forecast and η̃xt is the error of this revised forecast. Lubik

and Schorfheide (2003) show that such a belief shock affects equilibrium dynamics under

indeterminacy and works like a sunspot shock. In what follows, we replace the reduced-form

sunspot shock in the baseline estimation with a belief shock to the forecast of exchange rate

depreciation:

ŝt = (Et−1ŝt + ζbt ) + η̃st ,

and estimate the model with this belief-shock specification. We assume ζbt ∼ i.i.d.N(0, σ2
ζ )

and set the same inverse gamma prior for its standard deviation σζ as in the baseline esti-

mation.

The left part of Table 3 presents the estimation results of the model with the belief-shock

specification. No notable differences are found in the parameter estimates, including the

estimate of φs (risk-premium parameter associated with exchange rate depreciation in the

modified UIP condition), compared with the baseline estimation results. Thus, the estimated

model can account for the UIP puzzle. In terms of the model fit, the marginal data density

(−786.4) slightly deteriorates, compared with the baseline estimation (−782.0, see Table 2).

Therefore, the belief-shock specification does not improve the empirical performance of the

model.

Figure 8 shows the variance decompositions based on the posterior mean estimates of pa-
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Table 3: Posterior estimates of parameters with alternative solutions under indeterminacy

Belief shock M = 0
Parameter Mean 90% interval Mean 90% interval
φs 3.770 [3.095, 4.366] 4.878 [4.094, 5.693]
φa 0.009 [0.005, 0.014] 0.006 [0.004, 0.008]
b 0.427 [0.364, 0.491] 0.356 [0.299, 0.415]
η 1.412 [0.908, 1.936] 1.588 [1.004, 2.091]
φ 30.438 [18.915, 41.073] 30.242 [19.136, 40.221]
ω 0.159 [0.084, 0.232] 0.150 [0.077, 0.219]
λ 0.795 [0.772, 0.819] 0.791 [0.768, 0.813]
ρ 0.908 [0.889, 0.926] 0.865 [0.844, 0.888]
απ 2.367 [1.968, 2.775] 1.714 [1.478, 1.925]
αy 0.662 [0.197, 1.075] 0.852 [0.522, 1.177]
αs 0.177 [0.060, 0.290] 0.266 [0.167, 0.359]
γ 0.264 [0.217, 0.310] 0.281 [0.233, 0.324]
π 0.570 [0.504, 0.635] 0.544 [0.475, 0.613]
i 1.178 [1.100, 1.255] 1.179 [1.105, 1.257]
ρψ 0.990 [0.982, 0.998] 0.995 [0.991, 0.999]
ρz 0.353 [0.053, 0.607] 0.516 [0.179, 0.829]
ρµ 0.953 [0.913, 0.995] 0.942 [0.902, 0.984]
ρy∗ 0.839 [0.768, 0.912] 0.867 [0.814, 0.927]
ρπ∗ 0.575 [0.461, 0.691] 0.596 [0.488, 0.696]
ρi∗ 0.957 [0.935, 0.977] 0.952 [0.930, 0.972]
σψ 1.147 [0.897, 1.430] 0.867 [0.601, 1.158]
σz 0.618 [0.294, 0.942] 0.641 [0.282, 1.009]
σµ 0.711 [0.521, 0.912] 0.740 [0.536, 0.949]
σu 0.224 [0.194, 0.252] 0.248 [0.215, 0.278]
σy∗ 0.492 [0.447, 0.542] 0.488 [0.442, 0.533]
σπ∗ 0.208 [0.187, 0.229] 0.206 [0.184, 0.226]
σi∗ 0.147 [0.131, 0.160] 0.149 [0.133, 0.163]
σζ 1.814 [1.470, 2.219] 2.000 [1.554, 2.401]
Mψ 2.552 [1.961, 3.193] - -
Mz -0.937 [-2.194, 0.457] - -
Mµ 0.754 [0.149, 1.354] - -
Mu 1.394 [0.239, 2.677] - -
My∗ 0.478 [-0.253, 1.106] - -
Mπ∗ 0.889 [-0.277, 2.033] - -
Mi∗ 0.724 [-0.616, 2.097] - -
log p(YT ) -786.411 -785.832
P{θ ∈ ΘD|YT} 0.000 0.000

Notes: This table reports the posterior mean and 90 percent highest posterior density intervals based on

10, 000 particles from the final importance sampling in the SMC algorithm. In the table, log p(YT ) represents

the SMC-based approximation of log marginal data density and P{θ ∈ ΘD|YT } denotes the posterior

probability of equilibrium determinacy.
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Figure 8: Forecast error variance decompositions in the model with a belief shock

Notes: This figure shows the forecast error variance decompositions of exchange rate depreciation, output

growth, inflation, and interest rate at various horizons, given the posterior mean estimates of the parameters

in the model with a belief shock. ‘US’ denotes the sum of the contributions of shocks to US output, inflation,

and interest rate.

rameters in the model under the belief-shock specification. The contribution of the sunspot

shock to exchange rate fluctuations increases because we assume that the belief shock di-

rectly affects the revision of the forecast of the exchange rate. However, the UIP shock still

plays a dominant role in explaining exchange rate volatility, and its contributions are also

substantial for the other observables, because the estimated persistence of the UIP shock ρψ

and its standard deviation σψ remain very close to one (0.990) and large (1.147), respectively.

Therefore, the results are very similar to those in the baseline estimation.
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6.1.2 M = 0

An intrinsic feature of the full set of linear rational expectations solution given by (9) is

that the arbitrary matrix M appears in the solution under indeterminacy, and M consists

of purely free parameters. One might argue that the introduction of such free parameters

improved the fit of the model dramatically and that the remarkable increase in the marginal

data density in the baseline model, reported in Section 5.1, was attributed to these free pa-

rameters. To investigate this point, we estimate the baseline model with all the components

of M fixed at zero.

The last two columns of Table 3 show the estimation results when M = 0. The marginal

data density (−785.8) is lower than that in the baseline estimation (−782.0, see Table 2),

but the difference is very marginal. Thus, the existence of the free parameters in M plays

a minor role in the improved fit of the model. Because the parameter estimates are in line

with those in the baseline estimation, the modified UIP equation (2) still exhibits a negative

relationship between the expected exchange rate depreciation and interest rate differentials.

Figure 9 shows the variance decompositions based on the posterior mean estimates of

parameters in the model with M = 0. This figure is very similar to the one obtained from

the baseline estimation (Figure 6). Although estimating the arbitrary matrix M alters the

initial impact of the fundamental shocks as shown in Section 5.2 (Figure 2), the result here

indicates that this effect on the variance decompositions is quite limited.

6.2 Subsample analysis

Bussière et al. (2022) argue that, in contrast to earlier findings, the coefficient on the interest

rate differential in the UIP regression has become large and positive for several currencies

including the Canadian dollar during and in the decade after the global financial crisis,

which they term “the New Fama Puzzle.” To investigate whether their argument based

on a single-equation estimation approach using monthly data carries over to our system

estimation approach allowing for indeterminacy using quarterly data, we estimate the model

for two subsamples: before and after the global financial crisis. More specifically, we split

the full sample used in the baseline estimation into 1984:Q1–2007:Q2 and 2007:Q3–2019:Q4
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Figure 9: Forecast error variance decompositions in the model with M = 0

Notes: This figure shows the forecast error variance decompositions of exchange rate depreciation, output

growth, inflation, and interest rate at various horizons, given the posterior mean estimates of the parameters

in the model with M = 0. ‘US’ denotes the sum of the contributions of shocks to US output, inflation, and

interest rate.

samples.16

Table 4 presents the parameter estimates for the two subsamples. The posterior estimates

of φs (risk-premium parameter associated with exchange rate depreciation in the modified

UIP condition) are very close to each other between the two subsamples and are both much

larger than one. Thus, the slope coefficient in the modified UIP equation (2) remains negative

for both subsamples, leading the model to exhibit equilibrium indeterminacy. Consequently,

16Bussière et al. (2022) separate the monthly data into three subsamples: 1999:M01–2006:M04, 2006:M05–
2018:M04, and 2018:M05–2021:M09. If we considered the same subsamples for our quarterly data, the first
and third subsamples would be too short to estimate the model.
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Table 4: Posterior estimates of parameters in two subsamples

Pre-crisis period Post-crisis period
Parameter Mean 90% interval Mean 90% interval
φs 4.048 [3.357, 4.727] 4.281 [3.457, 5.048]
φa 0.007 [0.004, 0.010] 0.005 [0.003, 0.007]
b 0.317 [0.249, 0.382] 0.332 [0.239, 0.432]
η 1.324 [0.856, 1.808] 1.240 [0.757, 1.696]
φ 32.288 [21.598, 42.014] 31.481 [16.869, 44.027]
ω 0.246 [0.138, 0.349] 0.280 [0.158, 0.401]
λ 0.765 [0.742, 0.787] 0.781 [0.758, 0.804]
ρ 0.830 [0.797, 0.862] 0.914 [0.894, 0.937]
απ 1.938 [1.668, 2.230] 1.732 [1.487, 1.983]
αy 0.713 [0.301, 1.054] 0.592 [0.249, 0.940]
αs 0.245 [0.129, 0.361] 0.280 [0.152, 0.408]
γ 0.345 [0.296, 0.404] 0.089 [0.036, 0.142]
π 0.612 [0.548, 0.676] 0.380 [0.313, 0.447]
i 1.631 [1.558, 1.704] 0.353 [0.293, 0.420]
ρψ 0.990 [0.981, 0.999] 0.992 [0.985, 1.000]
ρz 0.514 [0.151, 0.869] 0.543 [0.242, 0.847]
ρµ 0.948 [0.901, 0.996] 0.689 [0.520, 0.885]
ρy∗ 0.847 [0.777, 0.919] 0.773 [0.663, 0.875]
ρπ∗ 0.659 [0.541, 0.785] 0.326 [0.144, 0.519]
ρi∗ 0.900 [0.861, 0.937] 0.895 [0.827, 0.973]
σψ 0.702 [0.437, 0.953] 1.147 [0.637, 1.747]
σz 0.489 [0.298, 0.706] 0.993 [0.344, 1.595]
σµ 0.563 [0.439, 0.681] 0.852 [0.645, 1.033]
σu 0.286 [0.239, 0.334] 0.197 [0.159, 0.234]
σy∗ 0.471 [0.415, 0.524] 0.533 [0.449, 0.615]
σπ∗ 0.186 [0.165, 0.209] 0.261 [0.216, 0.301]
σi∗ 0.176 [0.153, 0.195] 0.177 [0.144, 0.209]
σζ 1.790 [0.992, 2.603] 1.180 [0.484, 1.762]
Mψ -0.744 [-1.750, 0.221] -1.946 [-2.893, -1.041]
Mz -0.823 [-2.586, 0.891] -0.641 [-1.771, 0.575]
Mµ 0.522 [-0.416, 1.395] -0.129 [-1.029, 0.692]
Mu 1.377 [0.213, 2.501] 0.095 [-1.254, 1.375]
My∗ 0.732 [0.066, 1.415] 0.430 [-0.351, 1.207]
Mπ∗ 1.418 [0.215, 2.671] 0.144 [-0.964, 1.365]
Mi∗ 0.899 [-0.527, 2.419] -0.231 [-1.568, 1.328]
log p(YT ) -472.811 -322.782
P{θ ∈ ΘD|YT} 0.000 0.000

Notes: This table reports the posterior mean and 90 percent highest posterior density intervals based on

10, 000 particles from the final importance sampling in the SMC algorithm. In the table, log p(YT ) represents

the SMC-based approximation of log marginal data density and P{θ ∈ ΘD|YT } denotes the posterior

probability of equilibrium determinacy.
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Figure 10: Forecast error variance decompositions in the pre-crisis period.

Notes: This figure shows the forecast error variance decompositions of exchange rate depreciation, output

growth, inflation, and interest rate at various horizons, given the posterior mean estimates of the parameters

in the model for the pre-crisis period. ‘US’ denotes the sum of the contributions of shocks to US output,

inflation, and interest rate.

the posterior probabilities of determinacy P{θ ∈ ΘD|YT} shown in the last row are both

zero. Therefore, there is no evidence for the New Fama Puzzle from our system estimation

of the fully specified structural model for the Canadian economy.

While the other structural parameters on the household, firms, and central bank are not

substantially different, several shock-related parameters vary across the two subsamples. The

differences in the shock parameters produce different results in the variance decompositions

of the exchange rate, as shown in Figures 10 and 11. The contribution of the sunspot shock

to exchange rate fluctuations decreases from more than 20 percent to a few percent after the
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Figure 11: Forecast error variance decompositions in the post-crisis period.

Notes: This figure shows the forecast error variance decompositions of exchange rate depreciation, output

growth, inflation, and interest rate at various horizons, given the posterior mean estimates of parameters

in the model for the post-crisis period. ‘US’ denotes the sum of the contributions of shocks to US output,

inflation, and interest rate.

global financial crisis. However, the UIP shock is still the major source of the exchange rate

volatility, and the variance decompositions of the other observables are not much different

from those in the baseline estimation. Thus, our baseline results are robust to the subsample

estimations.

7 Concluding Remarks

Using data for Canada and the US, we estimated a small open-economy model with an

endogenous risk premium on the foreign bond holdings so that the UIP relationship can
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be characterized by the same sign as suggested by the UIP puzzle. Because the negative

UIP coefficient can lead to equilibrium indeterminacy, we estimate the model using Bayesian

methods allowing for both determinacy and indeterminacy of equilibrium.

According to the estimation results, the data strongly favor indeterminacy over deter-

minacy, and hence the modified UIP condition exhibits the observed negative correlation

between expected exchange rate depreciation and interest rate differentials. The propaga-

tion of shocks can be remarkably different between determinacy and indeterminacy, as a

specific equilibrium is selected from multiple equilibria under indeterminacy. Forecast error

variance decompositions based on the estimated model show that the UIP shock is the main

driving force of the exchange rate dynamics, whereas the sunspot shock plays a secondary

role.
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A Equilibrium Conditions
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πH,t =
PH,t
PH,t−1

.

B Steady-State Conditions

Let χ denote the ratio of net foreign assets over GDP in the steady state, i.e., χ := a∗/y.

Then, we can derive the following steady-state conditions analytically:
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The last equation implies that the parameters satisfy the following condition:

λ <
1

1 + 1−β
β
χ
.

As 0 < λ < 1 and 1−β
β
χ ≈ 0, it must be satisfied unless λ is very close to unity.

C Log-Linearized Equilibrium Conditions
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y

λ∗y∗
ŷt =

yH
λ∗y∗

ŷH,t + ŷ∗t − p̂H,t + êt,

â∗t =
λ∗y∗

a∗
ŷ∗t −

yF
a∗
ŷF,t +

λ∗y∗ − yF
a∗

êt +
1

β

[
(1− φaa∗)â∗t−1 + (1− φss)ŝt + î∗t−1 − π̂t + ψ̂t−1

]
,

ŷt = zt + ĥt,

ŝt = êt − êt−1 + π̂t − π̂∗t ,

π̂H,t = p̂H,t − p̂H,t−1 + π̂t,

where µ̃t = ε−1
φ(1+βω)

µt is a (reduced-form) marginal cost shock.
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D Preliminary Estimation Results

Table 5 presents the posterior estimates of parameters in the model with Adolfson et al.

(2008)’s specification of the endogenous risk premium on the foreign bond holdings and that

with the hybrid specification between Adolfson et al. (2008)’s and ours.
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Table 5: Posterior estimates of parameters under alternative specifications for risk premium

Adolfson et al. (2008) Hybrid
Parameter Mean 90% interval Mean 90% interval
φ1 - - 0.977 [0.959, 0.996]
φs 0.848 [0.759, 0.935] 3.782 [3.223, 4.393]
φa 0.005 [0.003, 0.007] 0.006 [0.004, 0.008]
b 0.673 [0.627, 0.718] 0.424 [0.367, 0.484]
η 0.328 [0.180, 0.478] 1.767 [1.235, 2.276]
φ 58.787 [44.097, 74.098] 38.967 [27.889, 50.046]
ω 0.458 [0.336, 0.589] 0.140 [0.066, 0.206]
λ 0.850 [0.833, 0.869] 0.800 [0.776, 0.823]
ρ 0.902 [0.884, 0.925] 0.886 [0.867, 0.908]
απ 2.608 [2.200, 3.003] 1.807 [1.534, 2.067]
αy 0.084 [0.014, 0.147] 0.440 [0.146, 0.713]
αs 0.088 [0.021, 0.146] 0.187 [0.088, 0.280]
γ 0.318 [0.246, 0.389] 0.262 [0.224, 0.299]
π 0.630 [0.564, 0.694] 0.554 [0.483, 0.615]
i 1.170 [1.092, 1.250] 1.212 [1.137, 1.294]
ρψ 0.857 [0.800, 0.921] 0.992 [0.985, 0.999]
ρz 0.998 [0.996, 1.000] 0.220 [0.050, 0.387]
ρµ 0.655 [0.573, 0.743] 0.939 [0.890, 0.987]
ρy∗ 0.873 [0.812, 0.932] 0.836 [0.774, 0.900]
ρπ∗ 0.595 [0.484, 0.704] 0.628 [0.526, 0.744]
ρi∗ 0.951 [0.929, 0.974] 0.954 [0.933, 0.975]
σψ 2.230 [1.742, 2.768] 1.017 [0.664, 1.329]
σz 3.214 [2.613, 3.834] 0.863 [0.462, 1.204]
σµ 0.615 [0.514, 0.710] 0.625 [0.513, 0.733]
σu 0.241 [0.209, 0.270] 0.223 [0.193, 0.251]
σy∗ 0.490 [0.441, 0.539] 0.482 [0.436, 0.527]
σπ∗ 0.203 [0.183, 0.223] 0.207 [0.187, 0.227]
σi∗ 0.151 [0.133, 0.168] 0.148 [0.131, 0.164]
σζ 0.599 [0.247, 0.905] 1.011 [0.365, 1.673]
Mψ -0.345 [-2.053, 1.431] -1.190 [-2.160, -0.250]
Mz -0.450 [-1.839, 1.066] 1.752 [1.156, 2.338]
Mµ -0.379 [-1.858, 0.918] 1.227 [0.511, 1.948]
Mu -0.370 [-1.824, 1.195] 1.473 [0.200, 2.725]
My∗ -0.215 [-1.842, 1.418] 0.572 [-0.052, 1.202]
Mπ∗ 0.627 [-0.843, 2.053] -0.403 [-1.480, 0.700]
Mi∗ -0.340 [-1.857, 1.273] -0.798 [-2.066, 0.608]
log p(YT ) -893.375 -872.922
P{θ ∈ ΘD|YT} 1.000 0.000

Notes: This table reports the posterior mean and 90 percent highest posterior density intervals based on

10, 000 particles from the final importance sampling in the SMC algorithm. In the table, log p(YT ) represents

the SMC-based approximation of log marginal data density and P{θ ∈ ΘD|YT } denotes the posterior

probability of equilibrium determinacy.
48



E Sequential Monte Carlo Algorithm

To approximate the posterior distribution of model parameters, we employ the generic SMC

algorithm with likelihood tempering described in Herbst and Schorfheide (2014, 2015). In

the algorithm, a sequence of tempered posteriors is defined as

$n(θ) =
[p(YT |θ,M)]τnp(θ,M)∫

[p(YT |θ,M)]τnp(θ,M)dθdM
, n = 0, ..., Nτ ,

where Nτ denotes the number of stages and is set at Nτ = 200. The tempering schedule

{τn}Nτn=0 is determined by τn = (n/Nτ )
µ, where µ is a parameter that controls the shape of the

tempering schedule and is set at µ = 2, following Herbst and Schorfheide (2014, 2015). The

SMC algorithm generates parameter draws {θ(i)n ,M
(i)
n } and associated importance weights

w
(i)
n , called particles, from the sequence of posteriors {$n}Nτn=1; that is, at each stage, $n(θ)

is represented by a swarm of particles {θ(i)n ,M
(i)
n , w

(i)
n }Ni=1, where N denotes the number

of particles. In the subsequent estimation, the algorithm uses N = 10, 000 particles. For

n = 0, ..., Nτ , the algorithm sequentially updates the swarm of particles {θ(i)n ,M
(i)
n , w

(i)
n }Ni=1

through importance sampling.17

Posterior inferences on model parameters are made based on the particles {θ(i)Nτ ,M
(i)
Nτ
, w

(i)
Nτ
}Ni=1

from the final importance sampling. The SMC-based approximation of the marginal data

density is given by

p(YT ) =
Nτ∏
n=1

(
1

N

N∑
i=1

w̃(i)
n w

(i)
n−1

)
,

where w̃
(i)
n is the incremental weight defined as w̃

(i)
n = [p(YT |θ(i)n−1,M

(i)
n−1)]

τn−τn−1 . The

posterior probability of equilibrium determinacy can be calculated as

P{θ ∈ ΘD|YT} =
1

N

N∑
i=1

1{θ(i)Nτ ∈ ΘD}.

Likewise, the prior probability of equilibrium determinacy can be computed using prior

draws.

17This process includes one step of a single-block random-walk Metropolis–Hastings algorithm.
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