Reassessing the Importance of Matching Frictions and Job Rationing in Explaining Unemployment

Jhih-Chian Wu

Department of Economics, National Chung Cheng University

April 5, 2023

Motivation

- Michaillat (2012): Job Rationing, instead of Matching frictions, is the main source of unemployment during recessions
 - Michaillat (2012) shows that unemployment will not exist as matching frictions disappear in the standard labor search-and-matching model
 - Michaillat (2012) introduces Wage Rigidity to generate Job Rationing
 - Normal Time: Unemployment 5.8%
 - Matching Frictions: $3.7\% \rightarrow \text{Frictional Unemployment}$
 - Job Rationing: 2.1% \rightarrow Frictional Unemployment
 - Bad Time: Unemployment 8%
 - Matching Frictions: 2% → Frictional Unemployment
 - Job Rationing: 6% → Frictional Unemployment
- However, Michaillat's results depend on Parameter Values and the Form of Wage Rigidity

Research Question

Michaillat's results depend on Parameter Values and the Form of Wage Rigidity

- Michaillat directly assumes model wage to be the rigid wage based on Blanchard and Galí (2010) for generating job rationing
- Michaillat calibrates his model, rather than estimates his model

Thus, I proposed a new model with different wage setting and whether the observed data supports Michaillat's assumption on wage and his calibration strategy

Analysis Approach

- I assume model wage to be a weighted average of general Nash Bargained wage and the rigid wage
 - Michaillat (2012) shows that when wage is the general Nash Bargained wage proposed by Stole and Zwiebel (1996), unemployment will not exist when matching frictions disappear
 - Michaillat (2012) assume model wage to be the rigid wage based on Blanchard and Galí (2010)
 - The weight applied to rigid wage is estimated by observed data
- I estimate my proposed model based on Bayesian methods
 - Michaillat (2012) uses Calibration to determine model parameters (including the weight applied to rigid wage)

 Posterior
 - Michaillat's Calibration + Observed Data ⇒ Model Parameters

Findings

I begin my analysis from the Prior Density, which supports Michaillat's results

- Data do not prefer Michaillat's assumption of wage rigidity
 - The prior density of weight of rigid wage is Beta with mean 0.99 and standard deviation 0.005
 - Estimated Posterior Mean is 0.96. If the data supports wage rigidity form proposed by Michaillat (2012), we should see it is still 0.99
- Data do not prefer Michaillat's findings
 - Based on Michaillat's decomposition, job rationing is the main source accounting for unemployment during all recessions
 - Based on my estimation, rationing unemployment only exist in 1980s recessions and 2007 recession
 - Also, rationing unemployment is less than 1 percentage of total unemployment during these two recession periods
 - Data show that Matching Frictions are the main source explaining unemployment during both normal and bad time

Contributions

- Extended Unemployment Insurance (UI) & Search Effort
 - Nakajima (2012): UI → Unemployed workers' search effort ↓
 - Zhang (2017): UI explains the increases in unemployment during the Great Recession
 - Leduc and Liu (2020): Sharp Decline in the Search Effort during the Great Recession
- Job Rationing as the main source of unemployment: More Generous UI during recessions (Michaillat 2012)
- Matching Frictions as the main source of unemployment: Different Suggestion

Outline of Talk

- Model: Similar to Michaillat (2012) but has more shocks and different wage setting
- Estimation: Data, Calibration and & Prior Distributions
- Analysis: Michaillat's Model and Estimated Model
- Conclusions

$$h_t = \mu_t u_t^{\xi} v_t^{1-\xi} \implies$$
 Matching Function $f_t = h_t/u_t \implies$ Job Finding Rate $q_t = h_t/v_t \implies$ Vacancy Filling Rate

- h_t : New Hires
- f_t : Job Finding Rates
- q_t : Vacancy Filling Rates
- μ_t : Matching Efficiency Shock
- Parameters: Steady State of Matching Efficiency μ and matching elasticity ξ

$$u_t = 1 - (1 - s)n_{t-1} \implies \text{Job Seekers}$$

 $n_{t+1} = (1 - s) \cdot n_t + h_t \implies \text{Employment Transition}$

- u_t : Unemployed Job Seekers
- n_t : Total Employment
- Parameters: Separation Rate s

$$J_t = \alpha a_t n_t^{\alpha - 1} - \left(w_t + \frac{\partial w_t}{\partial n_t} n_t \right) + E_t (1 - s) J_{t+1} \implies \text{Job Creation Conditions}$$

$$J_t = \frac{a_t c^v}{q_t} \implies \text{Free Entry}$$

- J_t: Marginal Asset Value of Filling a Vacancy
- w_t : Wage
- *a_t*: Technology Shock

$$\begin{split} & w^R_t = \omega_t a^Y_t \quad \Rightarrow \text{Rigid Wage} \\ & w^B_t = \frac{\eta a_t \alpha \, n^{\alpha-1}_t}{1 - \eta (1 - \alpha)} + \eta E_t (1 - s) \Big[\beta \frac{v_{t+1}}{u_{t+1}} a_{t+1} c^v \Big] \quad \Rightarrow \text{the Generalized Bargained Wage} \\ & w_t = \xi^w \cdot w^R_t + (1 - \xi^w) \cdot w^B_t \quad \Rightarrow \text{Model Wage} \end{split}$$

- w_t^R : Rigid Wage
- w_t^B : the Generalized Nash Bargained Wage
- ω_t: Wage Shock
- Parameters: Bargaining Power η , Weight of Rigid Wage: ξ^w , Vacancy Cost c^v , and rigid wage parameter γ

Rationing & Frictional Unemployment

$$\begin{split} J_t &= \alpha a_t n_t^{\alpha-1} - \left(w_t + \frac{\partial w_t}{\partial n_t} n_t\right) + E_t (1-s) J_{t+1} & \Rightarrow \text{Job Creation Conditions} \\ J_t &= \frac{a_t c^v}{q_t} & \Rightarrow \text{Free Entry} \\ w_t^R &= \omega_t a_t^Y & \Rightarrow \text{Rigid Wage} \\ w_t^B &= \frac{\eta a_t \alpha n_t^{\alpha-1}}{1 - \eta (1-\alpha)} + \eta E_t (1-s) \left[\beta \frac{v_{t+1}}{u_{t+1}} a_{t+1} c^v\right] & \Rightarrow \text{the Generalized Bargained Wage} \\ w_t &= \xi^w \cdot w_t^R + (1-\xi^w) \cdot w_t^B & \Rightarrow \text{Model Wage} \end{split}$$

• As $cv \rightarrow 0$, matching frictions disappear and employment is determined by

$$\alpha a_t n_t^{\alpha - 1} = \left(w_t + \frac{\partial w_t}{\partial n_t} n_t \right) \rightarrow n_t^R$$
 (Rationing Employment)

- Rationing Unemployment (Job Rationing): $u_t^R = 1 n_t^R$
- Frictional Unemployment (Matching Frictions): $u_t^F = u_t u_t^R$
- Given $\xi^w = 1$, the decomposition results will be the same as in Michaillat (2012)

Parameters & Job Rationing

- ξ : Matching Elasticity
- *μ*: Matching Efficiency (steady state)
- s: Separation Rate
- c^v : Vacancy Cost
- ξ^w : Weight of Wage Rigidity
- η: Bargaining Power

Steady State Analysis: Parameters

$$J_{t} = \alpha a_{t} n_{t}^{\alpha - 1} - \left(w_{t} + \frac{\partial w_{t}}{\partial n_{t}} n_{t}\right) + E_{t}(1 - s)J_{t+1}$$

$$\downarrow \downarrow$$

$$Marginal Benefit$$

$$J_{t} - E_{t}(1 - s)J_{t+1} = \alpha a_{t} n_{t}^{\alpha - 1} - \left(w_{t} + \frac{\partial w_{t}}{\partial n_{t}} n_{t}\right)$$

Marginal Benefit

Marginal Benefit =
$$(1 - \xi^w) \cdot (((1 - \eta)/(1 - \eta \cdot (1 - \alpha))) \cdot \alpha \cdot y/n) + \xi^w \cdot (\alpha \cdot y/n - w^R)$$

$$y = a \cdot n^\alpha$$

$$w^R = \omega \cdot a^Y$$

Recruiting Expenditure

Marginal Cost =
$$J - \beta \cdot (1 - s) \cdot J + (1 - \xi^w) \cdot \beta \cdot (1 - s) \cdot \eta \cdot f \cdot J$$

$$J = a \cdot c^v / q$$

$$f = \mu \cdot (v/u)^{1 - \xi}$$

- Equilibrium Unemployment: Marginal Benefit = Marginal Cost
- In Michaillat (2012), ξ^w = 1

Parameters: Matching Elasticity

- Equilibrium Unemployment: Marginal Benefit = Marginal Cost
- Rationing Unemployment u^R : Marginal Cost = o
- ullet Frictional Unemployment u^F : Total Unemployment Rationing Unemployment
- Job Finding Rate: $f = \mu \cdot (v/u)^{1-\xi}$

Parameters: Matching Efficiency

- Equilibrium Unemployment: Marginal Benefit = Marginal Cost
- Rationing Unemployment u^R : Marginal Cost = 0
- ullet Frictional Unemployment u^F : Total Unemployment Rationing Unemployment
- Job Finding Rate: $f = \mu \cdot (v/u)^{1-\xi}$

Parameters: Separation Rate

- Equilibrium Unemployment: Marginal Benefit = Marginal Cost
- Rationing Unemployment u^R : Marginal Cost = o
- ullet Frictional Unemployment u^F : Total Unemployment Rationing Unemployment

Parameters: Vacancy Cost

- Equilibrium Unemployment: Marginal Benefit = Marginal Cost
- Rationing Unemployment u^R : Marginal Cost = o

Parameters: Bargaining Power

- Equilibrium Unemployment: Marginal Benefit = Marginal Cost
- Rationing Unemployment u^R : Marginal Cost = o
- Frictional Unemployment u^F : Total Unemployment Rationing Unemployment
- Marginal Cost = $J \beta \cdot (1 s) \cdot J + (1 \xi^w) \cdot \beta \cdot (1 s) \cdot \eta \cdot f \cdot J$

Parameters: Weight Applied to Wage Rigidity

- Equilibrium Unemployment: Marginal Benefit = Marginal Cost
- Rationing Unemployment u^R : Marginal Cost = o
- Frictional Unemployment u^F : Total Unemployment Rationing Unemployment

Summary

- Although I change the wage setting, rationing unemployment still can exist in my model
- The importance of job rationing in explaining the unemployment depends on following parameters
 - ξ : Matching Elasticity, $\xi \downarrow$, $u^R \downarrow$
 - μ : Matching Efficiency (steady state)y, $\mu \downarrow$, $u^R \downarrow$
 - *s*: Separation Rate, $\mu \uparrow$, $u^R \downarrow$
 - c^v : Vacancy Cost, $c^v \uparrow, u^R \downarrow$
 - ξ^w : Weight of Wage Rigidity, $\xi^w \downarrow$, $u^R \downarrow$
 - η : Bargaining Power, $\eta \uparrow, u^R \downarrow$

Estimation

- Three Shocks: Appendix in Michaillat (2012)
 - Matching Efficiency μ_t (Furlanetto and Groshenny 2016)
 - Technology Shock a_t
 - Wage shock ω_t
- Observed Data
 - Monthly Unemployment Rate
 - Monthly Vacancy (Barnichon 2010)
 - Monthly Real GDP or output (After 1994: Macroeconomic Advisers; Before 1994: the monthly GDP constructed by James Stock and Mark Watson)
- Difference in Model Frequency
 - Michaillat (2012): Weekly
 - We do not have weekly data, so my proposed model's frequency is monthly

Estimation Results

	Benchmark	Estimation	Prior Density
ξw	Based on Prior Mean	0.964, [0.96, 0.976]	B(0.99, 0.005)
η	Based on Prior Mean	0.292, [0.279, 0.326]	\mathcal{B} (0.3, 0.025)
ξ	Based on Prior Mean	0.728, [0.735, 0.764]	\mathcal{B} (0.5, 0.05)
S · 10	Based on Prior Mean	0.47, [0.45, 0.47]	\mathcal{B} (0.3, 0.025)
Vacancy Cost			
to Wage	Based on Prior Mean	0.3, [0.269, 0.336]	\mathcal{B} (0.3, 0.025)
μ	Based on Prior Mean	0.893, [0.806, 0.884]	G(1.0, 0.2)
γ	Based on Prior Mean	0.978, [0.967, 0.985]	\mathcal{B} (0.7, 0.1)
ϕ^a	0.837, [0.819, 0.853]	0.982, [0.971, 0.991]	\mathcal{B} (0.5, 0.2)
ϕ^{μ}	0.937, [0.927, 0.947]	0.995, [0.988, 0.998]	\mathcal{B} (0.5, 0.2)
ϕ^w	0.987, [0.979, 0.994]	0.991, [0.983, 0.995]	$\mathcal{B}(0.5, 0.2)$
e^a	0.011, [0.011, 0.012]	0.009, [0.008, 0.009]	IG(0.01, 0.1)
e^{μ}	0.069, [0.066, 0.072]	0.039, [0.038, 0.042]	IG(0.01, 0.1)
e^w	0.001, [0.001, 0.002]	0.001, [0.001, 0.001]	IG(0.01, 0.1)

Based on Prior Density

- 10⁶ Draws from the Joint Prior Density
- So, the Prior Density supports Michaillat (2012), even though my model's frequency is monthly
- Based on Prior Density, the likelihood that matching frictions are the main source of unemployment is low

Prior vs Posterior

0.11 -Rationing Frictional 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 1970 1980 1990 2000 2010 2020

Benchmark: Prior Mean

Posterior Mean

Even though I transform parameters' frequency to weekly, the results are similar

Robustness Check

- I change the wage setting of Michaillat (2012)
- I therefore redo the estimation. I use the same wage setting as in the Michaillat (2012), and I estimate s, cv, ξ, μ, γ

Robustness Check

Benchmark

Estimated

- Again, we only have rationing unemployment during 1980s and the Great Recession
- Although job rationing is important in these two recessions, matching frictions account for the increases in the unemployment during these two recessions

Findings & Conclusion

- Although I begin from strong prior densities that prefer Michaillat (2012), the data do not support Michaillat's findings
- Based on my estimation results, matching frictions are the main source of unemployment based on Michaillat's job rationing model
- When unemployment is mainly explained by matching frictions during recessions, implement UI lowers the search effort and thus increase unemployment → Extended UI?
- Job Rationing and Matching Frictions are unobserved. It could be due to model misspecification.

- Barnichon, R., "Building a Composite Help-Wanted Index," *Economics Letters* 109 (December 2010), 175–178.
- Blanchard, O. and J. Galí, "Labor Markets and Monetary Policy: A New Keynesian Model with Unemployment," *American Economic Journal: Macroeconomics* 2 (April 2010), 1–30.
- Furlanetto, F. and N. Groshenny, "Mismatch Shocks and Unemployment During the Great Recession," *Journal of Applied Econometrics* (2016).

LEDUC, S. AND Z. LIU, "The Weak Job Recovery in a Macro Model of

- Search and Recruiting Intensity," *American Economic Journal:*Macroeconomics 12 (January 2020), 310–43.

 MICHAILLAT, P., "Do Matching Frictions Explain Unemployment? Not
- MICHAILLAT, P., "Do Matching Frictions Explain Unemployment? Not in Bad Times," *American Economic Review* 102 (June 2012), 1721–50.
- NAKAJIMA, M., "A Quantitative Analysis of Unemployment Benefit

Extensions," *Journal of Monetary Economics* 59 (2012), 686 – 702.

27/27

- STOLE, L. A. AND J. ZWIEBEL, "Intra-Firm Bargaining under Non-Binding Contracts," *The Review of Economic Studies* 63 (July 1996), 375–410.
- ZHANG, J., "Unemployment Benefits and Matching Efficiency in an Estimated DSGE Model with Labor Market Search Frictions," *Macroeconomic Dynamics* 21 (2017), 2033–2069.