The Rise of Service Sector and the Drop in Fertility

T. Terry Cheung

Academia Sinica

October 28, 2020

• Birth Rate in the U.S. declining

• Birth Rate in the U.S. declining with female hours

• Birth Rate in the U.S. declining with sectoral female hours

- Birth Rate is
 - declining in the U.S.
 - negatively correlated with average female working hours
 - which is driven by the increase in service sector
- Understanding service sector is important to understand female's opportunity cost

- Question:
 - What cause expansion in the service sector
 - Why such expansion correlated with fertility rate
- Answer:
 - Female in service (cognitive skills)
 - Opportunity cost (income versus substitution)

- What I did?
 - Empirical trends on gender hours, wage and natality
 - A theoretical model of household occupation and fertility choice
- What I found?
 - A model assuming female with CA in service sector explains these facts
- Intuition:
 - When the productivity growth is faster in goods sector leads to expansion in service sector (complements)
 - Female has comparative advantage in service sector rise in employment and wage
 - Higher opportunity cost for having baby and fertility declined
- What I will do:
 - Introduce home production sector
 - Add capital to the model

• Working female increasing; male constant Decomposition

Working female increasing driven by service sector

• Wage premium

• Change in the Household Division of Time

• Fertility declines except during the baby boom period

- Remark:
 - Large increase in female labor participation
 - Driven by the rise of service sector
 - Female wage increase relative to male
 - Change of family time division
 - Drop in fertility rate

Model

Model – Firm

• Representative Firms in each sector j = g, s have the following technology:

$$Y_j = A_j L_j$$

where

$$L_{j} = \left[\xi_{j} L_{fj}^{\frac{\eta-1}{\eta}} + (1 - \xi_{j}) L_{mj}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

- Assumptions:
 - $oldsymbol{0}$ $\xi_s > \xi_g$ (comparative advantage) Discussion
 - ② $\gamma_g \equiv \frac{A_g}{A_g} > \frac{\dot{A_s}}{A_s} \equiv \gamma_s$ (productivity growth, BEA: $\gamma_g \gamma_s = 1.2\%$)
 - labor mobility

Model - Household

Household consists of one male and female:

$$U(c_g, c_s, L_I, n) = \ln c + \varphi \ln L_I + \psi \ln n$$

where

$$c = \left[\omega c_g^{\frac{\epsilon-1}{\epsilon}} + (1-\omega)c_s^{\frac{\epsilon-1}{\epsilon}}\right]^{\frac{\epsilon}{\epsilon-1}}$$

$$L_l = \left[\xi_l L_{fl}^{\frac{\eta_l-1}{\eta_l}} + (1-\xi_l)L_{ml}^{\frac{\eta_l-1}{\eta_l}}\right]^{\frac{\eta_l}{\eta_l-1}}$$

subject to

$$p_g c_g + p_s c_s = w_m (1 - L_{ml}) + w_f (1 - L_{fl} - \tau n)$$

- Assumptions:
 - $oldsymbol{\epsilon} < 1$ substitutability between goods (Herrendorf, Rogerson and Valentinyi, 2013)

Model – Equilibrium

- All households maximize utility subject to constraint
- All firms maximize profit
- Markets clear
 - Consumption Market $c_j = Y_j$
 - Labor Market $L_{ms} + L_{mg} = 1 L_{ml}$
 - ullet Female Labor Market $L_{\mathit{fs}} + L_{\mathit{fg}} = 1 L_{\mathit{fl}} au \mathit{n}$

Model - Expanding Service Sector

- Define $E_{sg} = \frac{p_s c_s}{p_\sigma c_\sigma}$
- The price ratio is determined by using the free mobility assumption:

$$p_s A_s \xi_s \left(\frac{L_s}{L_{fs}}\right)^{\frac{1}{\eta}} = p_g A_g \xi_g \left(\frac{L_g}{L_{fg}}\right)^{\frac{1}{\eta}}$$

• Notice that by using the definition of the production function

$$rac{L_j}{L_{fj}} = \xi_j^{rac{\eta}{\eta-1}} \left[1 + \left(rac{\xi_j}{1-\xi_j}
ight)^{-\eta} \left(rac{w_f}{w_m}
ight)^{\eta-1}
ight]^{rac{\eta}{\eta-1}}$$

• With FOC from the household side

$$E_{sg} = \left(\frac{A_g}{A_s}\right)^{1-\epsilon} \left(\frac{\xi_g}{\xi_s}\right)^{\frac{\eta(1-\epsilon)}{\eta-1}} \left(\frac{1-\omega}{\omega}\right)^{\epsilon} \left[\frac{1+\left(\frac{\xi_g}{1-\xi_g}\right)^{-\eta} \left(\frac{w_f}{w_m}\right)^{\eta-1}}{1+\left(\frac{\xi_s}{1-\xi_s}\right)^{-\eta} \left(\frac{w_f}{w_m}\right)^{\eta-1}}\right]^{1-\epsilon}$$

Model – Expanding Service Sector

$$E_{sg} \propto \left(\frac{A_g}{A_s}\right)^{1-\epsilon}$$

- Notice that if $(\gamma_g \gamma_s)(1 \epsilon) > 0$, the relative expenditure on service sector increases
- Intuition:
 - $1 > \epsilon$ low substitutability
 - → want to consume similar amount
 - \rightarrow more resources devoted to the service sector (which is relatively more expensive) Numerical Example

Model - Rising Female Wage

Relative Female wage proportional to the size of the service sector

$$s \equiv \frac{L_{ms} + L_{fs}}{L_{ms} + L_{fs} + L_{mg} + L_{fg}}$$

$$s = \frac{\left[1 + \left(\frac{\zeta_s}{1 - \zeta_s}\right)^{-\eta} \left(\frac{w_f}{w_m}\right)^{\eta}\right] \left[1 - \frac{N_m}{N_f} \left(\frac{\zeta_s}{1 - \zeta_s}\right)^{\eta} \left(\frac{w_f}{w_m}\right)^{-\eta}\right]}{\left(1 + \frac{N_m}{N_f}\right) \left[1 - \frac{\zeta_s(1 - \zeta_g)}{\zeta_g(1 - \zeta_s)}\right]}$$

where N_i is the total work supply of gender i

- Abstract from leisure, $N_i = 1$, $\frac{d \frac{w_i}{w_m}}{ds} > 0$
- ullet In GE, the change in wage ratio also affect the value of N_i

Model – Rising Child-rearing Cost

- Notice that the child-rearing cost in the model is τw_f
- Increase in w_f brings two effects:
 - Income effect: increase the number of children
 - Substitution effect: reduce the number of children
 - Presence of non-labor income $w_m(1-L_{ml})$, income effect dominates
 - Intuition: the % increase in income small when compared to % increase in cost (linear in w_f)
- As τ is constant, it suffice to show that w_f increases
- Opportunity cost story:
 - Female's time gets more valuable
 - \rightarrow the opportunity cost of children increases
 - \rightarrow less child birth

Simulation Result

ullet The technological progress with $\gamma_{
m g}>\gamma_{
m s}$

$$E_{sg} \propto \left(\frac{A_g}{A_s}\right)^{1-\epsilon}$$

A_s	A_{g}	Service Sector	Female Employment	Gender Premium	Fertility
1	1	0.909	0.749	0.600	2.827
2	3	0.928	0.751	0.608	2.808
3	6	0.944	0.752	0.614	2.793

• Interpretation:

- ullet When $\gamma_g > \gamma_s$ leads to expansion in service sector
- Female has CA in service sector rise in employment and wage
- Higher opportunity cost for having babies and fertility declined

Exogenous Feature

"Female specific" technological Progress

$$L_s = \left[\xi_s L_{fs}^{\frac{\eta-1}{\eta}} + (1 - \xi_s) L_{ms}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}$$

	'g 5s	remaie Employment	Gender Premium	Fertility
1 1	0.6	0.749	0.600	2.827
1 1	L 0.7	0.767	0.856	2.415
1 1	0.8	0.779	0.983	2.093

This is sometimes interpreted as the decrease in female discrimination:

$$w_f = A_s \zeta_s \left(\frac{L_f}{L_{sf}}\right)^{\frac{1}{\eta}} = A_s (1 - \pi) \bar{\zeta}_s \left(\frac{L_f}{L_{sf}}\right)^{\frac{1}{\eta}}$$

Future Plan

- Adding Capital
 - Bequest Motive (heterogeneous agents) Vs. Exogenous Capital?
 - Does capital substitute away routine job (goods sector) consistent with the following production (with $\eta > \mu$)?

$$Y_{j} = A_{j} \left[\zeta_{j} \left(\theta L_{jf}^{\frac{\mu-1}{\mu}} + (1-\theta) K_{j}^{\frac{\mu-1}{\mu}} \right)^{\frac{\mu(\eta-1)}{(\mu-1)\eta}} + (1-\zeta_{j}) L_{jm}^{\frac{\mu-1}{\mu}} \right]^{\frac{\eta}{\eta-1}}$$

- If so, $\frac{\partial \frac{w_f}{w_m}}{\partial K} > 0$
- Adding Home Production Sector
 - Greenwood et al. (2005) highlights the importance of home production
 - Leisure Time, Home Production and Fertility Cost
 - $\tau = \tau(L_I)$ where $\tau' < 0$
- Accounting Exercise

Thank you!

Working Female Increasing Back

- Consider total resource x (\$10) and utility is in $U = min(c_1, c_2)$
- Originally (c_1, c_2) have the same technology that convert 1 unit of resource into 1 unit of consumption:

$$c_i = x$$

- Optimal allocation $(c_1, c_2) = (5, 5)$
- Assume that now $c_1 = x$ and $c_2 = 3x$ and now $(c_1, c_2) = (7.5, 2.5)$
- Assume that $U = c_1 + c_2$ and $(c_1, c_2) = (0, 10)$

Female Comparative Advantage

- Male has comparative advantage in physical strength
- Female has comparative advantage in communication and interpersonal skills
- Borghans, Bas ter Weel and Weinberg (2008, 2014): the use of interpersonal skills accelerated after 1970s

