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Abstract

We apply a Bayesian approach to estimate a small-scale New Keynesian Dy-
namic Stochastic General Equilibrium (DSGE) model on the basis of first-order
and second-order approximation techniques. In particular, the likelihood function
for the linear and nonlinear model approximation are constructed via the Kalman
and particle filters respectively. We evaluate the performance of the linear/nonlinear
model approximation in terms of the log marginal data density and out-of-sample
forecasting exercise. With the use of U.S. macroeconomic data, spanning from 1960
to 2017 and crossing the so-called “Great Inflation”, “Great Moderation” and “Great
Recession” periods in order, we find the nonlinear model approximation provides
the best fit to the full sample of data. Moreover, by considering the transitions of
Great Inflation to Great Moderation (GI-GM) and Great Moderation to Great Re-
cession (GM-GR) periods as out-of-sample evaluation periods, we find, in terms of
the forecast unbiasedness test, that the nonlinear DSGE model generates unbiased
forecasts of inflation and interest rates but biased forecasts of real GDP growth rate
in most cases. Lastly, in the forecast competition, the nonlinear DSGE model is
dominant in forecasting all variables of interest in both transition periods except
for the inflation forecasts evaluated in the GI-GM transition period.
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1 Introduction

Over the past 60 years, the U.S. economy experienced in sequence the so-called “Great
Inflation” (GI), “Great Moderation” (GM) and “Great Recession” (GR) periods, named
according to the extent of the volatility of macroeconomic variables, the economic activity
in particular. Compares with the other two periods, the volatility of the output growth
has moderated dramatically in the GM period.1 Most macroeconomic researchers have a
broad consensus on the structural change in the transition from the GI to GM periods,
and it spurred the consideration of the nonlinear nature of the economy.23

In the past two decades, dynamic stochastic general equilibrium (DSGE) models,
which are constructed with a micro-foundation and rational expectation, have been com-
monly used as instruments for macroeconomic policy analysis and forecasting over long
periods of data, crossing the above-mentioned regimes. Those models, for the most
part, neglect nonlinearities by simply linearizing a set of nonlinear equilibrium conditions
around the steady states and then obtaining the model solution afterward via linear so-
lution techniques such as those proposed in Blandchard and Kahn (1980), Klein (2000),
and Sims (2002). Aruoba, Fernández-Villaverde and Rubio-Ramírez (2006) state that
the approximated errors generated with linear solution techniques (hereafter, the linear
DSGE model) are much larger than those generated with nonlinear solution techniques
(hereafter, the nonlinear DSGE model) in a typical DSGE model.4 Those errors are
brought into the construction of the likelihood function of the model and then result in
inaccurate likelihood-based estimates and worse fit of the model to the data.

On these grounds, we study the time-varying fitness of the nonlinear DSGE model to
the U.S. macroeconomic data over the past 60 years. Technically, we first solve a small-

1Kim and Nelson (1999) show a substantial decline in the volatility of U.S. real GDP growth rate
uisng a Bayesian Markov-switching model, and the estimated break date that they found is the first
quarter of the year 1984.

2Some studies find the causes of the transition in these regimes are possibly the variation in the
size of the shocks. Under the framework of a multivariate Markov-switching model with time-varying
parameters, Sims and Zha (2006) find the exogenous shocks which occurred in the GI period are much
more volatile than those in the GM period. Another class of explanations about the causes of the
transition in these regimes emphasizes the conduct of the monetary policy. Clarida, Gali and Gertler
(2000) and Cogley and Sargent (2005) have argued that U.S. monetary policy is conducted in a more
aggressive way in the GM period. However, Stock and Watson (2003) state that the improved moneatry
policy cannot explain a structural decline in the volatility of the output growth, and their statements
are supported by a variety of modern macroeconometric models, ranging from the reduced-form vector
autoregression (VAR) to the structural DSGE models.

3There exists a debate on whether the “Great Moderation” (GM) period is ending or not. Using
the Markov regime-switching models, Canarella, Fang, Miller and Pollard (2010) argue in favor of a
transition to a new era of output growth volatility in the U.S. and U.K. However, Charles, Darné and
Ferrara (2018) find no evidence for the end of the GM period in a GARCH-type model with U.S. and
international data.

4By comparing different solution techniques for the DSGE models, Aruoba, Fernández-Villaverde and
Rubio-Ramírez (2006) state that using linear solution techniques, log-linearization in particular, produces
the worst fit of the model to the data.
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scale New Keynesian model with both linear and nonlinear solution techniques, and the
likelihood functions of the model are then constructed via the Kalman and particle filters
respectively. Next, we apply a Bayesian approach to combine the likelihood function
of the model with the prior density of model parameter to form the posterior density,
leading to the approximation of the marginal data density, used to measure the fitness of
the model. We repeat the above-mentioned process recursively to study and compare the
time-varying fitness of the linear and nonlinear DSGE models. Moreover, we conduct the
out-of-sample forecasting exercises in both models over the transition periods of Great
Inflation to Great Moderation (GI-GM) and Great Moderation to Great Recession (GM-
GR), and evaluate their absolute and relative performance of forecasting under a sequence
of forecast unbiasedness and Diebold-Mariano (DM) tests.

Regarding the related studies, An (2005) states that Bayesian estimation of second-
order approximations to a New Keynesian DSGE model improves the model fit and
the identification of the structural parameters. Fernández-Villaverde and Rubio-Ramírez
(2005) apply both linear and particle filters to a stochastic growth model, and they find
the model estimated by the means of the particle filter yields a better fit, evaluated on
the basis of marginal likelihoods, to both simulated and real data.5 The present study
differs from the previous studies in that we consider the transition regimes of GI-GM and
GM-GR in linear and nonlinear DSGE models when evaluating fitness to the data and
the forecasting performance in terms of a variety of statistical tests.

Several results are found in this paper. First, we find, in terms of the marginal data
density, that the nonlinear DSGE model has better fit to the whole sample. In particular,
the time-varying model fit of the nonlinear DSGE model improves over the transition GI-
GM period. In contrast, the model fit of the linear DSGE model gets worse over time in
the transition GI-GM period. The results imply that the use of the nonlinear solution
technique helps to capture a structural decline in the volatility of the macroeconomic
variables over the GI-GM period. Second, compared to the linear DSGE model in most
cases, the nonlinear DSGE model helps to generate unbiased forecasts of inflation and
interest rates over the transition periods of GI-GM and GM-GR. Third, the nonlinear
DSGE model overwhelmingly outperforms the linear DSGE model on forecasting real
output growth, inflation and interest rates over two transition periods, particulaly the
transition GM-GR period.

The reminder of the paper is organized as follows. Section 2 introduces a small-scale
New Keynesian DSGE model. The estimation methodology is introduced in Section 3,
and we particularly focus on the particle filter, used for approximating the likelihood
function of the nonlinear DSGE model, and the Bayesian approach. In Section 4, we

5Fernández-Villaverde and Rubio-Ramírez (2005) state that although there is a small difference be-
tween the point estimates obtained respectively by linear and particle filters, it leads to important effects
on the statistical moments of the model.
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describe the source of data and present the empirical results. Section 5 concludes.

2 New Keynesian DSGE Model

The New Keynesian DSGE model used in this paper is based on Ireland (2004).
Specifically, the closed economy simply consists of homogeneous households, homoge-
neous finished-goods producers, a continuum of differentiated intermediate-goods pro-
ducers indexed by i ∈ [0, 1] , and a central bank. The households are demanders in the
goods market and provide labor service to the intermediate-goods producers. During
each period t = 0, 1, 2, ..., the representative household buys the amount of consumption
bundle (Ct) from the final-goods producers and provides the labor supply (ht) to the
intermediate-goods producers to maximize the following expected utility function6

E0

∞∑
t=0

βt
[
at ln (Ct)−

(
1

η

)
hηt

]
(2.1)

subject to the budget constraint of

Bt−1 + Tt +Wtht +Dt

Pt
≥ Ct +

Bt
rt

Pt
(2.2)

where β (0 < β < 1) is the discount factor, η (η ≥ 1) measures the elasticity of labor
supply, and at is the preference shock, following the stationary first-order autoregressive
process

ln (at) = (1− ρa) ln (a) + ρa ln (at−1) + εat (2.3)

where 0 ≤ ρa < 1, a (a > 0) is the steady state of at, and εat is the serially uncorre-
lated innovation and normally distributed with zero mean and standard deviation σa. In
addition, Bt, Tt, Wt, Dt, Pt and rt denote the nominal bonds, lump-sum taxes, wage,
dividend, price and interest rate respectively.

The representative finished-goods producer aggregates the intermediate goods, Yt (i) , i ∈
[0, 1] , into the final good, Yt , according to the constant-returns-to-scale (CRTS) tech-
nology characterized by [∫ 1

0

Yt (i)
(θt−1)
θt di

] θt
θt−1

≥ Yt (2.4)

where θt is the price markup shock, following the stationary first-order autoregressive
process

ln (θt) = (1− ρθ) ln (θ) + ρθ ln (θt−1) + εθt (2.5)
6Utility is additively separable in consumption and hours worked. Given this additive separability,

the logarithmic specification for preferences over consumption is necessary, as shown by King, Plosser,
and Rebelo (1988), for the model to be consistent with balanced growth.
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where 0 ≤ ρθ < 1, θ (θ > 0) is the steady state of θt, and εθt is the serially uncorrelated
innovation and normally distributed with a mean of zero and standard deviation σθ. Each
final-goods producer sells the aggregate goods in a perfectly competitive market to the
consumers with the price, Pt, and its profit maximization problem is characterized by

Pt

[∫ 1

0

Yt (i)
(θt−1)
θt di

] θt
θt−1

−
∫ 1

0

Pt (i)Yt (i) di (2.6)

where Pt (i), the price charged by the intermediate-goods producer i, is related to the
aggregate price index via the zero-profit condition shown as follows

Pt =

[∫ 1

0

Pt (i)1−θt di

] 1
1−θt

, t = 0, 1, 2, ... (2.7)

Each intermediate-goods producer, indexed by i, uses the labor (ht) hired from the
households to produce a differentiate good, Yt (i), according to the CRTS technology
described by

ht (i) ≥ Yt (i) (2.8)

where the labor is the only input used in production. The intermediate-goods producers
sell the products to the final-goods producers in the monopolistically competitive market,
and the prices, Pt (i), they set are subject to the price rigidity. In this paper, we use the
price-rigidity framework, proposed by Rotemberg (1982), in which the intermediate-goods
producers face a quadratic cost of adjusting the nominal price between periods, measured
in terms of the final goods, shown as

φ

2

[
Pt (i)

πPt−1 (i)
− 1

]2

Yt (2.9)

where φ ≥ 0 measures the degree of the price rigidity and π > 1 is the gross steady-
state inflation rate. During each period t = 0, 1, 2, ..., each intermediate-goods producer
chooses the optimal price to maximize its profit as

P0

Λ0

E0

∞∑
t=0

βtΛt

{[
Pt (i)

Pt

]1−θt
Yt −

[
Pt (i)

Pt

]−θt (Wt

Pt

)
Yt −

φ

2

[
Pt (i)

πPt−1 (i)
− 1

]2

Yt

}
,

(2.10)
where Λt = at

Ct
measures the marginal utility value to the representative household of

each additional unit of real profits.
Finally, the central bank follows a simplified Taylor rule to conduct the monetary

policy as
rt = πρπt Y

ρY
t exp (εmt) (2.11)
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where the linearized rule implies that the central bank raises or lowers the short-term
nominal interest rate in response to the deviation of inflation rate and output from their
steady-state levels, and the parameters ρπ and ρY denote the degree of the responses of the
interest rate to the deviation of the inflation rate and output respectively. The monetary
policy shock, εmt, is the serially uncorrelated innovation, and is normally distributed with
a mean of zero and standard deviation of σm.

Based on the optimization problems of the economic agents, a set of nonlinear equi-
librium conditions are derived, and the steady-state conditions are also obtained as a
by-product. In addition to log-linearizing those equations around their steady states, we
apply a nonlinear solution technique, a second-order perturbation approach in particular,
to solve the model. The nonlinear solution of the model will be written in a nonlinear
and non-normal state-space representation for approximating the likelihood function of
the model via a particle filter.

3 Particle Markov Chain Monte Carlo Approach

In order to apply the Bayesian approach to the nonlinear DSGE model, several steps
are needed for the posterior inference. First, the nonlinear solution of the model is
augmented with a measurement equation, which relates the observed variables to the
unobserved state variables in a nonlinear state-space form representation. Second, a
particle filter is applied to approximate the likelihood function of the model. Third, by
specifying the prior distribution of the underlying structural parameters (the priors), the
Bayesian estimates can be obtained by combining the prior and the likelihood function
via Markov Chain Monte Carlo (MCMC) simulation techniques.7 Below we explain each
step in detail.

In step 1, a nonlinear state-space form representation is written as follows,

st = f (st−1, εt; Θ) (3.1)

yt = g (st; Θ) + et (3.2)

where st denotes the vector of finite state (predetermined) variables, assumed to be a
first-order Markov process, in a DSGE model, yt is the vector of observed variables,
including probably predetermined and non-predetermined variables, both f and g, not
explicitly defined, denote the set of state and measurement equations, Θ is the set of
unknown parameters, and εt and et respectively denote the set of structural shocks and

7Adjemian and Karame (2016) propose tools for solving and estimating nonlinear DSGE models via
the particle filter in Dynare. Please refer to their technical paper.
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additive measurement errors.89 In order to obtain the likelihood function of the nonlinear
DSGE model, one needs a recursive algorithm that updates the state variables and deter-
mines the observed variables from the state variables.10 In step 2, we use the sequential
Monte Carlo (particle filter) approach, particularly the sequential importance sampling
tehcnique, to reach the goal.11

Technically, the sample likelihood function of the model is the joint density of the
data sample y1:T = {yt}Tt=1 conditional on the parameters Θ, which can be written as

p (y1:T | Θ) = p (y1 | s0; Θ) p (s0 | Θ)

(∗)︷ ︸︸ ︷
ΠT
t=2 p (yt | y1:t−1; Θ) (3.3)

where the product of the conditional densities, denoted as (*), can be written with the
use of the law of conditional probability and Bayes’ rule as

p (yt | y1:t−1; Θ) =

∫
p (y1:t | st; Θ) p (st | Θ) q (st | y1:t; Θ) p (st−1 | y1:t−1; Θ)

q (st | y1:t; Θ) p (y1:t−1 | st−1; Θ) p (st−1 | Θ)
dst (3.4)

where q (st | y1:t; Θ) is the proposal (importance) density, an easily sampled one, and both
normalized and unnormalized weights, w̃t (st) and ŵt (st), are defined as p(st|y1:t;Θ)

q(st|y1:t;Θ)
and

p(y1:t|st;Θ)p(st;Θ)
q(st|y1:t;Θ)

respectively. According to Bayes’ rule, w̃t (st) ∝ ŵt (st). The sequential
importance sampling technique can be implemented by choosing a proposal density with
the following property

q (st | y1:t; Θ) = q (st | st−1, yt; Θ) q (st−1 | y1:t−1; Θ) (3.5)

where the proposal density proceeds in a recursive way. By incorporating Equation (3.5)
with the definition of the unnormalized weights, we obtain

ŵt (st) = ŵt−1 (st−1)
p (yt | st; Θ) p (st | st−1; Θ)

q (st | st−1, yt; Θ)
(3.6)

ŵt (st) ∝ w̃t−1 (st−1)
p (yt | st; Θ) p (st | st−1; Θ)

q (st | st−1, yt; Θ)
(3.7)

where the current particle weight depends on its past weight, the so-called incremental
weight. Equations (3.5) and (3.7) play key roles in obtaining the likelihood function in a
sequential MCMC approach. In particular, by taking both equations into Equation (3.4),

8We assume that the observations are conditionally independent for simplicity, p (yt | y1:t−1, s0:t) =
p (yt | st), and this results in the expression of Equation (3.2).

9A measurement error is required to be associated with each observed variable. In other words, it is
required to have as many measurement errors as observed variables to estimate a model with a nonlinear
filter.

10Given that both structural shock and measurement error follow the Gaussian densities in a linearized
DSGE model, the traditional Kalman filter can be applied to obtain the likelihood function analytically.

11Creal (2012) provides an excellent survey of sequential Monte Carlo techniques.
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we obtain

p (yt | y1:t−1; Θ) =

∫
w̃t−1 (st−1)

p (yt | st; Θ) p (st | st−1; Θ)

q (st | st−1, yt; Θ)
q (st | y1:t; Θ) dst (3.8)

By taking draws (particles) from the easy-to-sample proposal density, q (st | y1:t; Θ),
one can approximate the conditional likelihood function. In sum, we summarize the
previous discussion about the particle filter as follows: given {s0, w0} is known, for t =

1, 2, ..., T and i = 1, 2, ..., N,

1. Draw
{
s̃

(i)
t

}
i=1:N

from q
(
st | s(i)

t−1, yt; Θ
)
.

2. Compute the importance weights: ŵ(i)
t ∝ w̃

(i)
t−1

p
(
yt|s̃(i)t ;Θ

)
p
(
s̃
(i)
t |s

(i)
t−1;Θ

)
q
(
s̃
(i)
t |s

(i)
t−1,yt;Θ

) .

3. Obtain the normalized weights: w̃(i)
t =

ŵ
(i)
t∑N

j=1 ŵ
(j)
t

.

4. Resampling: if 1∑N
i=1

[
w̃

(i)
t

]2 is less than the chosen value, resample the particles and

replace
{
s̃

(i)
t , w̃

(i)
t

}
with

{
s

(i)
t , w

(i)
t = 1

N

}
. That is, we discard the particles with low

weights and replace particles with high weights on interesting regions of the density
using a fixed amount of particles.

We consider the resampling step to avoid the degeneracy problem, in which the weights
degenerate as t increases, resulting in all but one of the particles having extremely small
weights. According to Equations (3.3) and (3.8), one can approximate both full and
conditional likelihood functions via numerical integration as

p (yt | y1:t−1; Θ) ≈
N∑
i=1

w̃
(i)
t−1

p
(
yt | s̃(i)

t ; Θ
)
p
(
s̃

(i)
t | s

(i)
t−1; Θ

)
q
(
s̃

(i)
t | s

(i)
t−1, yt; Θ

) (3.9)

p (y1:T | Θ) = p (y1 | s0; Θ) p (s0 | Θ) ΠT
t=2


N∑
i=1

w̃
(i)
t−1

p
(
yt | s̃(i)

t ; Θ
)
p
(
s̃

(i)
t | s

(i)
t−1; Θ

)
q
(
s̃

(i)
t | s

(i)
t−1, yt; Θ

)


(3.10)
where the likelihood function depends on the densities for the initial states (s0). In
practical implementation, we choose the ergodic distribution of the states by considering
a first-order approximation around the steady-state of the DSGE model.

Regarding the choice of the proposal density, we impose the Gaussian assumption to
choose the one incorporating the current information on observed variables. Specifically,
the model’s nonlinear equations are still preserved, and the approximation concerns the
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distribution of state variables, which will be assumed to be Gaussian. The common idea
is to use the Kalman filter updating step to build a posterior distribution for state vari-
ables, by including the current information on observables yt. The Kalman filter updating
step will be used to form the proposal q (st | st−1, yt; Θ) for state variables at time t in
particle filters.12 Specifically, the approach uses the posterior distribution provided by
the nonlinear Kalman filter as a proposal. Technically,

{
s̃

(i)
t

}
i=1:N

are sampled from the

posterior distribution N
(
st; st|t, Pst|t

)
obtained with the nonlinear Kalman filter previ-

ously presented. The current states distribution can be obtained with a Monte Carlo
approach. The associated weights

{
w̃

(i)
t

}
i=1:N

are simply given by

ŵ
(i)
t ∝ w̃

(i)
t−1

p
(
yt | s̃(i)

t ; Θ
)
p
(
s̃

(i)
t | s̃

(i)
t−1; Θ

)
p
(
s̃

(i)
t | s̃

(i)
t−1; Θ

) =
1

N

p
(
yt | s̃(i)

t ; Θ
)
N
(
s̃

(i)
t ; st|t−1, Pst|t−1

)
N
(
s̃

(i)
t ; st|t, Pst|t

)
(3.11)

where the transition density of states p (s̃t | st−1; Θ) is approximated by the prior distribu-
tion N

(
s̃

(i)
t ; st|t−1, Pst|t−1

)
, provided by the nonlinear Kalman filter, and the normalized

weight is set to 1
N
. Since we have made a Gaussian assumption, we only have to track

the first two moments of the states’ distribution.
In step 3, we use a Bayesian approach to connect the prior belief about the param-

eters, Θ, with the data information coming from the likelihood function of the model.
Technically, the posterior density of the parameters can be expressed as the product of
the sample likelihood p (y1:T ; Θ) and the prior density of parameters p (Θ):

p (Θ | y1:T ) ∝ p (y1:T ; Θ) p (Θ) (3.12)

where in the case of the linear and nonlinear models, the sample likelihood is approxi-
mated through the Kalman and particle filters respectively. In an MCMC framework like
the random-walk Metropolis-Hastings (RWMH) algorithm which we apply for the linear
model, the random-walk Particle Marginal Metropolis-Hastings (PMMH) algorithm is
used in a nonlinear model to approximate the posterior density of parameters. Specifi-
cally, a candidate is drawn according to the following random-walk process:

Θ∗j = Θj−1 + εj (3.13)

where εj ∼ N [0, γRWV (Θ0)] and γRW is set in order to obtain an acceptance ratio around
12Compared to the standard particle filter, this approach, the so-called marginal particle filter, drasti-

cally reduces the computational burden and is particularly easy to implement. Specifically, we only rely
on the evolution of the mean and variance of the Gaussian density, approximated by weighted particles.
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25%. The posterior distribution can be approximated according to the acceptation rule:

Θj =

 Θ∗j

Θj−1

if U[0,1] ≤ min

{
1,

p(Θ∗j |y1:T )
p(Θj−1|y1:T )

}
otherwise

(3.14)

4 Empirical Results

The linear and nonlinear DSGE models are estimated based on quarterly data, down-
loaded from the official website of the Federal Reserve Bank at St. Louis, for the U.S.
economy, including inflation, real GDP, and the federal funds rates. The whole sample
spans from 1948:Q1 to 2017:Q4, covering the so-called “Great Inflation”, “Great Moder-
ation” and “Great Recession” periods, respectively. In particular, I divide the part of
the whole sample into two overlapping subsamples, the periods of 1960Q1-1986Q4 and
1983Q1-2010Q4, with roughly equal size for an out-of-sample forecasting exercise. The
forecast evaluation period is chosen as 1979:Q1-1986:Q4 in subsample 1 and 2003:Q1-
2010:Q4 in subsample 2, covering the transition regimes of GI-GM and GM-GR.

The time-varying fitness of the model to the data is presented in Table 1. In particular,
the nonlinear DSGE model has better model fit in the whole sample period of 1960Q1-
2017Q4, crossing three regimes of GI, GM and GR. Most important of all, the fitness of
the nonlinear DSGE model improves over time in the transition period of GI-GM, but the
fitness of the linear model gets worse over time in the same transition period. Accordingly,
the results imply the importance of the nonlinear DSGE model for successfully capturing
the nonlinear nature of the economy, resulting from the structural decline of the volatility
of the macroeconomic variables. However, the time-varying fitness of the nonlinear DSGE
model is always inferior to the linear model in the transition period of GM-GR.

Regarding the ability of absolute forecast, I rely on the forecast unbiasedness test,
conducting the hypothesis testing on the coefficient of α on the basis of the following
simple regression,

ε̂ft+h = α + βyft+h + ηt+h (4.1)

where ε̂ft+h is the h-step-ahead estimated forecast error, yft+h represents the h-step-ahead
forecast and the null hypothesis is formed as α = 0, indicating the forecast unbiasedness.
A sequence of forecast unbiasedness tests is conducted in a rolling way to capture models’
absolute forecasting ability, and the results are reported in Tables 2.A., 2.B. and 2.C.
For the values shown on the vertical axis of the graphs, I report the p-value of the t-
statistic. The graphs show that the nonlinear DSGE model generates unbiased forecasts of
inflation and interest rates but biased forecasts of the real GDP growth rate in most cases.
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Table 1. Log Marginal Data Density
GI-GM Transition Period GM-GR Transition Period

Sample Period NL-DSGE L-DSGE Sample Period NL-DSGE L-DSGE
1960Q1-1978Q4 -677.93 -244.29 1983Q1-2002Q4 -889.47 -561.98
1960Q1-1979Q1 -563.56 -242.97 1983Q1-2003Q1 -843.46 -328.30
1960Q1-1979Q2 -538.53 -246.11 1983Q1-2003Q2 -796.63 -326.72
1960Q1-1979Q3 -535.91 -256.47 1983Q1-2003Q3 -787.76 -329.11
1960Q1-1979Q4 -528.15 -271.03 1983Q1-2003Q4 -756.57 -334.70
1960Q1-1980Q1 -484.98 -279.76 1983Q1-2004Q1 -731.47 -337.41
1960Q1-1980Q2 -483.63 -280.76 1983Q1-2004Q2 -731.68 -338.96
1960Q1-1980Q3 -484.12 -295.98 1983Q1-2004Q3 -731.61 -339.53
1960Q1-1980Q4 -483.61 -306.85 1983Q1-2004Q4 -731.45 -340.25
1960Q1-1981Q1 -483.92 -338.49 1983Q1-2005Q1 -732.01 -337.62
1960Q1-1981Q2 -484.13 -365.98 1983Q1-2005Q2 -731.58 -339.88
1960Q1-1981Q3 -483.91 -379.08 1983Q1-2005Q3 -731.76 -339.31
1960Q1-1981Q4 -483.29 -399.99 1983Q1-2005Q4 -731.67 -339.17
1960Q1-1982Q1 -483.91 -426.05 1983Q1-2006Q1 -731.61 -339.71
1960Q1-1982Q2 -484.17 -434.04 1983Q1-2006Q2 -731.34 -340.10
1960Q1-1982Q3 -483.91 -441.69 1983Q1-2006Q3 -731.56 -346.42
1960Q1-1982Q4 -483.87 -451.45 1983Q1-2006Q4 -731.63 -355.88
1960Q1-1983Q1 -483.72 -463.20 1983Q1-2007Q1 -731.39 -358.59
1960Q1-1983Q2 -483.52 -471.38 1983Q1-2007Q2 -731.67 -362.73
1960Q1-1983Q3 -483.65 -484.43 1983Q1-2007Q3 -731.60 -363.25
1960Q1-1983Q4 -483.57 -492.80 1983Q1-2007Q4 -731.38 -363.72
1960Q1-1984Q1 -483.50 -507.38 1983Q1-2008Q1 -731.67 -364.11
1960Q1-1984Q2 -483.86 -526.63 1983Q1-2008Q2 -731.80 -365.91
1960Q1-1984Q3 -484.14 -541.28 1983Q1-2008Q3 -731.80 -373.53
1960Q1-1984Q4 -484.65 -546.10 1983Q1-2008Q4 -731.40 -375.70
1960Q1-1985Q1 -483.89 -557.37 1983Q1-2009Q1 -731.31 -388.74
1960Q1-1985Q2 -484.43 -568.18 1983Q1-2009Q2 -731.48 -393.42
1960Q1-1985Q3 -483.86 -579.34 1983Q1-2009Q3 -731.69 -397.69
1960Q1-1985Q4 -483.64 -591.33 1983Q1-2009Q4 -731.65 -401.06
1960Q1-1986Q1 -484.36 -601.75 1983Q1-2010Q1 -731.66 -405.20
1960Q1-1986Q2 -483.54 -610.03 1983Q1-2010Q2 -731.74 -408.32
1960Q1-1986Q3 -483.64 -616.02 1983Q1-2010Q3 -731.70 -411.53

Full Sample: 1960Q1-2017Q4
Nonlinear DSGE: -2689.22 Linear DSGE: -2883.74

Footnote: “NL-DSGE” and “L-DSGE” are abbreviations of “Nonlinear DSGE” and “Linear DSGE”.
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Table 2.A. Sequence of Forecast Unbiasedness Test (Real GDP Growth Rate)

GI-GM Transition Period GM-GR Transition Period

Rolling Period NL-DSGE L-DSGE Rolling Period NL-DSGE L-DSGE

1979Q1-1982Q4 0.0003 0.0000 2003Q1-2006Q4 0.0342 0.0568

1979Q2-1983Q1 0.0002 0.0000 2003Q2-2007Q1 0.0156 0.0851

1979Q3-1983Q2 0.0000 0.0000 2003Q3-2007Q2 0.0118 0.1353

1979Q4-1983Q3 0.0000 0.0000 2003Q4-2007Q3 0.0101 0.0790

1980Q1-1983Q4 0.0000 0.0000 2004Q1-2007Q4 0.0014 0.1841

1980Q2-1984Q1 0.0000 0.0000 2004Q2-2008Q1 0.0005 0.8782

1980Q3-1984Q2 0.0000 0.0002 2004Q3-2008Q2 0.0010 0.8863

1980Q4-1984Q3 0.0000 0.0000 2004Q4-2008Q3 0.0003 0.4078

1981Q1-1984Q4 0.0000 0.0000 2005Q1-2008Q4 0.0000 0.0772

1981Q2-1985Q1 0.0000 0.0000 2005Q2-2009Q1 0.0004 0.0359

1981Q3-1985Q2 0.0000 0.0000 2005Q3-2009Q2 0.0055 0.0932

1981Q4-1985Q3 0.0000 0.0000 2005Q4-2009Q3 0.0173 0.2077

1982Q1-1985Q4 0.0000 0.0000 2006Q1-2009Q4 0.0728 0.5896

1982Q2-1986Q1 0.0000 0.0004 2006Q2-2010Q1 0.1040 0.7705

1982Q3-1986Q2 0.0000 0.0000 2006Q3-2010Q2 0.2924 0.7161

1982Q4-1986Q3 0.0000 0.0000 2006Q4-2010Q3 0.5291 0.3379

1983Q1-1986Q4 0.0000 0.0001 2007Q1-2010Q4 0.7804 0.1647

Footnote: the values listed in Table are p-values; forecasts are one-step-ahead forecasts.

12



Table 2.B. Sequence of Forecast Unbiasedness Test (Inflation Rate)

GI-GM Transition Period GM-GR Transition Period

Rolling Period NL-DSGE L-DSGE Rolling Period NL-DSGE L-DSGE

1979Q1-1982Q4 0.7194 0.0043 2003Q1-2006Q4 0.4528 0.0584

1979Q2-1983Q1 0.6110 0.0001 2003Q2-2007Q1 0.9942 0.0475

1979Q3-1983Q2 0.2035 0.0000 2003Q3-2007Q2 0.8983 0.1495

1979Q4-1983Q3 0.1393 0.0000 2003Q4-2007Q3 0.3259 0.0385

1980Q1-1983Q4 0.0809 0.0000 2004Q1-2007Q4 0.0906 0.0275

1980Q2-1984Q1 0.1016 0.0000 2004Q2-2008Q1 0.1683 0.0351

1980Q3-1984Q2 0.0795 0.0000 2004Q3-2008Q2 0.1620 0.0411

1980Q4-1984Q3 0.0373 0.0000 2004Q4-2008Q3 0.3084 0.1077

1981Q1-1984Q4 0.0180 0.0000 2005Q1-2008Q4 0.1367 0.0385

1981Q2-1985Q1 0.1402 0.0008 2005Q2-2009Q1 0.1251 0.0450

1981Q3-1985Q2 0.1238 0.0001 2005Q3-2009Q2 0.0174 0.0049

1981Q4-1985Q3 0.0998 0.0000 2005Q4-2009Q3 0.0090 0.0056

1982Q1-1985Q4 0.3153 0.0003 2006Q1-2009Q4 0.0105 0.0152

1982Q2-1986Q1 0.1680 0.0000 2006Q2-2010Q1 0.0105 0.0269

1982Q3-1986Q2 0.0074 0.0000 2006Q3-2010Q2 0.0141 0.0402

1982Q4-1986Q3 0.0257 0.0000 2006Q4-2010Q3 0.0152 0.0418

1983Q1-1986Q4 0.0936 0.0000 2007Q1-2010Q4 0.0040 0.0179

Footnote: the values listed in Table are p-values; forecasts are one-step-ahead forecasts.
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Table 2.C. Sequence of Forecast Unbiasedness Test (Interest Rate)

GI-GM Transition Period GM-GR Transition Period

Rolling Period NL-DSGE L-DSGE Rolling Period NL-DSGE L-DSGE

1979Q1-1982Q4 0.0164 0.1452 2003Q1-2006Q4 0.8968 0.8377

1979Q2-1983Q1 0.0586 0.0808 2003Q2-2007Q1 0.9321 0.3391

1979Q3-1983Q2 0.2035 0.0330 2003Q3-2007Q2 0.9706 0.2270

1979Q4-1983Q3 0.4457 0.0239 2003Q4-2007Q3 0.7243 0.0352

1980Q1-1983Q4 0.6995 0.0140 2004Q1-2007Q4 0.1641 0.0236

1980Q2-1984Q1 0.8737 0.0126 2004Q2-2008Q1 0.2747 0.0725

1980Q3-1984Q2 0.9014 0.0081 2004Q3-2008Q2 0.2722 0.1028

1980Q4-1984Q3 0.6228 0.0015 2004Q4-2008Q3 0.5208 0.0655

1981Q1-1984Q4 0.5865 0.0029 2005Q1-2008Q4 0.5111 0.0144

1981Q2-1985Q1 0.7605 0.0536 2005Q2-2009Q1 0.9610 0.0005

1981Q3-1985Q2 0.5252 0.0224 2005Q3-2009Q2 0.5793 0.0004

1981Q4-1985Q3 0.1473 0.0036 2005Q4-2009Q3 0.4975 0.0006

1982Q1-1985Q4 0.3824 0.0159 2006Q1-2009Q4 0.7167 0.0038

1982Q2-1986Q1 0.2682 0.0027 2006Q2-2010Q1 0.7712 0.0051

1982Q3-1986Q2 0.0330 0.0000 2006Q3-2010Q2 0.9537 0.0114

1982Q4-1986Q3 0.2726 0.0000 2006Q4-2010Q3 0.9434 0.0123

1983Q1-1986Q4 0.9841 0.0003 2007Q1-2010Q4 0.9242 0.0229

Footnote: the values listed in Table are p-values; forecasts are one-step-ahead forecasts.
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However, most forecasts generated from the linear DSGE model are biased. Results of the
relative forecasting performance over time on the basis of the fluctuation test proposed
by Giacomini and Rossi (2010) are also reported. In practice, the Diebold and Mariano
(1995) test statistic can be computed in a rolling way to keep track of the models’ relative
forecasting performance. I report the results of the fluctuation test in Table 3. In the
forecast competition, the nonlinear DSGE model is dominant for forecasting all variables
of interest in both transition periods except the inflation forecasts in the transition period
of GI-GM.

In sum, the results shown above demonstrate that when one uses the DSGE framework
to conduct empirical research for the U.S. economy over a long time span, particularly
crossing both the “Great Inflation” and “Great Moderation” periods, it is appropriate to
choose the nonlinear DSGE model as the modelling tool since it has better model fitness
and helps to generate more unbiased forecasts of the key macroecoonmic variables.

5 Conclusion

In the past two decades, DSGE models have played important roles in empirical
macroeconomic research. Many macroeconomists use these models to study the optimal
policy, analyze the short-run business cycle, and forecast the variables of interest. Those
studies, for the most part, neglect the nonlinearities by simply considering the conven-
tionally linearized DSGE model for the U.S. economy over a long period, covering the
so-called “Great Inflation” (GI), “Great Moderation” (GM) and “Great Recession” (GR).
Compare to linear models, it is argued here that the nonlinear DSGE model can capture
the nonlinear nature of the U.S. economy over time, resulting from structural change in
the volatility of macroeconomic variables, and has better fit of the model to the data.
This conjecture is clarified by evaluating the nonlinear DSGE model in terms of the model
fitness and out-of-sample forecasting exercise, with a particular focus on the transition
periods of GI-GM and GM-GR.

Several results are found in this paper. First, the nonlinear DSGE model has the
better model fit for sample data covering a long time span, including the GI, GM and
GR regimes. Moreover, it is found that the fitness of the nonlinear DSGE model to
data improves over time in the transition period of GI-GM, but the fitness of the linear
model worsens over time in the same transition period. As a result, it is argued that
the nonlinear DSGE model is superior to the linear model when one considers a dataset
covering a long time span, at least including both the GI and GM periods. Second, the
nonlinear DSGE model generates unbiased forecasts of inflation and interest rates but
biased forecasts of the real GDP growth rate in most cases. However, most of the forecasts
generated from the linear DSGE model are biased. Lastly, in the forecast competition,
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Table 3. Fluctuation Test

GI-GM Transition Period GM-GR Transition Period

Rolling Period Y INF INT Rolling Period Y INF INT

1979Q1-1982Q4 0.99 0.00 0.99 2003Q1-2006Q4 0.99 0.07 0.77

1979Q2-1983Q1 0.99 0.00 0.99 2003Q2-2007Q1 0.99 0.10 0.81

1979Q3-1983Q2 0.99 0.00 0.99 2003Q3-2007Q2 0.99 0.14 0.71

1979Q4-1983Q3 0.99 0.00 0.99 2003Q4-2007Q3 0.99 0.12 0.42

1980Q1-1983Q4 0.99 0.00 0.99 2004Q1-2007Q4 0.99 0.10 0.06

1980Q2-1984Q1 0.99 0.00 0.99 2004Q2-2008Q1 0.99 0.08 0.05

1980Q3-1984Q2 0.99 0.00 0.99 2004Q3-2008Q2 0.99 0.08 0.04

1980Q4-1984Q3 0.99 0.00 0.99 2004Q4-2008Q3 0.99 0.09 0.04

1981Q1-1984Q4 0.99 0.00 0.99 2005Q1-2008Q4 0.95 0.14 0.10

1981Q2-1985Q1 0.99 0.00 0.99 2005Q2-2009Q1 0.96 0.12 0.31

1981Q3-1985Q2 0.99 0.00 0.99 2005Q3-2009Q2 0.98 0.08 0.49

1981Q4-1985Q3 0.99 0.00 0.99 2005Q4-2009Q3 0.99 0.04 0.60

1982Q1-1985Q4 0.99 0.00 0.99 2006Q1-2009Q4 0.99 0.03 0.65

1982Q2-1986Q1 0.99 0.00 0.99 2006Q2-2010Q1 0.99 0.03 0.70

1982Q3-1986Q2 0.99 0.00 0.99 2006Q3-2010Q2 0.99 0.03 0.76

1982Q4-1986Q3 0.99 0.00 0.99 2006Q4-2010Q3 0.99 0.03 0.89

1983Q1-1986Q4 0.99 0.00 0.99 2007Q1-2010Q4 0.99 0.03 0.93

Footnote: the values listed in Table are p-values; ”Y ”, “INF” and “INT” are the ab-

breviations of “Real GDP growth rate”, “Inflation rate” and “Interest Rate”.
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the nonlinear DSGE model is dominant on forecasting all variables of interest in both
transition periods, except the inflation forecasts in the transition period of GI-GM.
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