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Introduction

Asiswell-known, misspecification of parametric economet-
ric models may lead to incorrect inference about the model
parameters.

In particular, if aparametric econometric model is misspeci-
fied the usual test for parameter restrictions such asthet-test,
theWald, Lagrange multiplier and likelihood ratio testsdo no
longer have their standard null distributions.

Moreover, if a misspecified model is used for forecasting,
their conditional forecastswill become biased and i nefficient.

Therefore, it is of utmost importance to test for model mis-
specification before using the model for inference and fore-
casting.



Regression model saim to represent conditional expectations.

Therefore, across-section regression model iscorrectly spec-
Ified if the conditional expectation of theerror term giventhe
regressors is zero with probability 1.

Thus, strictly speaking, the model ismisspecifiedif thelatter
probability islessthan 1.

In the time series case aregression mode Is correctly speci-
fied if the conditional expectation of the error term given the
exogenous variables and all lagged dependent and exoge-
nous variables is zero with probability 1.

Again, the model is misspecified if the latter probability is
lessthan 1.

In other words, time series regression errors need to be mar-
tingal e differences.



Now the following questions arise:

e Can we (asymptotically) distinguish the hypothesis that a
conditional expectation equals zero with probability 1 and
the alternative hypothesis that this probability is less than
1 (for example 0.999)7?

e |f s0, how can we devise tests for the null hypothesis that
aregression model is correctly specified against the alter-
native that the null hypothesisisfalse, such that thesetests
are consistent, i.e. their asymptotic power is 1?

The answer to these questionsis: Yes we can!



My paper

Bierens, H.J., 1982, Consistent Model Specification Tests,
Journal of Econometrics, 20, 105-134.

and its companion paper

Bierens, H.J., 1984, Model Specification Testing of Time Se-
ries Regressions, Journal of Econometrics, 26, 323-353

are to the best of my knowledge the first papers ever to pro-
pose consistent tests of the null hypothesisthat the functional
form of aregression model is correctly specified as a condi-
tional expectation, against all deviations from the null hy-
pothesis.



However, at that time | did not know how to derive thelimit-
ing null distributions of the test statistics involved, but | did
know how to consistently estimate their expectations under
the null hypothesis.

Therefore, in these papers| proposed to use upper bounds of
the critical values based on Chebyshev’s inequality for first
moments.

In

Bierens, H.J.,1990, A Consistent Conditional Moment Test
of Functional Form, Econometrica, 58, 1443-1458,

| finally figured out what the null distribution of the test in
Bierens (1982) looks like, but | was still not able to derive
its critical values.



Up to the early nineties the only papers on consistent model
specification testing were Bierens (1982, 1984, 1990).
After 1990 two strands of econometric and statistical litera-

ture emerged:

(1) DeJong (1996), Bierensand Ploberger (1997), Stute (1997),
Stinchcombe and White (1998), Boning and Sowell (1999),
Fan and Li (2000) and Escanciano (2006) for integrated
conditional moment (ICM) and related tests.

(2) Wooldridge (1992), Yatchew (1992), Hardle and Mam-
men (1993), Gozalo (1993), Horowitz and Hardle (1994),
Hong and White (1995), Li and Wang (1998), Zheng (1996)
and Lavergne and Vuong (2000), among others, for tests
based on comparisons of parametric functional formswith
corresponding nonparametric or semi-parametric estimates.



In

Bierens, H.J. and Ploberger, W,, 1997, Asymptotic Theory
of Integrated Conditional Moment Tests, Econometrica, 65,
1129-1151,

Werner Ploberger and | showed for aversion of theintegrated
conditional moments (ICM) test in Bierens (1982) that

e the ICM test has nontrivial power against \/n local ater-

natives, i.e., aternatives of the form
Y = f(X,00)+9(X)/+/n+U,withPr (E[U|X] =0) = 1.

e the|ICM test isadmissible, i.e., there does not exist an uni-
formly more powerful test, and

e the null distribution of the ICM test takes the form of a
weighted sum of independent x# distributed random vari-
ables, but with case-dependent weights.



With the results in Bierens and Ploberger (1997) at hand,
my Ph.D. student Li Wang and | have been able to extend
the approach in Bierens (1982,1984) to consistently testing
the correctness of parametric conditional distribution mod-
els, for cross-section models in:

Bierens, H. J., and Wang, L., 2012, Integrated Conditional
Moment Testsfor Parametric Conditional Distributions, Econo-
metric Theory 28, 328-362,

and for time series modelsin

Bierens, H. J., and Wang, L., 2017, Weighted Simulated | nte-
grated Conditional Moment Testsfor Parametric Conditional
Distributions of Stationary Time Series Processes, Econo-
metric Reviews 36, 103-135.



In this talk | will focus on the papers Bierens (1982,1984)
and Bierens and Wang (2012,2017), together with their up-
datesin:

Bierens, H.J. 2017, Econometric Model Specification: Con-
sistent Model Specification Tests and Semi-Nonparametric
Modeling and Inference. World Scientific Publishers, Sin-

gapore.

Thisbook contains reprints of the relevant published papers
up to 2014, where the papers on consistent model specifi-
cation tests come with extensive addendums, bringing these
papers up to date.



Cross-section regression models

Given a dependent random variable Y and a random vector
X € RF of explanatory variables, a parametric nonlinear
regression model takes the form

Y = f(X,6y) + U,
where
¢ H[Y?] < o0
e 6y isan unknown parameter vector contained intheinterior
of agiven convex and compact parameter space © C R™,
e f(x,0)isanapriori chosen continuousfunctiononR* x ©
satisfying E[(f(X,0))?] < coforal 6 € ©,

e U isthe error term.



Without loss of generality we may define

O = arg min £ [(Y — [ (X,0))’
€
regardless whether the model i1s misspecified or not.

Thenthemodel Y = f(X, 6y) + U iscorrectly specified if
Hy:Pr(EU|X]=0) =1,

which is equivalent to
Hy:Pr(E|Y|X] = f(X,6y)) =1,

and the model is misspecified if
H, :Pr(E|U|X]=0) <1,

which is equivalent to
H, :Pr(E|Y|X] = f(X,6)) < 1.



Thequestionis: How can wetest the correctness of the func-
tional specification of themodel Y = f (X, 6,)+U suchthat
the test has asymptotic power 1 against H;.

My paper Bierens (1982) is the first paper ever to address
this problem.

The approach in that paper is based on the uniqueness of the
Fourier transform of afunction.

The Fourier transform of the function
g(X)=EU|X],
takes the form
p(1) = Elg(X)exp (i.7'X)]
— FEUexp(i7'X)], 7€ R i=+v—1.



Then
sup |E[U exp(i.7'X)| = 0 under Hy,

TERF

sup |E[U exp(i.7'X)| > 0under H;.

TERF

Question:

Wheretolook forar € R¥ suchthat E[U exp(i.7/X)] # 0 if
Hyistrue?



My answer in 1982:

e |f X isbounded then under A,
V6 >0, sup |E[U.exp (i.7X)]| > 0.

I7][<é

e If X isnot bounded, let d : R¥ — R* beabounded one-to-
one mapping with Borel measurable inverse ¢!, so that
E|U|X| = E|U|P(X)] with probability 1. For example,
let

®(z) = (arctan(zy), ...., arctan(zy)) .
Then under A,
V6 >0, sup |E[U.exp (i.7'P(X))]| > 0.
I7ll<é
Thus under H;,

EU.exp(i.7P(X))] #0

for aT in an arbitrary neighborhood of the origin of R”.



My answer in 1990:
Similar to Bierens (1990), we have the more general result

that under H; the set
S={reR": E[U.exp (i.7®(X))] = 0}

has L ebesgue measure zero and is nowhere dense, whereas
of course under Hy),

S =R".
Thisimplies that for any compact subset Y of R* with posi-
tive Lebesgue measure, and with y(7) be the uniform prob-
ability measureon T, for example,

/T B (U exp (17'®(X))] 2 du(r) = 0 under Hy,

/T B [U. exp (178 (X))] du(r) > 0 under H,.



Theseresultssuggest that, given arandom sample{ (Y}, X)
from (Y, X'), aconsistent test can be based on theintegrated
conditional moment (ICM) statistic

~ o~ 2
T, / W,(r)| dutr), where
T
o~ 1 o ~ .
Walr) = = ; Uj exp (i.7'®(X;))
with U, the NLLS residual.

In Bierens (1982) | showed that
~ o~ 2
T, = / W) ) 7 uncer
T

T,/n > 1 > 0 under H;.
However, at that time | was only able to derive a consistent

estimate of F/[T'] but | could not derive the limiting null dis-
tribution 7" itself.

n
j=1



Therefore, | proposed to derive upper bounds of the critical
values of the| CM test on the basis of Chebyshev’sinequality
for first moments.

Thisishow far | got in 1982.



Thenull distribution of the ICM test

It took me until 1990 to figure out what the nature of T’ is,
namely, similar to Bierens (1990) it follows that under H,
the empirical process

—

W (r) = % S0 exp i.7'B(X,)),

converges Weakly toa zer(;-mean complex-valued Gaussian
process W (T), so that by the continuous mapping theorem,

/‘W )du ) 41— /\W )% du(r)

The zero mean complex-valued Gaussian process W () is
characterized by its covariance function

D71, m2) = B [W(n)W(m)]
where the bar denotes the compl ex-conjugate.



Similar to symmetric positive semi-definite matrices, this
covariance function

D(r, ) =F {W(TDW(TQ)}
has countabl e many nonnegative eigenval uesand correspond-
ing orthonormal elgenfunctions.

This eigenvalue problem reads:
Find an eigenvalue A\ and corresponding nonzero eigenfunc-
tion ¢(7) such that

/T [(7 72)o(m)dp(7) = Ag(m) forall 7 € T.

This problem has countable many real valued nonnegative
solutions \;, ©+ € N, with corresponding orthonormal eigen-
functions ¢;(7),

/ i) = 1 / o1 (T pn(T)du(r) = 0if iy # .
T T




According to the complex version of Mercer’'s theorem,

e The covariance function I'(7, 75) can be written as
o

F(Tl,TQ — Z )\mgpm Tl)QO?TL(TQ)?

hence ™ | A fT 7, 7)du(1) < oo.

. Theeigenfunctlons%( ) form acomplete orthonormal se-
quence in the complex Hilbert space L*(1).

Since W € L*(p), the latter property implies that we can
write

Wi(r) = Z a;ipi(T),

where

W(T)@i(T)dp(T),

. T : :
which are zero mean complex valued Gaussian random vari-
ables.



Then by thefirst Mercer property,

E@wsz%n W (1) prra) () la(72)

M

/%<w@wwa4%m%mmmo

3
&

]2

Anl(G=m)I(i =m)=NIG=j)

m=1
Denoting
om(T)d
g = 2 _ W @en(m)dulr) ) -
vore \/)\m

we can now write

Z VAnGpm(T

where the g,,,’s are mdependent zero mean complex valued
normal random variables with variances

E [gmGm) = E [|lgm|’] =



Therefore,

T~ [ W) dutr ZAm\ng
ET:/ (7, 7)du(T A < 00.
7] . Z

It can be shown that

| gm|? ~ mmeim + (1 = Kyp) e%)m for some ., € [0, 1],

where thee; ,,’sarei.i.d. N(0,1), and k,,, and 1 — k,,, are
the eigenvalues of Var((Re|gy,], Im|g.,])) .

Thus,

T = /‘W | du(T Z)\m‘ng
™~ Z)‘m"‘?melm + Z)‘ 6377” - iwmegn’ >,
m=1

Wheretheemsarel i d N(O 1)



Hence,

T D et Winfr —2
E[T] Zoo SU.p Ze X17 Say7

m=1 Wm n>1M

where the inequality follows from a result In Bierens and
Ploberger (1997).

Upper bounds of the critical values
Therefore, given a consistent estimator I, (7, 7) of I'(7, 7),
and denoting

- p
~ fT)W ‘dﬂ
1, =
fT (7, 7)du(7)

we have N
lim sup Pr [Tn > y} < Pr [Y? > y] :

n—aoo

Thus, upper bounds of the critical values of T,, can be based
on the quantiles of the distribution of 7.



These upper bounds, () say, of the a: x 100% critical values
for a = 0.01, a = 0.05 and o = 0.10 have been calculated
In Bierens and Ploberger (1997), i.e.,

¢(0.01) = 6.81, 2(0.05) = 4.26, ¢(0.10) = 3.23.



Bootstrap critical values
Instead of using upper bounds of the critical values, it is pos-
sible to approximate the actual critical values of

- / W (r) [ dpu()

via a parametric bootstrap method, as follows.
First, we need to eiminate the estimation error

f(Xja/én) T f(Xja 60)
from the empirical process

Z ( e 90>) exp (1.70(X)))



In particular, construct a complex empirical process
1 n
W) = —= D Ujdjn(T),

such that W,(7) = Wy(7) + 0,(1) uniformly in7T € T,
where the new weight functions ¢, ,,(7) depend on the X;’s
In the sample only, next to 7 of course.

For example, if the null modél islinear:
Y; = (1,X)0 + U;
then W, (1) = W, (1) = % > i1 Ujjn(T) where

Gin(T) = exp (1L.7P(X;)) — bu(7) A" (}]) . with

n

A, = %21: (ﬁg ) (1, X7), by(r) — %Z (ﬁ( ) exp (17D X))

1=1



Next, for given bootstrap samplesize M andm =1, 2, ..., M,

|et
me] j¢jn /)Wmn ) d,u )

wherethee,, ; sarel.l.d. N(0,1).

Then under Hy),
-~ ~ ~ ~ /
(TnaTl,naTQ,na "'7TM,n) i <T07T17T27 "'7TM),

where the T, ’)sfor m = 0,1,..., M arei.i.d. T, whereas
under Hi,

~ ~ ~ /

(Trins Ty Tan) = (T, T, Ty
wherethe T’*’'sform = 1,..., M arei.i.d. (but no longer
distributed as 7).

The bootstrap critical values of the ICM test can now be

based on the quantiles of the empirical distribution function
of Tl,na T2,n7 ey TM,n-



Sandardization of X in (X)

As suggested before, a suitable choice for (X)) is
®(X) = (arctan(X), ..., arctan( X))’

where X is component ¢ of X.

However, if X, takeslarge positive valuesthen for these val-
ues arctan(X;) ~ /2.

For example suppose that the data come from a household
survey, where X; isthe monthly dollar income, and suppose
that X; > 100 for al observations. Then arctan(X;) >
1.56 whereas w/2 ~ 1.57, so that arctan(X;) is virtually
constant.

But in this case conditioning on X is effectively no longer
equivalent to conditioning on ¢(X'), which is detrimental to
the finite sample power and even the consistency of the ICM
test.



To avoid this problem, it is recommended to standardize the
X,'sin® as

)N(z',n = (X; — Xin)/Sin
where Ym IS the sample mean and .5; ,, Is the sample stan-
dard error of X;, beforetaking thearctan(.) transformations.

Then the effect on the asymptotic properties of the ICM test
IS the same as in the case where the X;’s would have been
standardized as

X, = (X; — E[Xi])//var(X;).



Time series regression models
Time series regression model s take the form
Yy = fi—1 () + Uy
where the response function f; ;1 () is aparametric specifi-
cation of the conditional expectation
E <E|Zt—17 Zt—27 Zt—37 ) ) where Zt — (}/;7 Xt,>,7
with X; apossible vector of exogenous variables.

Therefore, to test the validity of the specification f; 1 ()
consistently one hasto test the martingal e difference hypoth-
esis

E(U|Zs_1, Zs_s, Zy_3,....) =0

Most papersin the literature "solve” this problem by testing
E (Ut|Zt—17 Zt—27 Zt—37 ""Zt—é) =0

only, for some fixed /.

However, these tests are not consistent.



The AR(1) model as benchmark model
In thistalk | will explain the Weighted ICM (WICM) test in
the context of an AR(1) model.

Thus, given astrictly and covariance stationary time series
process Y;, the null hypothesis to be tested is that

Hy: EVYi—1,Yi9, Y3, .....] = ag + BoY,—1 as,
where
0, — - n E|(Y,—a— gy, 2}, <1
0 = (a0, Bo) arg(a,g)/gf@l?(q,n (Vi —a—=58Yi0)7|, 6o

Denoting the error term by U; = Y, — o — GyY;:—1 and the

o-algebra generated by the sequence {Y;_;}5°, by
Fro=o({Yii}),

the null hypothesisto be tested isthat U, isamartingale dif-

ference process wrt. the filtration 7 !:

Hy:Pr (E[U|FL] =0) =1.



Now suppose that this null hypothesisis false:
Hy :Pr (E [U|F] =0) <1

How can we distinguish between H, and H; in practice?

The problem is that both hypotheses involve conditional ex-
pectationsrelative to infinitely many lagged Y;'s, whereasin
practice we only observe afinite samplefrom {Y;}° .

However, by a well-known martingale convergence result
we have
Pr ( lim E (U7 = B [UIF5]) =1,

m—00

where
Fiom =0 ({Yimi}il)
Istheo-algebragenerated by thefinitesequenceY; 1, Y; o, ..., Y.



Consegquently, H; isequivalent to
Hy:3k eN:Pr(E[U|F/ )] =0) <1
Of coursg, this k& is unknown.

But given such ak,

Hi(k):Pr (E[U|F/}] =0) <1
Implies, similar to thei.i.d. case, that

E {Ut exp (i anzl TmY}_mﬂ £ ()

for some (71, 7, ..., 1)’ € R¥.

Moreover, given abounded one-to-onemapping® : R — R
with Borel measurableinverse, for example ®(y) = arctan(y),
H, (k) implies that

E [Ut exp (i Zf%ﬁ TmCI)(Yt_m)ﬂ £ 0 ae onR".



Consequently, for any compact set T C R with positive
L ebesgue measure, for example, let

T = |—c, ¢| for some constant ¢ > 0,
and with p the uniform probability measure on T, H;(k)
Implies that

nk:/ UteXp<ZTm Sftm)
Tk

Therefore, given any sequence of positive constants ;. sat-

isfying >"7°, v < oo, and any subsequence L,, of n such

that L,, = o(n) — oo asn — oo, H; itsdf isequivaent to
L,

Hy : lim inf Z’ymk > ()

n—00
k=1

2

whereas H is equivaent to
L,

Hy : SUPZ%W = 0.
nGNk 1

du(m)du(m)...

d,u(Tk> > ()



The WICM test
Without loss of generality we may assumethat Y; isobserved
fort=1—L,tot =n.

Then for k£ < L,, the martingale difference null hypothesis
can be tested against the specific aternative

Hy(k):Pr (E [U|F/}] =0) <1
using the ICM test statistic

. __ 2
Bn,k:/ Wk,n(ﬁ,Tg,....Tk)) du(7)du(7s)...du()
Tk
where

n k
—~ 1 AN .
ka(Tl, T2, Tk) = —\/_ E Ut exXp 1. E qu)(Y;g_]) ,
n t=1 j=1

with U, the OL S residuals of the AR(1) null model.



Similar to thel.i.d. case, under H, and for each fixed £,

T k
Wk,n<7_1,7_2, Tk> — Wk(Tl,TQ, Tk> onY ,
where W}, Is azero mean complex valued Gaussian process.

Henceforeach k € N,
B\n,k i By under HQ,
where

B = k (Wil T2, o) | d(1)dpa(72) .. dpe(73)
T

Moreover, it can be shown that more generally,

L, 00
AN AN d
T, = E ’Vk'Bn,k: — T = E ’chBk' under H

for v and L,, as before.



Furthermore, it can be shown that under H,

fn/n — Z%Ekn/n > Z’Ykﬂ?k > 0
k=1 k=1

where

nk:/ UteXp<ZTm Y%m)
Tk

Thus, the WICM test is consi stent.

dpa(71)dpa( 7). dpe( 7).




Bootstrap critical valuesin the AR(1) case
Similar to thei.i.d. case, denote

~ 1 <
b L TR) = —
k(15 T2s o ) n = (Yt 1)
LIS Y,
A= =
2 (v Yfl>
R k
Ppt1(T1, T2, ... T) = exp iZTjCD(Y;_j)
j=1

Prt—1(T1, T2y . T) = p lim @y (71, 72, ... T3)
n—aoo




Then

~ 1 ~ .
ka(Tl,TQ,....Tk) = —ZUteXp I.ZT]'(D(Y%_]')

— j=1
— Wk n(7_177_27 Tk)
where
l . ~
Wk7n(7_1,7-2, Tk) — —Zthbkt_l(Tl,Tg, Tk)
VS
Hence

- Z/y/ﬁBnk — Z/Wf |Wkn T1, T2, Tk)|2du<7-1)dlu<7_2)du<7-k)



In order to generate bootstrap versions of fn, similar to the
1.1.d. case, we need to convert 7,, to an ICM test statistic In
"single integral” form, as follows.

Denote
W]::n<7-17 T2y «eey Thy T]H—l) — /Yka,n<7_17 T2, ""7_/{:)/0/6+1<Tk+1)

L
_ E ( +
Wn,L<7_17 Ty «eeey TT,, TL+1> — Wk,n(Tlv T2, ... Tk, Tk+1>
k=1

n L
1 ~
k=1

t=1
where the functions p;(7) are continuous real functions on

T such that

/T om(T)pR(T)(r) = I(m = k), / ou(r)du(r) = 0

T



N — 2
T — /T W17t )| ) G, i, 1)

Z’yk/ | Wi.n( 7‘1,72,....Tk)|2du(ﬁ)d,u(Tg)....d,u(Tk)
Similarly, let

Wkn(Tl,TQ,.... thUt¢k:t 17’1,7’2,.... k:)

—~—

W, (71, ooy TL, Tog1) = % thﬁtz \/%gk,t—l(Tla oo Th) P 1 (Th41)
t=1 k=1
wheree; ~i.i.d. NV (0,1).



Then as before,

T, =
TLn-i—l

Z%

This motivates the following bootstrap procedure.

—~—

2
Wi, r, (71, T2y oo 7r,, Tr,41) | dp(m)dp(r2). du(rr, )du(Tr, 1)

2
(71, T2, Tk)‘ du()dp(7s)....du()

Letfor:=1,2,..., M, with M the bootstrap sample size,

—~—

M/Zk;n(Tl,TQ,.... ZgztUt ¢kt 1(7'1,7'2,.... k)

Bz’.k,n — /
Tk
L

ﬁ,n — Z f}/kézk,n

k=1
wherethee; ; arei.i.d. N'(0, 1).

—~—

Wi k(71,7 ....m‘ dps(r)dpal(mo)...dpu(y),




Then it can be shown, smilar to the 1.1.d. case, that under
HO?

(j:;’m Tl,n; f?,n; seey CZA:'M,n)/ i (T7 T17 T27 veey TM)/7
where T, 11,15, ..., Ty arel.i.d., whereas under H;,
(Ti; Toms -oos Taz) = (T5, T3, Ty
where 77, 15, ..., T, arel.i.d., but not as 7.

The bootstrap critical values of the WICM test can now be
based on the quantiles of the empirical distribution function

M
~ 1 ~
Gn,M(CU> = i E I (Tzn < il?)
i=1

of Tl,m Tg’n, ceey TM,n-



Standar dization of the lagged conditioning variables
Another unresolved issue in Bierens (1984) is how to stan-
dardize the conditioning lagged variables of Y; beforetaking
the bounded transformation ® in order to preserve enough
variationin ®(Y;).

For example, let
d(y) = arctan(y).
Suppose that the actual data-generating processis
Y; = 1000 + Uy — 0.5U; 1, Uy ~ i.i.d. N(0, 1).
Then

d(Y};) =~ sup arctan(y) = 7/2,
yeR
which destroys the power of the WICM test.

Therefore, one should standardize the lagged Y; before tak-
ing the arctan(.) transformation.



However, in doing this one should also preserve the martin-
gale difference structure under the null hypothesis, as fol-
lows.
Giventhat Y; iIsobserved fort = 1 — ¢ty tot = n, denote

t

ﬁt — <15‘|‘750)_1 Z }/;7

1=1—ty

t
Gy = | (E+t) ™t Y (Y= ) ift>1—t,

w, = 0, o, =1ift <1 —ty,
i = EY), 5= VEY - 07
Y, = Vi—w)/o, ¥, =Y —n)/o.
Replace in the WICM test each CID(Yt j) by
CD(Xt_]) = arctan(Xt_])
Then the asymptotic results are the same as if each &(Y;_)
was replaced by ®(Y, ;) = arctan(Y, ).




ThelCM and WICM tests as discussed so far in thistalk are
now incorporated in my free econometrics Windows soft-

ware package EasyReg International, which can be down-
loaded from

http://www.persona/hxb1l/EASY REG.HTM
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Choicesto make
The WICM test requiresto makeanumber of choices, namely
regarding

e the absolutely continuous (with respect to Lebesgue mea-
sure) probability measure s on T,

e the compact set T itself, and

e the positive sequence {v; }° ;.

Under the null hypothesisthat the time seriesregression model
IS correctly specified these choices do not matter too much.
However, they do affect the finite sample power of the test.

The questionis:
Canwechoose T, p and/or {~; }7°, such that the finite sam-
ple power of the WICM is”optimal” in some sense?



The probability measure 1

Boning and Sowell (1999) have shown that with 1 the uni-
form probability measure on T’ the ICM test in Bierens and
Ploberger (1997) is optimal in the sense of having the great-
est weighted average local power.

Also, with 1 the uniform probability measureand T ahyper-
cube the WICM test statistic has a closed form expression.

Therefore, it is recommended to choose for p the uniform
probability measureon 1.



The compact set T
In Bierens (1982, 1984) it was recommended to choose T
around the origin of the Euclidean space involved.

In Bierens (1990) it was shown that the ICM test remains
consistent for any compact set T with positive L ebesgue mea-
sure.

However, for linear and nonlinear regression model s with an
additive constant term (as is usual the case) it is well-know
that the least squares residuals sum up to zero, regardless
whether the model is correctly specified or not.

Conseguently, in the AR(1) case the empirical processes

n k
T~ 1 AN .
Win(T1, T2y oo T) = —\/_ E Usexp | 1. g TjCI)(Yt_j) :
L — j=1

areidentically zeroin (7, 7, ....7;) = 0.



Therefore, in general it seems better to choose T away from
the origin of its Euclidean space.

In the AR(1) case, under H;, we have;

dpe(m1)du(72)...du(7y)

2

du(71)dp(72)...du(Ty)

Z Uy exp (i Z qu)(Y}m))
k
E |U;exp (i Z qu)(}/;m))

The latter expression isafunction of 1.

Can we choose T such that thisexpressionis”maximal”, in
some sense?



For example, inthe AR(1) case, let for given ¢ > 0,

T=TE)=[-ct+d €E

where the set = Is compact.

Denote

T\n(g):
— cexp | 1 T @Y, T To)...du(T
;%/m) ol p<mZ oY, >) dp(1)dp(72)... (i)

where 1 is now the uniform probability measure on T(&).

2

Then under Hy,

where

Z% / W11, T2, o) |” A7) Apa(72).... O (7)



Under Hq,
sup T, () /n = supn(€) > 0

Ee= Ee=
where

n) =

00 k
Z Vi / Usexp | 1 Z Tn®(Yi_m)
k=1 T ()" —

The bootstrap procedure can be adapted to sup,.= 15,(§).

2

I due(71)dp(T2)...du ()




The sequence of weights

The ideal weight sequence {~;}:>, for the WICM test is
suchthat under H1, ;. ismaximal when ;. ismaximal, where
inthe AR(1) case,

k
N = / U, exp <i Z qu)(lﬁm))
T m=1

But we don’'t know the n;.’s.

2

E du(71)dp(72)...du(T)

However, what we can do is to make the v;’s dependent on
parameters.

For example, choose for ;. the probability of the Poisson(w)

distributionfor £ — 1, i.e,,

wk—l

Ti(w) = exp(—w)(k I keN,

with w confined to a compact set 2 in (0, oo).




Then the WICM test statistic takes the form
L,
= (W) B
k=1

It can be shown that
sup Ty, (w) = sup > ~i(w) By under Hy,

supT( /n—>sup2*yk )k > 0 under H;.

weld wEQ

Thebootstrap procedure can also beadapted tosup,,- fn(w) :



Thel CM test for conditional distributions:
Thel.l.d. case

A wide range of parametric econometric cross-section mod-
els take the form of a conditional distribution specifications

Pr[Y < y|X] = F(y|X;60)

where X isavector of stochastic covariates, Y isamultivari-
ate or univariate dependent variable, and 6, is the vector of
"true” parameters, to be estimated by maximum likelihood.

For example, if Y representscount data, with Pr|Y = y] > 0

foral y € {0} UN, aconvenient (and therefore popular)

specification of its conditional distribution isthe conditional

Poisson model

PriY = y[X] = exp (—exp((1,X")0h)) . exp(y.(1, X")00)/y,
y = 0,1,2,........



The literature on consistent testing of the validity of these
kind of conditional distribution modelsis very limited, asit
consists only of three papers:

Andrews, D.W,, 1997, A conditiona Kolmogorov test. Econo-
metrica 65, 1097-1128.

Zheng, J.X., 2000, A consistent test of conditional paramet-
ric distributions. Econometric Theory 16, 667-691.

Bierens, H. J., and Wang, L., 2012, Integrated conditional
moment testsfor parametric conditional distributions. Econo-
metric Theory 28, 328-362.



Andrews (1997) conditional Kolmogorov (CK) test statistic
takes the form

max Z ( (Y, < V) (ij,E)) I(X; < X))

1<i<n

where F (y\X : 9) Isthe estimated conditional distribution model
and I(.) istheindicator function.

A problem with the CK test is that if the dimension of X
IS large then the events X; < X; may never happen, even
In large samples, so that then the CK test statistic becomes
Zexo.

Zheng’'s (2000) test isbased on comparison of estimated para-
metric conditional densities with their corresponding ker-
nel density estimates, and istherefore confined to absolutely
continuous distribution specifications only.



The Bierens-Wang (2012) paper avoids these limitations by
comparing an estimate of the joint characteristic function of

(Y, X') implied by the estimated model F'(y|.X; ) with the
corresponding empirical characteristic function.

Inthistalk | will focusonthecaseY € R, but the approach

In Bierens-Wang (2012) carries over tothecaseY € R™ as
well.



The conditional distribution function of Y given X Is as-
sumed to belong to a given parametric family F(y|X;0),
0 € O, where © C R? isagiven compact and convex para-
meter space.

The support of F'(y|.X; #) does not depend on 6.
The null hypothesis to be tested is that
Hy : Thereexistsa, € © such that
Pr sup | PY < 51X = P01 60)] =0 = 1
Y

against the alternative hypothesisthat H isfase, i.e.,
H, : Fordl 8 € ©,

Pr lsup|Pr[Y <y|X] - F(y|X;0)|=0| <1
y




Throughout it will be assumed that the parameter vector 6,
under Hj Is estimated consistently by maximum likelihood
(ML), with ML estimator 6,,, on the bases of arandom sam-
ple {(Y}, X;)}7_; from (Y, X) € R x R".

Under H; the estimator 577, becomes a Quasi-ML (QML) es-
timator, which will also converge in probability to apoint in
©, and without loss of generality we may denote this point
by 6, as well.

AN

Thus, in either case, plim,,_., 60, = 6,.

Hence, H, and H; now read
Hy : Pr [sup, | Pr[Y < y|X] — F(y|X;6)| = 0]
Hy : Pr [sup, | Pr[Y < y|X] — F(y|X;6)] =0
respectively.



Since conditional distributions are equal if and only if their
conditional characteristic functionsare equal, these hypothe-
ses are equivalent to

Hy: Pr

H1:Pr

sup

| TER

sup
TeR

E

E

exp(i.7.Y)

exp(i.7.Y)

X

X

respectivély, wherei = /—1.

| — /eXp(i.T.y)dF(y
| — /eXp(i.T.y)dF<y

X; 00)

X; 6y)

Similar to the ICM test for regression model these hypothe-
ses are equivalent to

Hy : Elexp(i.t.Y)exp(i.é’X)] = F

forall (1,¢) € R x R”,

Hy : Elexp(i.7.Y)exp(i.é’X)| # E

for some (7, &) € R x R”,

/ exp(i.7.y)dF (y|X; 6p) exp(i.£'X)

/ exp(i.7.y)dF (y|X; 6p) exp(i.£'X)




Moreovey, if Y and X are bounded then under H; the set
S = {(T, §) € R x RY: Eexp(i.1.Y) exp(i.& X)]

— F [ / exp(i.7.y)dF (y| X; 0p) exp(i.£’ X )] }

has zero L ebesgue measure and is nowhere dense, whereas
under H,
S =R x R"



If Y and/or X are not bounded then we may replace Y, y
and X in the complex exp(.) functionsby ¥(Y'), ¥(y) and
(X)), respectively, where ¥ : R — R and ® : R — R*
are bounded one-to-one mappings with Borel measurablein-
verses, so that .S becomes

5 - {<T, £) R x R : B exp(im (V) expli.£ D(X))

_F [ / exp(i. 70 (y))dF (y] X 6) exp(i.§’<I>(X))] }

Again, under H; thisset S has zero Lebesgue measure and
IS nowhere dense, whereas under H,

S =R x R".
However, for thetime being let us assumethat Y and X are
bounded, and that the conditional characteristic function

o(r1X:6) = [ expliry)dF(y/X.0
has a continuous closed form expressionin — and 6.



The result that under H; the set
S = {(1,§) ERxR": Eexp(ir.Y)exp(i.6'X)]
= Ep (7]X;00) exp(i.£'X)]}
has zero L ebesgue measure and is nowhere dense now sug-

gests that the validity of the null hypothesis can be consis-
tently tested by an ICM test of the form

T, = 7, 6)Pdu(r

e LGRS}
where

o Z,(1,6) = 2= 3" (exp(i7.Y)) = (7| X; 6,)) expli€ X;).

e T and = are compact subsets of R and R”, respectively,
with positive L ebesgue measure, and

o (7, &) isthe uniform probability measureon T x =.



It follows straightforwardly that under H;,

Zn(7,€) /v > E(exp(i.7.Y) — ¢ (7]X: 6p)) exp(i.£ X))
— g<7_7 5)7 9')/7
uniformly on T x =, where¢(7, &) # 0on (T x =)\.S, hence

Ton=[ |z VaPdure) 5 [l oPdutre) >0

Tx=
In order to derive the null distribution of the ICM statistic
T, — / Z,(r, €)2du(r, €),
Tx=

write Z,,(7, &) as

Z,(r€) = 2= 3 (explirY)) - plr]X,i00) exp(i£X)

> Vi (el71X558) — ol71X:00)) explig X



Similar to the regression case we can write

=SV (elr1X8) — olr]X:00)) explig X,

:b(ﬂf)’A 1\/_ZA€ Y}ijaHO)—’_OP( )

under H, and standard M L conditions, where

e /(Y, X;0)isthelog-likelihood function,

e AL(Y, X;0y) = 0L(Y, X;0)/00],_, isthescorevector,
o A=Va(Al(Y, X;0,)),

o b(7,€) = E[Ap (7]X;600) exp(i.£ X)),

o Ap (7]X;0) = 0p (7|X;0) /00| 4_, , with

o o (7|X;0) = [exp(iT.y)dF(y|X,0), and

e theo,(1) termisuniformon T x =.



Thus, denoting

~

1 n
Zn<7_7 g) — % Z ¢(Ta §|Y37 Xj)7
=1

where
o(1, €|V, X) = (exp (i.7'Y) — o (7]X; 0p)) exp (1.£'X)
—b(1, ) ATIAL(Y, X ; 6p)
it follows that under H,,

ﬁ=/|Z@M@M@+%D
Tx=



Thus, denoting

~

1 n
Zn<7_7 g) — E ¢(7_7§|Y77Xj)7
Vn
j=1

where
o(1, €|V, X) = (exp (i.7'Y) — o (7]X; 0p)) exp (1.£'X)
—b(1, ) ATIAL(Y, X ; 6p)
it follows that under H,,

7= | 12 oFdulr€) + o1
Moreover, it can be shown that under Hy, Z,,(r, £) converges
weakly to a zero mean complex valued Gaussian process

Z(t,é)onT x =, sothat

AN

T, 47 = Z(r, €)2du(r, €).
/\ (r,€)Pdu(r,



Bootstrap procedure
The bootstrap procedure in the present caseis quite different
than for regression models.

The current bootstrap procedure is an adaptation of the ap-
proach in:

Li, FE & G. Tkacz, 1996, A consistent bootstrap test for con-
ditional density functions with time-series data, Journal of
Econometrics 133, 863-886,

as follows.



Giventhebootstrap samplesize M, andforeachm = 1,2, ..., M,

e Generate random drawingsY’, ; from the estimated condi-
tional model F'(y|X;;0,),5 = 1,2, ....,n, giventhe actual
X;’'sin the sample.

e Compute the ML estimator 5m,n on the basis of the boot-
strap sample { (Y, ;, X;) 7.

e Compute the corresponding ICM test statistic fm,n.

Then under H,
(T Ton Tons TVM,n)/ T Ty, Ty,
where T, 17,15, ..., Ty, arei.l.d., whereas under H;,
(Ton To TM,H)' ST Ty LT
where 77, 15, ..., T, arel.i.d. (but not asT')

As before, bootstrap critical values can now bebasedonthe
quantilesof theempirical distributionfunctionof 1 ,,, 15 ,,, ..., Ty p.



Thesmulated ICM test
The theoretical conditional characteristic function

o(r1Xi6) = [ expliry)dF(u]X.6).
poses computational challenges in various ways.

First, some conditional distributionshave no closed-form ex-
pression for their characteristic functions, especialy if Y has
to be transformed first by a bounded one-to-one transforma-
tion.

But evenfor distributionswith closed-form characteristic func-
tionstheintegration over 7 hasto be carried out numerically,
which is time consuming.

Moreover, the need for numerical integration will slow down
the bootstrap too much.



To cope with these problems, a Simulated Integrated Condi-
tional Moment (SICM) test isproposed, inwhich the process
Zn(1,€) inthe exact ICM test statistic is replaced by either

. 1 < , L :

Z)(r,€) = % Z (exp(l.T.Yj) — exp(l.T.Y})) exp(i.£' X))
j=1

If Y and X are bounded, or

297, = 2= 3 (explir () — explir- (V) expli0(,)

if not, where Y; isarandom drawing from the estimated con-
ditional distribution F'(y|X;; ), and in the latter case V(.)
and ®(.) are bounded one-to-one mappings.

The SICM test statistic isthen

AN

7o) — / 29, €)2du(r, ).
Tx=



A practical advantage of the SICM test that ﬁ(f) hasaclosed-
form expression if T isan interval and = is a hyper-cube.

All the previous results for the exact ICM test carry over to
the SICM test, including the bootstrap, albeit with adifferent
null distribution.

Asto thelatter, and assuming that Y and X are bounded, we
can write

Z@(T,f) = \/_Z exp 17'Y)—exp(17'Y)) exp(i.£'X;)

~

— ZTL(T7 g) o ZT(zS) (7_7 5)7 where

Zu(,€) = & Xy (explirY)) = [ expiry)dF(y|X;,0)) exp(ig' X)),
Z(r€) = =3, (exp(i.f.ifj) — [ exp(iry)dF(y|X;, é)) exp(i.E'X).



Under H, the empirical process Z,(, &) converges weakly
to azero-mean complex valued Gaussian process Z (1, &) on
T x =, and theempirical process 7 (1, &) convergesweakly
to a zero-mean complex valued Gaussian process Z¥)(r, &)
on Y x =, where Z(r, &) and Z®) (1, ) are independent.

Conseguently, under H,
TV = /Y NZPoPdu(r,e) S | 12(r,6)— 297, )P du(r, €)

Tx=
whereas in the case of the exact ICM tedt,
~
7,5 | _12(r.€)Pdu(r, )
X =

The previous bootstrap procedure can easily adapted to the
SICM test.



The WICM test for conditional distribu-
tions. The stationary time series case

In

Bierens, H. J., and Wang, L., 2017, Weighted Simulated | nte-
grated Conditional Moment Testsfor Parametric Conditional
Distributions of Stationary Time Series Processes, Econo-
metric Reviews 36, 103-135,

we propose a consistent weighted simulated integrated con-
ditional moment (WSICM) test of the validity of a paramet-
ric conditional distribution specification for time series data,
by combining the WICM test for time series regression with
the SICM test for conditional distributionsin thei.i.d. case.



For example, let Y; be a strictly and covariance stationary
univariate time series process. Without loss of generality we
may assumethat Y; isbounded, as otherwise we may replace
Y; by ¥(Y;) with U a bounded one-to-one transformation.

Let F; 1(y|6y) be a parametric specification of the condi-
tional distribution function

Pr Y, <ylF ]
where ' isthe o-algebragenerated by the sequence {Y;_; }2°,.

In particular, suppose that F; 1(y|6,) depends on a finite

......

S0 that we can write
Fi_1(y|0o) = F(y| Xi—1%;00)



Moreover, suppose that Y; isobserved fort = 1 — L, to
t = n, where L,, = o(n) — oo asfor the WICM test, with
n solargethat L,, > k

Furthermore, supposethat ¢, isestimated by theML or QML
estimator 6,,, where in both cases, 6, = plim,,_, 0,,.

Then the null hypothesisto be tested is that

Hy : Pr |sup ‘PI’ Y <ylFL] = Fyl X1 90)} =0] =1
)

against the alternative that H, isfalse.



The WSICM test ~

Foreacht = 1,2, ..., n,draw randomlyan?tfrom F(y| Xi—14;6n),
given X;_ .

Denote for m = 1,2,...,Ln,

Zn,m<7_7 517 527 .- gm) \/— Z (exp LT. 3/75) _ eXp<1 T. Yi))

X exp 1. Zng;_j
j=1

~

Bun= [ 1 Zumry6a, a0 ()60 e, Gz,

where Y and = are compact setsin R with positive L ebesgue

measure, and p.y and pi= areuniform probability measureson
T and =, respectively.



Then similar to the WICM test for time series regressions,
the test statistic of the WSICM test takes the form

L,
Tn — Z 'VmBn,m
m=1
where the ,,'s are positive and satisfy > ° | v, < oo.

The asymptotic properties of T, are similar to the SICM test
inthei.i.d. case, and so isthe bootstrap procedure involved.



THANK YOU!



