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Introduction
As is well-known, misspecification of parametric economet-
ric models may lead to incorrect inference about the model
parameters.

In particular, if a parametric econometric model is misspeci-
fied the usual test for parameter restrictions such as the t-test,
the Wald, Lagrange multiplier and likelihood ratio tests do no
longer have their standard null distributions.

Moreover, if a misspecified model is used for forecasting,
their conditional forecasts will become biased and inefficient.

Therefore, it is of utmost importance to test for model mis-
specification before using the model for inference and fore-
casting.



Regression models aim to represent conditional expectations.

Therefore, a cross-section regression model is correctly spec-
ified if the conditional expectation of the error term given the
regressors is zero with probability 1.
Thus, strictly speaking, the model is misspecified if the latter
probability is less than 1.

In the time series case a regression model is correctly speci-
fied if the conditional expectation of the error term given the
exogenous variables and all lagged dependent and exoge-
nous variables is zero with probability 1.
Again, the model is misspecified if the latter probability is
less than 1.

In other words, time series regression errors need to be mar-
tingale differences.



Now the following questions arise:

• Can we (asymptotically) distinguish the hypothesis that a
conditional expectation equals zero with probability 1 and
the alternative hypothesis that this probability is less than
1 (for example 0.999)?

• If so, how can we devise tests for the null hypothesis that
a regression model is correctly specified against the alter-
native that the null hypothesis is false, such that these tests
are consistent, i.e. their asymptotic power is 1?

The answer to these questions is: Yes we can!



My paper

Bierens, H.J., 1982, Consistent Model Specification Tests,
Journal of Econometrics, 20, 105-134.

and its companion paper

Bierens, H.J., 1984, Model Specification Testing of Time Se-
ries Regressions, Journal of Econometrics, 26, 323-353

are to the best of my knowledge the first papers ever to pro-
pose consistent tests of the null hypothesis that the functional
form of a regression model is correctly specified as a condi-
tional expectation, against all deviations from the null hy-
pothesis.



However, at that time I did not know how to derive the limit-
ing null distributions of the test statistics involved, but I did
know how to consistently estimate their expectations under
the null hypothesis.

Therefore, in these papers I proposed to use upper bounds of
the critical values based on Chebyshev’s inequality for first
moments.

In

Bierens, H.J.,1990, A Consistent Conditional Moment Test
of Functional Form, Econometrica, 58, 1443-1458,

I finally figured out what the null distribution of the test in
Bierens (1982) looks like, but I was still not able to derive
its critical values.



Up to the early nineties the only papers on consistent model
specification testing were Bierens (1982, 1984, 1990).
After 1990 two strands of econometric and statistical litera-
ture emerged:

(1) De Jong (1996), Bierens and Ploberger (1997), Stute (1997),
Stinchcombe and White (1998), Boning and Sowell (1999),
Fan and Li (2000) and Escanciano (2006) for integrated
conditional moment (ICM) and related tests.

(2) Wooldridge (1992), Yatchew (1992), Härdle and Mam-
men (1993), Gozalo (1993), Horowitz and Härdle (1994),
Hong and White (1995), Li and Wang (1998), Zheng (1996)
and Lavergne and Vuong (2000), among others, for tests
based on comparisons of parametric functional forms with
corresponding nonparametric or semi-parametric estimates.



In

Bierens, H.J. and Ploberger, W., 1997, Asymptotic Theory
of Integrated Conditional Moment Tests, Econometrica, 65,
1129-1151,

Werner Ploberger and I showed for a version of the integrated
conditional moments (ICM) test in Bierens (1982) that

• the ICM test has nontrivial power against
√
n local alter-

natives, i.e., alternatives of the form
Y = f(X, θ0)+g(X)/

√
n+U,with Pr (E[U |X] = 0) = 1.

• the ICM test is admissible, i.e., there does not exist an uni-
formly more powerful test, and

• the null distribution of the ICM test takes the form of a
weighted sum of independent χ21 distributed random vari-
ables, but with case-dependent weights.



With the results in Bierens and Ploberger (1997) at hand,
my Ph.D. student Li Wang and I have been able to extend
the approach in Bierens (1982,1984) to consistently testing
the correctness of parametric conditional distribution mod-
els, for cross-section models in:

Bierens, H. J., and Wang, L., 2012, Integrated Conditional
Moment Tests for Parametric Conditional Distributions, Econo-
metric Theory 28, 328-362,

and for time series models in

Bierens, H. J., and Wang, L., 2017, Weighted Simulated Inte-
grated Conditional Moment Tests for Parametric Conditional
Distributions of Stationary Time Series Processes, Econo-
metric Reviews 36, 103-135.



In this talk I will focus on the papers Bierens (1982,1984)
and Bierens and Wang (2012,2017), together with their up-
dates in:

Bierens, H.J. 2017, Econometric Model Specification: Con-
sistent Model Specification Tests and Semi-Nonparametric
Modeling and Inference. World Scientific Publishers, Sin-
gapore.

This book contains reprints of the relevant published papers
up to 2014, where the papers on consistent model specifi-
cation tests come with extensive addendums, bringing these
papers up to date.



Cross-section regression models
Given a dependent random variable Y and a random vector
X ∈ Rk of explanatory variables, a parametric nonlinear
regression model takes the form

Y = f(X, θ0) + U,

where

• E[Y 2] <∞;
• θ0 is an unknown parameter vector contained in the interior

of a given convex and compact parameter space Θ ⊂ Rm,
• f(x, θ) is an a priori chosen continuous function onRk×Θ

satisfying E[(f(X, θ))2] <∞ for all θ ∈ Θ,

• U is the error term.



Without loss of generality we may define
θ0 = argmin

θ∈Θ
E
h
(Y − f (X, θ))2

i
regardless whether the model is misspecified or not.

Then the model Y = f(X, θ0) + U is correctly specified if
H0 : Pr (E[U |X] = 0) = 1,

which is equivalent to
H0 : Pr (E[Y |X] = f(X, θ0)) = 1,

and the model is misspecified if
H1 : Pr (E[U |X] = 0) < 1,

which is equivalent to
H1 : Pr (E[Y |X] = f(X, θ0)) < 1.



The question is: How can we test the correctness of the func-
tional specification of the model Y = f(X, θ0)+U such that
the test has asymptotic power 1 againstH1.

My paper Bierens (1982) is the first paper ever to address
this problem.

The approach in that paper is based on the uniqueness of the
Fourier transform of a function.

The Fourier transform of the function
g (X) = E[U |X],

takes the form
ϕ(τ ) = E [g (X) exp (i.τ 0X)]

= E [U exp (i.τ 0X)] , τ ∈ Rk, i = √−1.



Then
sup
τ∈Rk

|E[U exp(i.τ 0X)| = 0 underH0,

sup
τ∈Rk

|E[U exp(i.τ 0X)| > 0 underH1.

Question:

Where to look for a τ ∈ Rk such thatE[U exp(i.τ 0X)] 6= 0 if
H1 is true?



My answer in 1982:

• IfX is bounded then underH1,
∀δ > 0, sup

||τ ||≤δ
|E [U. exp (i.τ 0X)]| > 0.

• IfX is not bounded, letΦ : Rk → Rk be a bounded one-to-
one mapping with Borel measurable inverse Φ−1, so that
E[U |X] = E[U |Φ(X)] with probability 1. For example,
let

Φ(x) = (arctan(x1), ...., arctan(xk))
0 .

Then underH1,
∀δ > 0, sup

||τ ||≤δ
|E [U. exp (i.τ 0Φ(X))]| > 0.

Thus underH1,
E [U. exp (i.τ 0Φ(X))] 6= 0

for a τ in an arbitrary neighborhood of the origin of Rk.



My answer in 1990:
Similar to Bierens (1990), we have the more general result
that underH1 the set

S =
©
τ ∈ Rk : E [U. exp (i.τ 0Φ(X))] = 0ª

has Lebesgue measure zero and is nowhere dense, whereas
of course underH0,

S = Rk.
This implies that for any compact subset Υ of Rk with posi-
tive Lebesgue measure, and with µ(τ ) be the uniform prob-
ability measure on Υ, for example,Z

Υ

|E [U. exp (i.τ 0Φ(X))]|2 dµ(τ ) = 0 underH0,Z
Υ

|E [U. exp (i.τ 0Φ(X))]|2 dµ(τ ) > 0 underH1.



These results suggest that, given a random sample {(Yj,Xj)}nj=1
from (Y,X), a consistent test can be based on the integrated
conditional moment (ICM) statistic

bTn = Z
Υ

¯̄̄cWn(τ )
¯̄̄2

dµ(τ ), where

cWn(τ ) =
1√
n

nX
j=1

bUj exp (i.τ 0Φ(Xj))
with bUj the NLLS residual.

In Bierens (1982) I showed thatbTn = Z
Υ

¯̄̄cWn(τ )
¯̄̄2

dµ(τ ) d→ T underH0,bTn/n p→ η > 0 underH1.
However, at that time I was only able to derive a consistent
estimate of E[T ] but I could not derive the limiting null dis-
tribution T itself.



Therefore, I proposed to derive upper bounds of the critical
values of the ICM test on the basis of Chebyshev’s inequality
for first moments.

This is how far I got in 1982.



The null distribution of the ICM test
It took me until 1990 to figure out what the nature of T is,
namely, similar to Bierens (1990) it follows that under H0
the empirical processcWn(τ ) =

1√
n

nX
j=1

bUj exp (i.τ 0Φ(Xj)) ,
converges weakly to a zero-mean complex-valued Gaussian
processW (τ ), so that by the continuous mapping theorem,bTn = Z

Υ

¯̄̄cWn(τ )
¯̄̄2

dµ(τ ) d→ T =

Z
Υ

|W (τ )|2 dµ(τ )

The zero mean complex-valued Gaussian process W (τ ) is
characterized by its covariance function

Γ(τ1, τ2) = E
h
W (τ1)W (τ2)

i
,

where the bar denotes the complex-conjugate.



Similar to symmetric positive semi-definite matrices, this
covariance function

Γ(τ1, τ2) = E
h
W (τ1)W (τ2)

i
has countable many nonnegative eigenvalues and correspond-
ing orthonormal eigenfunctions.

This eigenvalue problem reads:
Find an eigenvalue λ and corresponding nonzero eigenfunc-
tion ϕ(τ ) such thatZ

Υ

Γ(τ1, τ2)ϕ(τ2)dµ(τ2) = λϕ(τ1) for all τ1 ∈ Υ.

This problem has countable many real valued nonnegative
solutions λi, i ∈ N, with corresponding orthonormal eigen-
functions ϕi(τ ),Z
Υ

|ϕi(τ )|2dµ(τ ) = 1,
Z
Υ

ϕi1(τ )ϕi2(τ )dµ(τ ) = 0 if i1 6= i2.



According to the complex version of Mercer’s theorem,

• The covariance function Γ(τ1, τ2) can be written as

Γ(τ1, τ2) =
∞X
m=1

λmϕm(τ1)ϕm(τ2),

hence
P∞

m=1 λm =
R
Υ Γ(τ, τ )dµ(τ ) <∞.

• The eigenfunctionsϕi(τ ) form a complete orthonormal se-
quence in the complex Hilbert space L2(µ).

Since W ∈ L2(µ), the latter property implies that we can
write

W (τ ) =
∞X
i=1

aiϕi(τ ),

where
ai =

Z
Υ

W (τ )ϕi(τ )dµ(τ ),

which are zero mean complex valued Gaussian random vari-
ables.



Then by the first Mercer property,

E[ajai] =

Z
Υ

Z
Υ

ϕj(τ1)E[W (τ1)W (τ2)]ϕi(τ2)dµ(τ1)dµ(τ2)

=
∞X
m=1

λm

Z
Υ

ϕj(τ )ϕm(τ )dµ(τ )
Z
Υ

ϕi(τ )ϕm(τ )dµ(τ )

=
∞X
m=1

λmI(j = m)I(i = m) = λiI(i = j)

Denoting

gm =
am√
λm

=

R
ΥW (τ )ϕm(τ )dµ(τ )√

λm
if λm > 0

we can now write

W (τ ) =
∞X
m=1

p
λmgmϕm(τ ),

where the gm’s are independent zero mean complex valued
normal random variables with variances

E [gmgm] = E
£|gm|2¤ = 1.



Therefore,

T =

Z
Υ

|W (τ )|2 dµ(τ ) ∼
∞X
m=1

λm|gm|2,

E[T ] =

Z
Υ

Γ(τ, τ )dµ(τ ) =
∞X
i=1

λi <∞.

It can be shown that
|gm|2 ∼ κme

2
1,m + (1− κm) e

2
2,m for some κm ∈ [0, 1],

where the ei,m’s are i.i.d. N (0, 1), and κm and 1 − κm are
the eigenvalues of Var((Re[gm], Im[gm])0) .

Thus,

T =

Z
Υ

|W (τ )|2 dµ(τ ) ∼
∞X
m=1

λm|gm|2

∼
∞X
m=1

λmκme
2
1,m +

∞X
m=1

λm (1− κm) e
2
2,m =

∞X
m=1

ωme
2
m, say,

where the em’s are i.i.d. N (0, 1).



Hence,
T

E[T ]
∼
P∞

m=1 ωme
2
mP∞

m=1 ωm
≤ sup

n≥1
1

n

nX
m=1

e2m = χ21, say,

where the inequality follows from a result in Bierens and
Ploberger (1997).

Upper bounds of the critical values
Therefore, given a consistent estimator bΓn(τ, τ ) of Γ(τ, τ ),
and denoting

eTn =
R
Υ

¯̄̄cWn(τ )
¯̄̄2

dµ(τ )R
Υ
bΓn(τ, τ )dµ(τ )

we have
lim sup

n→∞
Pr
heTn > yi ≤ Pr £χ21 > y¤ .

Thus, upper bounds of the critical values of eTn can be based
on the quantiles of the distribution of χ21.



These upper bounds, c(α) say, of theα×100% critical values
for α = 0.01, α = 0.05 and α = 0.10 have been calculated
in Bierens and Ploberger (1997), i.e.,

c(0.01) = 6.81, c(0.05) = 4.26, c(0.10) = 3.23.



Bootstrap critical values
Instead of using upper bounds of the critical values, it is pos-
sible to approximate the actual critical values of

T =

Z
Υ

|W (τ )|2 dµ(τ )

via a parametric bootstrap method, as follows.

First, we need to eliminate the estimation error
f(Xj,bθn)− f(Xj, θ0)

from the empirical processcWn(τ ) =
1√
n

nX
j=1

bUj exp (i.τ 0Φ(Xj))
=

1√
n

nX
j=1

Uj exp (i.τ
0Φ(Xj))

− 1√
n

nX
j=1

³
f(Xj,bθn)− f(Xj, θ0)´ exp (i.τ 0Φ(Xj))



In particular, construct a complex empirical process

Wn(τ ) =
1√
n

nX
j=1

Ujφj,n(τ ),

such that cWn(τ ) = Wn(τ ) + op(1) uniformly in τ ∈ Υ,
where the new weight functions φj,n(τ ) depend on the Xi’s
in the sample only, next to τ of course.

For example, if the null model is linear:
Yj = (1, X

0
j)θ0 + Uj

then cWn(τ ) =Wn(τ ) =
1√
n

Pn
j=1Ujφj,n(τ ) where

φj,n(τ ) = exp (i.τ 0Φ(Xj))− bn(τ )0A−1n
µ
1
Xj

¶
, with

An =
1

n

nX
i=1

µ
1
Xi

¶
(1, X 0

i), bn(τ ) =
1

n

nX
i=1

µ
1
Xi

¶
exp (i.τ 0Φ(Xi)) .



Next, for given bootstrap sample sizeM andm = 1, 2, ...,M ,
letfWm,n(τ ) =

1√
n

nX
j=1

εm,j bUjφj,n(τ ), eTm,n = Z
Υ

¯̄̄fWm,n(τ )
¯̄̄2

dµ(τ ).

where the εm,j’s are i.i.d. N (0, 1).

Then underH0,³bTn, eT1,n, eT2,n, ..., eTM,n´0 d→ (T0, T1, T2, ..., TM)
0

where the Tm’s for m = 0, 1, ...,M are i.i.d. T, whereas
underH1,³eT1,n, eT2,n, ..., eTM,n´0 d→ (T ∗1 , T

∗
2 , ..., T

∗
M)

0

where the T ∗m’s for m = 1, ...,M are i.i.d. (but no longer
distributed as T ).
The bootstrap critical values of the ICM test can now be
based on the quantiles of the empirical distribution function
of eT1,n, eT2,n, ..., eTM,n.



Standardization of X in Φ(X)
As suggested before, a suitable choice for Φ(X) is

Φ(X) = (arctan(X1), ...., arctan(Xk))
0

whereXi is component i ofX .

However, ifXi takes large positive values then for these val-
ues arctan(Xi) ≈ π/2.

For example suppose that the data come from a household
survey, whereXi is the monthly dollar income, and suppose
that Xi > 100 for all observations. Then arctan(Xi) >
1.56 whereas π/2 ≈ 1.57, so that arctan(Xi) is virtually
constant.

But in this case conditioning on X is effectively no longer
equivalent to conditioning on Φ(X), which is detrimental to
the finite sample power and even the consistency of the ICM
test.



To avoid this problem, it is recommended to standardize the
Xi’s in Φ as eXi,n = (Xi −Xi,n)/Si,n
where Xi,n is the sample mean and Si,n is the sample stan-
dard error ofXi, before taking the arctan(.) transformations.

Then the effect on the asymptotic properties of the ICM test
is the same as in the case where the Xi’s would have been
standardized as

Xi = (Xi −E[Xi])/
p

var(Xi).



Time series regression models
Time series regression models take the form

Yt = ft−1 (θ0) + Ut
where the response function ft−1 (θ) is a parametric specifi-
cation of the conditional expectation

E (Yt|Zt−1, Zt−2, Zt−3, ....) , where Zt = (Yt,X 0
t)
0,

withXt a possible vector of exogenous variables.

Therefore, to test the validity of the specification ft−1 (θ)
consistently one has to test the martingale difference hypoth-
esis

E (Ut|Zt−1, Zt−2, Zt−3, ....) = 0

Most papers in the literature ’’solve’’ this problem by testing
E (Ut|Zt−1, Zt−2, Zt−3, ....Zt−`) = 0

only, for some fixed `.
However, these tests are not consistent.



The AR(1) model as benchmark model
In this talk I will explain the Weighted ICM (WICM) test in
the context of an AR(1) model.

Thus, given a strictly and covariance stationary time series
process Yt, the null hypothesis to be tested is that
H0 : E[Yt|Yt−1, Yt−2, Yt−3, .....] = α0 + β0Yt−1 a.s.,

where
θ0 = (α0,β0)

0 = arg min
(α,β)0∈R×(−1,1)

E
h
(Yt − α− βYt−1)

2
i
, |β0| < 1.

Denoting the error term by Ut = Yt − α0 − β0Yt−1 and the
σ-algebra generated by the sequence {Yt−i}∞i=1 by

F t−1−∞ = σ ({Yt−i}∞i=1) ,
the null hypothesis to be tested is that Ut is a martingale dif-
ference process w.r.t. the filtration F t−1−∞:

H0 : Pr
¡
E
£
Ut|F t−1−∞

¤
= 0
¢
= 1.



Now suppose that this null hypothesis is false:
H1 : Pr

¡
E
£
Ut|F t−1−∞

¤
= 0
¢
< 1.

How can we distinguish betweenH0 andH1 in practice?

The problem is that both hypotheses involve conditional ex-
pectations relative to infinitely many lagged Yt’s, whereas in
practice we only observe a finite sample from {Yt}∞t=−∞.

However, by a well-known martingale convergence result
we have

Pr
³
lim
m→∞E

£
Ut|F t−1t−m

¤
= E

£
Ut|F t−1−∞

¤´
= 1,

where
F t−1t−m = σ ({Yt−i}mi=1)

is theσ-algebra generated by the finite sequenceYt−1, Yt−2, ..., Yt−m.



Consequently,H1 is equivalent to
H1 : ∃k ∈ N : Pr

¡
E
£
Ut|F t−1t−k

¤
= 0
¢
< 1.

Of course, this k is unknown.

But given such a k,
H1(k) : Pr

¡
E
£
Ut|F t−1t−k

¤
= 0
¢
< 1

implies, similar to the i.i.d. case, that
E
h
Ut exp

³
i
Pk

m=1 τmYt−m
´i
6= 0

for some (τ1, τ2, ..., τk)0 ∈ Rk.

Moreover, given a bounded one-to-one mapping Φ : R→ R
with Borel measurable inverse, for exampleΦ(y) = arctan(y),
H1(k) implies that

E
h
Ut exp

³
i
Pk

m=1 τmΦ(Yt−m)
´i
6= 0 a.e. on Rk.



Consequently, for any compact set Υ ⊂ R with positive
Lebesgue measure, for example, let

Υ = [−c, c] for some constant c > 0,
and with µ the uniform probability measure on Υ, H1(k)
implies that

ηk =

Z
Υk

¯̄̄̄
¯E
"
Ut exp

Ã
i
kX

m=1

τmΦ(Yt−m)

!#¯̄̄̄
¯
2

dµ(τ1)dµ(τ2)...dµ(τk) > 0

Therefore, given any sequence of positive constants γk sat-
isfying

P∞
k=1 γk < ∞, and any subsequence Ln of n such

that Ln = o(n)→∞ as n→∞, H1 itself is equivalent to

H1 : lim inf
n→∞

LnX
k=1

γkηk > 0

whereasH0 is equivalent to

H0 : sup
n∈N

LnX
k=1

γkηk = 0.



The WICM test
Without loss of generality we may assume that Yt is observed
for t = 1− Ln to t = n.

Then for k ≤ Ln the martingale difference null hypothesis
can be tested against the specific alternative

H1(k) : Pr
¡
E
£
Ut|F t−1t−k

¤
= 0
¢
< 1

using the ICM test statisticbBn,k = Z
Υk

¯̄̄cWk,n(τ1, τ2, ....τk)
¯̄̄2

dµ(τ1)dµ(τ2)...dµ(τk)

where

cWk,n(τ1, τ2, ....τk) =
1√
n

nX
t=1

bUt exp
⎛⎝i. kX

j=1

τjΦ(Yt−j)

⎞⎠ ,
with bUt the OLS residuals of the AR(1) null model.



Similar to the i.i.d. case, underH0 and for each fixed k,cWk,n(τ1, τ2, ....τk)⇒Wk(τ1, τ2, ....τk) on Υk,

whereWk is a zero mean complex valued Gaussian process.

Hence for each k ∈ N,bBn,k d→ Bk underH0,
where
Bk =

Z
Υk
|Wk(τ1, τ2, ....τk)|2 dµ(τ1)dµ(τ2)...dµ(τk)

Moreover, it can be shown that more generally,

bTn = LnX
k=1

γk bBn,k d→ T =
∞X
k=1

γkBk underH0

for γk and Ln as before.



Furthermore, it can be shown that underH1,bTn/n = LnX
k=1

γk bBk,n/n p→
∞X
k=1

γkηk > 0

where

ηk =

Z
Υk

¯̄̄̄
¯E
"
Ut exp

Ã
i
kX

m=1

τmΦ(Yt−m)

!#¯̄̄̄
¯
2

dµ(τ1)dµ(τ2)...dµ(τk).

Thus, the WICM test is consistent.



Bootstrap critical values in the AR(1) case
Similar to the i.i.d. case, denote

bbk(τ1, τ2, ....τk) = 1

n

nX
t=1

⎡⎣µ 1
Yt−1

¶
exp

⎛⎝i kX
j=1

τjΦ(Yt−j)

⎞⎠⎤⎦ ,
bA =

1

n

nX
t=1

µ
1 Yt−1
Yt−1 Y 2t−1

¶
bφk,t−1(τ1, τ2, ....τk) = exp

⎛⎝i kX
j=1

τjΦ(Yt−j)

⎞⎠
−bbk(τ1, τ2, ....τk)0 bA−1µ 1Yt−1

¶
,

φk,t−1(τ1, τ2, ....τk) = p lim
n→∞

bφk,t−1(τ1, τ2, ....τk)



Then

cWk,n(τ1, τ2, ....τk) =
1√
n

nX
t=1

bUt exp
⎛⎝i. kX

j=1

τjΦ(Yt−j)

⎞⎠
= Wk,n(τ1, τ2, ....τk)

where

Wk,n(τ1, τ2, ....τk) =
1√
n

nX
t=1

Utbφk,t−1(τ1, τ2, ....τk)
Hence,

bTn = LnX
k=1

γk bBn,k = LnX
k=1

γk

Z
Υk
|Wk,n(τ1, τ2, ....τk)|2 dµ(τ1)dµ(τ2)....dµ(τk)



In order to generate bootstrap versions of bTn, similar to the
i.i.d. case, we need to convert bTn to an ICM test statistic in
’’single integral’’ form, as follows.

Denote
W+
k,n(τ1, τ2, ...., τk, τk+1) =

√
γkWk,n(τ1, τ2, ....τk)ρk+1(τk+1)

Wn,L(τ1, τ2, ...., τL, τL+1) =
LX
k=1

W+
k,n(τ1, τ2, ....τk, τk+1)

=
1√
n

nX
t=1

Ut

LX
k=1

√
γkbφk,t−1(τ1, ....τk)ρk+1(τk+1)

where the functions ρk(τ ) are continuous real functions on
Υ such thatZ

Υ

ρm(τ )ρk(τ )dµ(τ ) = I(m = k),

Z
Υ

ρk(τ )dµ(τ ) = 0



ThenbTn = Z
ΥLn+1

¯̄
Wn,Ln(τ1, τ2, ....τLn, τLn+1)

¯̄2 dµ(τ1)....dµ(τLn)dµ(τLn+1)

=

LnX
k=1

γk

Z
Υk
|Wk,n(τ1, τ2, ....τk)|2 dµ(τ1)dµ(τ2)....dµ(τk)

Similarly, letfWk,n(τ1, τ2, ....τk) =
1√
n

nX
t=1

εtbUtbφk,t−1(τ1, τ2, ....τk),
fWn,L(τ1, ...., τL, τL+1) =

1√
n

nX
t=1

εtbUt LX
k=1

√
γkbφk,t−1(τ1, ....τk)ρk+1(τk+1)

where εt ∼ i.i.d.N (0, 1).



Then as before,eTn = Z
ΥLn+1

¯̄̄fWn,Ln(τ1, τ2, ....τLn, τLn+1)
¯̄̄2

dµ(τ1)dµ(τ2)....dµ(τLn)dµ(τLn+1)

=

LnX
k=1

γk

Z
Υk

¯̄̄fWk,n(τ1, τ2, ....τk)
¯̄̄2

dµ(τ1)dµ(τ2)....dµ(τk)

This motivates the following bootstrap procedure.

Let for i = 1, 2, ...,M, withM the bootstrap sample size,fWi,k,n(τ1, τ2, ....τk) =
1√
n

nX
t=1

εi,t.bUt.bφk,t−1(τ1, τ2, ....τk),
eBi.k,n = Z

Υk

¯̄̄fWi,k,n(τ1, τ2, ....τk)
¯̄̄2

dµ(τ1)dµ(τ2)...dµ(τk),

eTi,n = LnX
k=1

γk eBi.k,n
where the εi,t are i.i.d. N (0, 1).



Then it can be shown, similar to the i.i.d. case, that under
H0,

(bTn, eT1,n, eT2,n, ..., eTM,n)0 d→ (T, T1, T2, ..., TM)
0,

where T, T1, T2, ..., TM are i.i.d., whereas underH1,
(eT1,n, eT2,n, ..., eTM,n)0 d→ (T ∗1 , T

∗
2 , ..., T

∗
M)

0,
where T ∗1 , T ∗2 , ..., T ∗M are i.i.d., but not as T.

The bootstrap critical values of the WICM test can now be
based on the quantiles of the empirical distribution function

eGn,M(x) = 1

M

MX
i=1

I
³eTi,n ≤ x´

of eT1,n, eT2,n, ..., eTM,n.



Standardization of the lagged conditioning variables
Another unresolved issue in Bierens (1984) is how to stan-
dardize the conditioning lagged variables of Yt before taking
the bounded transformation Φ in order to preserve enough
variation in Φ(Yt).

For example, let
Φ(y) = arctan(y).

Suppose that the actual data-generating process is
Yt = 1000 + Ut − 0.5Ut−1, Ut ∼ i.i.d. N(0, 1).

Then
Φ(Yt) ≈ sup

y∈R
arctan(y) = π/2,

which destroys the power of the WICM test.

Therefore, one should standardize the lagged Yt before tak-
ing the arctan(.) transformation.



However, in doing this one should also preserve the martin-
gale difference structure under the null hypothesis, as fol-
lows.
Given that Yt is observed for t = 1− t0 to t = n, denote

bµt = (t + t0)
−1

tX
i=1−t0

Yi,

bσt =
vuut(t + t0)−1 tX

i=1−t0
(Yi − bµt)2, if t > 1− t0,

bµt = 0, bσt = 1 if t ≤ 1− t0,
µ = E[Yt], σ =

p
E[(Yt − µ)2]eY t = (Yt − bµt)/bσt, Y t = (Yt − µ)/σ.

Replace in the WICM test each Φ(Yt−j) by
Φ(eY t−j) = arctan(eY t−j).

Then the asymptotic results are the same as if each Φ(Yt−j)
was replaced by Φ(Y t−j) = arctan(Y t−j).



The ICM and WICM tests as discussed so far in this talk are
now incorporated in my free econometrics Windows soft-
ware package EasyReg International, which can be down-
loaded from

http://www.personal/hxb11/EASYREG.HTM





Choices to make
The WICM test requires to make a number of choices, namely
regarding

• the absolutely continuous (with respect to Lebesgue mea-
sure) probability measure µ on Υ,

• the compact set Υ itself, and

• the positive sequence {γk}∞k=1.

Under the null hypothesis that the time series regression model
is correctly specified these choices do not matter too much.
However, they do affect the finite sample power of the test.

The question is:
Can we choose Υ, µ and/or {γk}∞k=1 such that the finite sam-
ple power of the WICM is ’’optimal’’ in some sense?



The probability measure µ
Boning and Sowell (1999) have shown that with µ the uni-
form probability measure on Υ the ICM test in Bierens and
Ploberger (1997) is optimal in the sense of having the great-
est weighted average local power.

Also, with µ the uniform probability measure andΥ a hyper-
cube the WICM test statistic has a closed form expression.

Therefore, it is recommended to choose for µ the uniform
probability measure on Υ.



The compact set Υ
In Bierens (1982, 1984) it was recommended to choose Υ
around the origin of the Euclidean space involved.

In Bierens (1990) it was shown that the ICM test remains
consistent for any compact setΥwith positive Lebesgue mea-
sure.

However, for linear and nonlinear regression models with an
additive constant term (as is usual the case) it is well-know
that the least squares residuals sum up to zero, regardless
whether the model is correctly specified or not.

Consequently, in the AR(1) case the empirical processes

cWk,n(τ1, τ2, ....τk) =
1√
n

nX
t=1

bUt exp
⎛⎝i. kX

j=1

τjΦ(Yt−j)

⎞⎠ ,
are identically zero in (τ1, τ2, ....τk)0 = 0.



Therefore, in general it seems better to choose Υ away from
the origin of its Euclidean space.

In the AR(1) case, underH1, we have:bTn/n
=

LnX
k=1

γk

Z
Υk

¯̄̄̄
¯1n

nX
t=1

bUt expÃi kX
m=1

τmΦ(Yt−m)

!¯̄̄̄
¯
2

dµ(τ1)dµ(τ2)...dµ(τk)

p→
∞X
k=1

γk

Z
Υk

¯̄̄̄
¯E
"
Ut exp

Ã
i
kX

m=1

τmΦ(Yt−m)

!#¯̄̄̄
¯
2

dµ(τ1)dµ(τ2)...dµ(τk)

> 0

The latter expression is a function of Υ.

Can we choose Υ such that this expression is ’’maximal’’, in
some sense?



For example, in the AR(1) case, let for given c > 0,
Υ = Υ(ξ) = [ξ − c, ξ + c], ξ ∈ Ξ

where the set Ξ is compact.

DenotebTn(ξ) =
LnX
k=1

γk

Z
Υ(ξ)k

¯̄̄̄
¯ 1√n

nX
t=1

bUt expÃi kX
m=1

τmΦ(Yt−m)

!¯̄̄̄
¯
2

dµ(τ1)dµ(τ2)...dµ(τk)

where µ is now the uniform probability measure on Υ(ξ).

Then underH0,
sup
ξ∈Ξ

bTn(ξ) d→ sup
ξ∈Ξ
T (ξ)

where

T (ξ) =
∞X
k=1

γk

Z
Υ(ξ)k

|Wk(τ1, τ2, ....τk)|2 dµ(τ1)dµ(τ2)...dµ(τk)



UnderH1,
sup
ξ∈Ξ

bTn(ξ)/n p→ sup
ξ∈Ξ

η(ξ) > 0

where
η(ξ) =
∞X
k=1

γk

Z
Υ(ξ)k

¯̄̄̄
¯E
"
Ut exp

Ã
i
kX

m=1

τmΦ(Yt−m)

!#¯̄̄̄
¯
2

dµ(τ1)dµ(τ2)...dµ(τk)

The bootstrap procedure can be adapted to supξ∈Ξ bTn(ξ).



The sequence of weights
The ideal weight sequence {γk}∞k=1 for the WICM test is
such that underH1, γk is maximal when ηk is maximal, where
in the AR(1) case,

ηk =

Z
Υk

¯̄̄̄
¯E
"
Ut exp

Ã
i
kX

m=1

τmΦ(Yt−m)

!#¯̄̄̄
¯
2

dµ(τ1)dµ(τ2)...dµ(τk)

But we don’t know the ηk’s.

However, what we can do is to make the γk’s dependent on
parameters.

For example, choose for γk the probability of the Poisson(ω)
distribution for k − 1, i.e.,

γk(ω) = exp(−ω) ωk−1

(k − 1)!, k ∈ N,
with ω confined to a compact set Ω in (0,∞).



Then the WICM test statistic takes the formbTn(ω) = LnX
k=1

γk(ω) bBn,k.
It can be shown that

sup
ω∈Ω

bTn(ω) d→ sup
ω∈Ω

∞X
k=1

γk(ω)Bk underH0,

sup
ω∈Ω

bTn(ω)/n p→ sup
ω∈Ω

∞X
k=1

γk(ω)ηk > 0 underH1.

The bootstrap procedure can also be adapted to supω∈Ω bTn(ω).



The ICM test for conditional distributions:
The i.i.d. case
A wide range of parametric econometric cross-section mod-
els take the form of a conditional distribution specifications

Pr[Y ≤ y|X] = F (y|X; θ0)
whereX is a vector of stochastic covariates, Y is a multivari-
ate or univariate dependent variable, and θ0 is the vector of
’’true’’ parameters, to be estimated by maximum likelihood.

For example, ifY represents count data, withPr[Y = y] > 0
for all y ∈ {0} ∪ N, a convenient (and therefore popular)
specification of its conditional distribution is the conditional
Poisson model
Pr [Y = y|X] = exp (− exp((1, X 0)θ0)) . exp(y.(1, X 0)θ0)/y!,

y = 0, 1, 2, ........



The literature on consistent testing of the validity of these
kind of conditional distribution models is very limited, as it
consists only of three papers:

Andrews, D.W., 1997, A conditional Kolmogorov test. Econo-
metrica 65, 1097-1128.

Zheng, J.X., 2000, A consistent test of conditional paramet-
ric distributions. Econometric Theory 16, 667-691.

Bierens, H. J., and Wang, L., 2012, Integrated conditional
moment tests for parametric conditional distributions. Econo-
metric Theory 28, 328-362.



Andrews’ (1997) conditional Kolmogorov (CK) test statistic
takes the form

max
1≤i≤n

¯̄̄̄
¯̄ 1√n

nX
j=1

³
I(Yj ≤ Yi)− F (Yi|Xj,bθ)´ I(Xj ≤ Xi)

¯̄̄̄
¯̄

whereF (y|X,bθ) is the estimated conditional distribution model
and I(.) is the indicator function.

A problem with the CK test is that if the dimension of X
is large then the events Xj ≤ Xi may never happen, even
in large samples, so that then the CK test statistic becomes
zero.

Zheng’s (2000) test is based on comparison of estimated para-
metric conditional densities with their corresponding ker-
nel density estimates, and is therefore confined to absolutely
continuous distribution specifications only.



The Bierens-Wang (2012) paper avoids these limitations by
comparing an estimate of the joint characteristic function of
(Y,X) implied by the estimated model F (y|X;bθ) with the
corresponding empirical characteristic function.

In this talk I will focus on the case Y ∈ R, but the approach
in Bierens-Wang (2012) carries over to the case Y ∈ Rm as
well.



The conditional distribution function of Y given X is as-
sumed to belong to a given parametric family F (y|X; θ),
θ ∈ Θ, where Θ ⊂ Rp is a given compact and convex para-
meter space.

The support of F (y|X; θ) does not depend on θ.

The null hypothesis to be tested is that
H0 : There exists a θ0 ∈ Θ such that

Pr

∙
sup
y
|Pr[Y ≤ y|X]− F (y|X; θ0)| = 0

¸
= 1

against the alternative hypothesis thatH0 is false, i.e.,
H1 : For all θ ∈ Θ,

Pr

∙
sup
y
|Pr[Y ≤ y|X]− F (y|X; θ)| = 0

¸
< 1



Throughout it will be assumed that the parameter vector θ0
under H0 is estimated consistently by maximum likelihood
(ML), with ML estimator bθn, on the bases of a random sam-
ple {(Yj,Xj)}nj=1 from (Y,X) ∈ R×Rk.

UnderH1 the estimator bθn becomes a Quasi-ML (QML) es-
timator, which will also converge in probability to a point in
Θ, and without loss of generality we may denote this point
by θ0 as well.

Thus, in either case, p limn→∞bθn = θ0.

Hence,H0 andH1 now read
H0 : Pr

£
supy |Pr[Y ≤ y|X]− F (y|X; θ0)| = 0

¤
= 1,

H1 : Pr
£
supy |Pr[Y ≤ y|X]− F (y|X; θ0)| = 0

¤
< 1,

respectively.



Since conditional distributions are equal if and only if their
conditional characteristic functions are equal, these hypothe-
ses are equivalent to

H0 : Pr

∙
sup
τ∈R

¯̄̄̄
E[exp(i.τ.Y )|X]−

Z
exp(i.τ.y)dF (y|X; θ0)

¯̄̄̄
= 0

¸
= 1,

H1 : Pr

∙
sup
τ∈R

¯̄̄̄
E[exp(i.τ.Y )|X]−

Z
exp(i.τ.y)dF (y|X; θ0)

¯̄̄̄
= 0

¸
< 1,

respectively, where i =
√−1.

Similar to the ICM test for regression model these hypothe-
ses are equivalent to

H0 : E [exp(i.τ.Y ) exp(i.ξ
0X)] = E

∙Z
exp(i.τ.y)dF (y|X; θ0) exp(i.ξ0X)

¸
for all (τ, ξ) ∈ R×Rk,

H1 : E [exp(i.τ.Y ) exp(i.ξ
0X)] 6= E

∙Z
exp(i.τ.y)dF (y|X; θ0) exp(i.ξ0X)

¸
for some (τ, ξ) ∈ R×Rk,



Moreover, if Y andX are bounded then underH1 the set

S =

½
(τ, ξ) ∈ R×Rk : E [exp(i.τ.Y ) exp(i.ξ0X)]

= E

∙Z
exp(i.τ.y)dF (y|X; θ0) exp(i.ξ0X)

¸¾
has zero Lebesgue measure and is nowhere dense, whereas
underH0,

S = R×Rk.



If Y and/or X are not bounded then we may replace Y , y
and X in the complex exp(.) functions by Ψ(Y ), Ψ(y) and
Φ(X), respectively, where Ψ : R→ R and Φ : Rk → Rk
are bounded one-to-one mappings with Borel measurable in-
verses, so that S becomes

S =

½
(τ, ξ) ∈ R×Rk : E [exp(i.τ.Ψ(Y )) exp(i.ξ0Φ(X))]

= E

∙Z
exp(i.τ.Ψ(y))dF (y|X; θ0) exp(i.ξ0Φ(X))

¸¾
Again, under H1 this set S has zero Lebesgue measure and
is nowhere dense, whereas underH0,

S = R×Rk.
However, for the time being let us assume that Y andX are
bounded, and that the conditional characteristic function

ϕ (τ |X; θ) =
Z
exp(i.τ.y)dF (y|X, θ)

has a continuous closed form expression in τ and θ.



The result that underH1 the set
S =

©
(τ, ξ) ∈ R×Rk : E [exp(i.τ.Y ) exp(i.ξ0X)]

= E [ϕ (τ |X; θ0) exp(i.ξ0X)]}
has zero Lebesgue measure and is nowhere dense now sug-
gests that the validity of the null hypothesis can be consis-
tently tested by an ICM test of the formbTn = Z

Υ×Ξ
|Zn(τ, ξ)|2dµ(τ, ξ),

where

• Zn(τ, ξ) = 1√
n

Pn
j=1(exp(i.τ.Yj)−ϕ(τ |Xj;bθn)) exp(i.ξ0Xj).

• Υ and Ξ are compact subsets of R and Rk, respectively,
with positive Lebesgue measure, and

• µ(τ, ξ) is the uniform probability measure on Υ× Ξ.



It follows straightforwardly that underH1,

Zn(τ, ξ)/
√
n

p→ E [(exp(i.τ.Y )− ϕ (τ |X; θ0)) exp(i.ξ0X)]
= ς(τ, ξ), say,

uniformly on Υ×Ξ, where ς(τ, ξ) 6= 0 on (Υ×Ξ)\S, hencebTn/n = Z
Υ×Ξ

|Zn(τ, ξ)/
√
n|2dµ(τ, ξ) p→

Z
Υ×Ξ

|ς(τ, ξ)|2dµ(τ, ξ) > 0

In order to derive the null distribution of the ICM statisticbTn = Z
Υ×Ξ

|Zn(τ, ξ)|2dµ(τ, ξ),
write Zn(τ, ξ) as

Zn(τ, ξ) =
1√
n

nX
j=1

(exp(i.τ 0Yj)− ϕ(τ |Xj; θ0)) exp(i.ξ0Xj)

−1
n

nX
j=1

√
n
³
ϕ(τ |Xj;bθn)− ϕ(τ |Xj; θ0)

´
exp(i.ξ0Xj)



Similar to the regression case we can write
1

n

nX
j=1

√
n
³
ϕ(τ |Xj;bθn)− ϕ(τ |Xj; θ0)

´
exp(i.ξ0Xj)

= b(τ, ξ)0A−1
1√
n

nX
j=1

∆` (Yj,Xj; θ0) + op(1)

underH0 and standard ML conditions, where

• ` (Y,X; θ) is the log-likelihood function,

• ∆` (Y,X; θ0) = ∂` (Y,X; θ) /∂θ0|θ=θ0 is the score vector,

• A = Var(∆` (Y,X; θ0)) ,

• b(τ, ξ) = E[∆ϕ (τ |X; θ0) exp(i.ξ0X)],
• ∆ϕ (τ |X; θ) = ∂ϕ (τ |X; θ) /∂θ0|θ=θ0 , with

• ϕ (τ |X; θ) = R exp(i.τ.y)dF (y|X, θ), and

• the op(1) term is uniform on Υ× Ξ.



Thus, denotingeZn(τ, ξ) = 1√
n

nX
j=1

φ(τ, ξ|Yj,Xj),

where
φ(τ, ξ|Y,X) = (exp (i.τ 0Y )− ϕ (τ |X; θ0)) exp (i.ξ0X)

− b(τ, ξ)0A−1∆` (Y,X; θ0)
it follows that underH0bTn = Z

Υ×Ξ
| eZn(τ, ξ)|2dµ(τ, ξ) + op(1)



Thus, denotingeZn(τ, ξ) = 1√
n

nX
j=1

φ(τ, ξ|Yj,Xj),

where
φ(τ, ξ|Y,X) = (exp (i.τ 0Y )− ϕ (τ |X; θ0)) exp (i.ξ0X)

− b(τ, ξ)0A−1∆` (Y,X; θ0)
it follows that underH0bTn = Z

Υ×Ξ
| eZn(τ, ξ)|2dµ(τ, ξ) + op(1)

Moreover, it can be shown that underH0, eZn(τ, ξ) converges
weakly to a zero mean complex valued Gaussian process
Z(τ, ξ) on Υ× Ξ, so thatbTn d→ T =

Z
Υ×Ξ

|Z(τ, ξ)|2dµ(τ, ξ).



Bootstrap procedure
The bootstrap procedure in the present case is quite different
than for regression models.

The current bootstrap procedure is an adaptation of the ap-
proach in:

Li, F. & G. Tkacz, 1996, A consistent bootstrap test for con-
ditional density functions with time-series data, Journal of
Econometrics 133, 863-886,

as follows.



Given the bootstrap sample sizeM , and for eachm = 1, 2, ...,M,

• Generate random drawings Ym,j from the estimated condi-
tional modelF (y|Xj;bθn), j = 1, 2, ...., n, given the actual
Xj’s in the sample.

• Compute the ML estimator eθm,n on the basis of the boot-
strap sample {(Ym,j,Xj)}nj=1.

• Compute the corresponding ICM test statistic eTm,n.
Then underH0,³bTn, eT1,n, eT2,n, ..., eTM,n´0 d→ (T, T1, T2, ..., TM)

0,
where T, T1, T2, ..., TM are i.i.d., whereas underH1,³eT1,n, eT2,n, ..., eTM,n´0 d→ (T ∗1 , T

∗
2 , ..., T

∗
M)

0

where T ∗1 , T ∗2 , ..., T ∗M are i.i.d. (but not as T )
As before, bootstrap critical values can now be based on the
quantiles of the empirical distribution function of eT1,n, eT2,n, ..., eTM,n.



The simulated ICM test
The theoretical conditional characteristic function

ϕ (τ |X; θ) =
Z
exp(i.τ.y)dF (y|X, θ),

poses computational challenges in various ways.

First, some conditional distributions have no closed-form ex-
pression for their characteristic functions, especially if Y has
to be transformed first by a bounded one-to-one transforma-
tion.

But even for distributions with closed-form characteristic func-
tions the integration over τ has to be carried out numerically,
which is time consuming.

Moreover, the need for numerical integration will slow down
the bootstrap too much.



To cope with these problems, a Simulated Integrated Condi-
tional Moment (SICM) test is proposed, in which the process
Zn(τ, ξ) in the exact ICM test statistic is replaced by eitherbZ(s)n (τ, ξ) = 1√

n

nX
j=1

¡
exp(i.τ.Yj)− exp(i.τ.Ỹj)

¢
exp(i.ξ0Xj)

if Y andX are bounded, orbZ(s)n (τ, ξ) = 1√
n

nX
j=1

¡
exp(i.τ.Ψ(Yj))− exp(i.τ.Ψ(Ỹj)

¢
exp(i.ξ0Φ(Xj))

if not, where Ỹj is a random drawing from the estimated con-
ditional distribution F (y|Xj; θ̂), and in the latter case Ψ(.)
and Φ(.) are bounded one-to-one mappings.

The SICM test statistic is thenbT (s)n =

Z
Υ×Ξ

| bZ(s)n (τ, ξ)|2dµ(τ, ξ).



A practical advantage of the SICM test that bT (s)n has a closed-
form expression if Υ is an interval and Ξ is a hyper-cube.

All the previous results for the exact ICM test carry over to
the SICM test, including the bootstrap, albeit with a different
null distribution.

As to the latter, and assuming that Y andX are bounded, we
can writebZ(s)n (τ, ξ) = 1√

n

nX
j=1

¡
exp(i.τ.Yj)− exp(i.τ.Ỹj)

¢
exp(i.ξ0Xj)

= Zn(τ, ξ)− eZ(s)n (τ, ξ), where

Zn(τ, ξ) =
1√
n

Pn
j=1

³
exp(i.τ.Yj)−

R
exp(i.τ 0y)dF (y|Xj, θ̂)

´
exp(i.ξ0Xj),eZ(s)n (τ, ξ) = 1√

n

Pn
j=1

³
exp(i.τ.Ỹj)−

R
exp(i.τ.y)dF (y|Xj, θ̂)

´
exp(i.ξ0Xj).



Under H0 the empirical process Zn(τ, ξ) converges weakly
to a zero-mean complex valued Gaussian processZ(τ, ξ) on
Υ×Ξ, and the empirical process bZ(s)n (τ, ξ) converges weakly
to a zero-mean complex valued Gaussian process Z(s)(τ, ξ)
on Υ× Ξ, where Z(τ, ξ) and Z(s)(τ, ξ) are independent.

Consequently, underH0,bT (s)n =

Z
Υ×Ξ

| bZ(s)n (τ, ξ)|2dµ(τ, ξ) d→
Z
Υ×Ξ

|Z(τ, ξ)−Z(s)(τ, ξ)|2dµ(τ, ξ)
whereas in the case of the exact ICM test,bTn d→

Z
Υ×Ξ

|Z(τ, ξ)|2dµ(τ, ξ).

The previous bootstrap procedure can easily adapted to the
SICM test.



The WICM test for conditional distribu-
tions: The stationary time series case
In

Bierens, H. J., and Wang, L., 2017, Weighted Simulated Inte-
grated Conditional Moment Tests for Parametric Conditional
Distributions of Stationary Time Series Processes, Econo-
metric Reviews 36, 103-135,

we propose a consistent weighted simulated integrated con-
ditional moment (WSICM) test of the validity of a paramet-
ric conditional distribution specification for time series data,
by combining the WICM test for time series regression with
the SICM test for conditional distributions in the i.i.d. case.



For example, let Yt be a strictly and covariance stationary
univariate time series process. Without loss of generality we
may assume that Yt is bounded, as otherwise we may replace
Yt by Ψ(Yt) with Ψ a bounded one-to-one transformation.

Let Ft−1(y|θ0) be a parametric specification of the condi-
tional distribution function

Pr
£
Yt ≤ y|F t−1−∞

¤
whereF t−1−∞ is theσ-algebra generated by the sequence {Yt−i}∞i=1.

In particular, suppose that Ft−1(y|θ0) depends on a finite
number of lagged Yt’s, say Xt−1,k = (Yt−1, Yt−2,....,Yt−k)0

so that we can write
Ft−1(y|θ0) = F (y|Xt−1,k; θ0)



Moreover, suppose that Yt is observed for t = 1 − Ln to
t = n, where Ln = o(n) → ∞ as for the WICM test, with
n so large that Ln ≥ k

Furthermore, suppose that θ0 is estimated by the ML or QML
estimator bθn, where in both cases, θ0 = p limn→∞bθn.
Then the null hypothesis to be tested is that

H0 : Pr

∙
sup
y

¯̄
Pr
£
Yt ≤ y|F t−1−∞

¤− F (y|Xt−1,k; θ0)¯̄ = 0¸ = 1
against the alternative thatH0 is false.



The WSICM test
For each t = 1, 2, ..., n, draw randomly an eYt fromF (y|Xt−1,k;bθn),
givenXt−1,k.

Denote form = 1, 2, ..., Ln,

Zn,m(τ, ξ1, ξ2, ..., ξm) =
1√
n

nX
t=1

³
exp(i.τ.Yt)− exp(i.τ.eYt)´

× exp
⎛⎝i. mX

j=1

ξjYt−j

⎞⎠
eBn,m = Z

Υ×Ξm
|Zn,m(τ, ξ1, ξ2, ..., ξm)|2 dµΥ(τ )dµΞ(ξ1)...., dµΞ(ξm),

where Υ and Ξ are compact sets inRwith positive Lebesgue
measure, andµΥ andµΞ are uniform probability measures on
Υ and Ξ, respectively.



Then similar to the WICM test for time series regressions,
the test statistic of the WSICM test takes the formeTn = LnX

m=1

γm eBn,m
where the γm’s are positive and satisfy

P∞
m=1 γm <∞.

The asymptotic properties of eTn are similar to the SICM test
in the i.i.d. case, and so is the bootstrap procedure involved.



THANK YOU!


