Productivity Investment, Power Law, and Welfare Gains from Trade

Yi-Fan Chen¹, Wen-Tai Hsu², and Shin-Kun Peng³

Institute of Economics, Academia Sinica

October 2017

¹Institute of Economics, Academia Sinica.

²School of Economics, Singapore Management University.

³Institute of Economics, Academia Sinica, and Department of Economics, National Taiwan University.

Why Do We Care About Productivity Distributions?

Melitz (2003): Firm selection matters for gains from trade.

Quantifying gains from trade.

But:

- Exogenously assumes productivity distribution. Specification on productivity matters: Bee and Schiavo (2015), and Nigai (2017).
- Truncation to productivity distribution due to firm selection. Because weak firms die out...

Motivation

Productivity is a result of R&D and investment activities!

Why does the empirical distribution exhibits power law / Pareto tail?

How does productivity distribution respond to trade liberalization?

What is the implication on welfare gains from trade?

Our Model

- Incorporates firm-level productivity investment decision. Sutton (1991)
- Weterogeneous investment efficiency (talent / entrepreneurship).

Our Results

The productivity distribution always has a Pareto tail.

Requires almost no assumptions on the distribution of talent.

Robust against :

- Investment cost function (a subclass of smoothly varying function).
- 2 Demand system (asymptotic CES).

Our Results

Intensive margin matters so it's more than a specification issue.

Trade liberalization results in:

- 1 Extensive margin: more firm selection.
- Intensive margin: Exporters invest more. Non-Exporters invest less (e.g. Pavcnik (2002), Fernandes (2007), and Baldwin and Gu (2009)).
- New gains from trade through variable trade cost.
- Less welfare elasticity.

Exogenous Distribution

Source: Figure 4 of Nigai (2017)

Exogenous Distribution

Axtell (2002): Power law to the right tail.

Pareto: Chaney (2008), Melitz and Redding (2015), and hundreds of studies.

Lognormal: Eeckhout (2004), Head et al. (2014)

Bee et al. (2017): Neither Pareto nor lognormal!

Nigai (2017, JIE): mixed distribution.

Exogenous Distribution

The distribution is exogenously assumed!

The distribution is exogenously assumed!

The distribution is exogenously assumed!

(This is important so must be repeated by three times)

Endogenous Productivity

Binary technology choice: Yeaple (2005).

Matching between firms and workers: Monte (2011) and Sampson (2014)

Sutton-way: Bas and Ledezma (2015).

Endogenous Productivity

Power law is not addressed.

Gains from trade is not examined.

Bas and Ledezma (2015): the effect of trade liberalization on exporter is ambiguous.

Arkolakis et al. (2012):

- (R1) Trade balances.
- (R2) Constant ratio between aggregate profit and revenue.
- (R3) Constant bilateral trade elasticity $d \ln (\lambda_x/\lambda_0)/d \ln \tau$ for all x countries.

 λ_i denotes the expenditure on products of country i in the domestic country 0.

If (R1)-(R3) holds, then welfare depends on λ_0 only.

Krugman model and Melitz model alike!

Consumer

Symmetric preference and income.

Utility for consuming each variety v: $U = \int_{v \in \Upsilon} u(q(v)) dv$.

Implied demand per variety: p(v) = D(q(v); A).

A is endogenously determined.

Producer

Monopolistic competitive firms.

Labor is the only input, and is considered as numeraire.

Entry cost: κ_e .

Production cost: $q/\varphi + \kappa_D$.

Productivity φ is endogenously determined through investment.

Investment

Investment function:

$$\varphi = B(t \cdot k).$$

Labor input k.

Talent / entrepreneurship $t \in (t_L, \infty)$ with $t_L \ge 0$.

$$B'(t \cdot k) > 0$$
, $B''(t \cdot k) < 0$.

For convenience, the cost of investment is:

$$k = \frac{B^{-1}(\varphi)}{t} \equiv \frac{V(\varphi)}{t} \equiv \gamma V(\varphi).$$

The talent index $\gamma \in (0, \gamma_H)$ follows a distribution with p.d.f. $f(\gamma)$.

Basic Setting

Total Profit:

$$\Pi(\varphi) = \pi(\varphi) - \gamma V(\varphi),$$

$$\pi(\varphi) = pq - \varphi^{-1}q - \kappa_D.$$

Timing:

- Entry Stage: Each firm pays κ_e to enter, and then observes γ respectively.
- 2 Investment Stage: Each firm decides whether to invest, and if yes, the level of φ .
- Production Stage: Each firm decides whether to produce, and if yes, the price of its variety.

CES demand: $q = A^{\frac{1}{\sigma}} p^{-\frac{1}{\sigma}}$.

Power function: $k(\varphi) = \gamma \varphi^{\beta}$

Optimal output: $q(\varphi) = A\rho^{\sigma}\varphi^{\sigma}$, where $\rho \equiv (\sigma - 1)/\varphi$ and $A \equiv L/P^{1-\sigma}$.

Investment Stage: each firm solves

$$\max_{\varphi} \Pi(\varphi) = \frac{A\rho^{\sigma}}{\sigma - 1} \varphi^{\sigma - 1} - \gamma \varphi^{\beta}.$$

Optimal productivity:

$$\widetilde{\varphi}(\gamma) = \frac{A\rho^{\sigma}}{\beta}^{\frac{1}{\theta}} \gamma^{-\frac{1}{\theta}},$$

where $\theta \equiv \beta - \sigma + 1 > 0$ must hold to ensure the existence of optimality.

Zero cutoff profit condition (ZCP):

$$\Pi\left(\widetilde{\varphi}\left(\gamma\right);\gamma\right)\geq0$$
 if and only if $\gamma\leq\gamma_{D}$.

Entry Stage: the free entry condition

$$\int_{0}^{\gamma_{D}} \Pi\left(\widetilde{\varphi}\left(\gamma\right);\gamma\right) dF\left(\gamma\right) = \kappa_{e}$$

pins down A along with ZCP and $\widetilde{\varphi}(\gamma)$.

Productivity distribution:

$$g(\varphi) = \frac{f(\gamma(\varphi))}{F(\gamma_D)} A\left(\frac{\rho^{\sigma}}{\beta}\right) \theta \varphi^{-\theta-1}.$$

Note that $\frac{\partial \gamma(\varphi)}{\partial \varphi} < 0$ and $\lim_{\gamma \to 0} \varphi(\gamma) = \infty$.

A, σ , β , ρ , θ , γ_D are all independent of φ .

If
$$\lim_{\gamma \to 0} f(\gamma) = K > 0$$
, then

$$g(\varphi) \approx \frac{K}{F(\gamma_D)} A\left(\frac{\rho^{\sigma}}{\beta}\right) \theta \varphi^{-\theta-1}.$$

- Since $\lim_{\gamma \to 0} f(\gamma) = K$, we can express $f(\gamma)$ as $f(\gamma) = K + h(\gamma)$, where $\lim_{\gamma \to 0} h(\gamma) = 0$.
- $\textbf{ Therefore, } g\left(\varphi\right) = A\left(\frac{\rho^{\sigma}}{\beta}\right)\theta K\varphi^{-\theta-1} + A\left(\frac{\rho^{\sigma}}{\beta}\right)\theta h\left(\gamma\right)\varphi^{-\theta-1}.$
- $\begin{array}{l} \text{ \circlearrowleft Clearly, } \lim_{\varphi \to \infty} \varphi^{-\theta-1} = 0, \ \lim_{\varphi \to \infty} h\left(\gamma\left(\varphi\right)\right) = 0, \ \text{and} \\ \lim_{\varphi \to \infty} h\left(\gamma\left(\varphi\right)\right) \varphi^{-\theta-1} = 0. \end{array}$
- Since

$$\lim_{\varphi \to \infty} \frac{h\left(\gamma\left(\varphi\right)\right)\varphi^{-\theta-1}}{\varphi^{-\theta-1}} = \lim_{\varphi \to \infty} h\left(\gamma\left(\varphi\right)\right) = 0,$$

it implies that the rate of convergence of $h(\gamma(\varphi))\varphi^{-\theta-1}$ dominates that of $\varphi^{-\theta-1}$. Thus, there is a φ_0 where for all $\varphi > \varphi_0$

$$g(\varphi) \approx \frac{K}{F(\gamma_D)} A\left(\frac{\rho^{\sigma}}{\beta}\right) \theta \varphi^{-\theta-1}.$$

If $\gamma \sim U[0, \gamma_H]$ and $\kappa_D = 0$

Smooth Variation

Definition

Definition 1. A function v(x) is a *regularly varying function* if and only if v(x) can be expressed as

$$v(x) = x^{\alpha} I(x),$$

where I(x) is a slowly varying function, i.e., for any $\lambda > 1$,

$$\lim_{x\to\infty}\frac{I(\lambda x)}{I(x)}=1.$$

Definition

Definition 2. A Smoothly Varying Function is a infinitely differentiable regularly varying function v(x), such that for all $n \ge 1$

$$\lim_{x\to\infty}\frac{x^nv^{(n)}(x)}{v(x)}=\beta(\beta-1)...(\beta-n+1),$$

where $v^{(n)}(x)$ denotes for the n-th derivative of v(x).

Power Law of Productivity

Assumption

Assumption 1. The inverse demand for each variety is a smoothly varying function $p=D\left(q;A\right)\equiv q^{-\frac{1}{\sigma}}Q\left(q;A\right)$, where $\sigma>1$ and $\lim_{q\to\infty}Q\left(q;A\right)=C_Q>0$. The investment cost is a smoothly varying function $k\left(\varphi\right)=\gamma V\left(\varphi\right)\equiv\gamma\varphi^{\beta}L\left(\varphi\right)$, where $\beta>1$ and $\lim_{\omega\to\infty}L\left(\varphi\right)=C_L>0$.

Proposition

Proposition 1. Under Assumption 1, suppose that

$$\lim_{\gamma \to 0} f(\gamma) = K > 0,$$

and $\theta \equiv \beta + 1 - \sigma > 0$, the productivity distribution is approximately

$$g(\varphi) \approx \frac{K}{F(\gamma_D)} \frac{C_Q^{\sigma}}{C_L} \rho^{\sigma} \frac{\theta}{\beta} \varphi^{-\theta-1}.$$

Why Smooth Variation?

Because smoothly varying functions are general!

For example, polynomial functions are smoothly varying.

Demand systems that are asymptotically CES are widely applied.

Demand Class	Inverse Demand Function	C_Q
CES	$p\left(q\right)=q^{-\frac{1}{\sigma}}A^{\frac{1}{\sigma}}$	$A^{\frac{1}{\sigma}}$
CREMR	$p\left(q ight) = q^{-\frac{1}{\sigma}}A^{\frac{1}{\sigma}}\left(1 - \omega q^{-1}\right)^{\frac{\sigma-1}{\sigma}} ext{ where } q > \sigma\omega$	$A^{\frac{1}{\sigma}}$
CEMR	$p(q) = q^{-\frac{1}{\sigma}} \left(A^{\frac{1}{\sigma}} + \alpha q^{-\frac{\sigma-1}{\sigma}} \right)$	$A^{\frac{1}{\sigma}}$
Bipower inverse	$p\left(q ight)=q^{-rac{1}{\sigma}}A^{rac{1}{\sigma}}\left(1+\widehat{A}^{rac{1}{\zeta}}A^{-rac{1}{\sigma}}q^{rac{1}{\sigma}-rac{1}{\zeta}} ight)$ where $\sigma>\zeta$	$A^{\frac{1}{\sigma}}$
Pollak	$p\left(q ight)=q^{-rac{1}{\sigma}}A^{rac{1}{\sigma}}\left(1-\widehat{A}q^{-1} ight)^{rac{1}{\sigma}}$	$A^{\frac{1}{\sigma}}$

Table: Smoothly Varying Inverse Demand

Why Smooth Variation?

Because smoothly varying function can approximate the tail behaviors of regularly varying functions.

$\mathsf{Theorem}$

(Theorem 1.8.2, Bingham et al. (1989)) For a regularly varying function f, there exists smoothly varying functions f_1 and f_2 , with $f_1 \sim f_2$ and $f_1 \leq f \leq f_2$ on some neighbourhood of infinity. In particular, for a regularly varying function f there exists a smoothly varying function g such that $g \sim f$.

Power Law of Firm Size

Let s = pq

Corollary

Corollary 1. Under Assumption 1, suppose that

$$\lim_{\gamma\to 0}f\left(\gamma\right)=K>0,$$

and $\theta \equiv \beta + 1 - \sigma > 0$, the distribution of firm size s follows the power law with a tail index $\frac{\theta}{\sigma - 1}$, i.e.,

$$\lim_{s\to\infty} g\left(s\right) \approx \frac{K}{F\left(\gamma_D\right)} \frac{C_Q^{\frac{\beta\sigma}{\sigma-1}}}{C_L} \left(\frac{\sigma-1}{\sigma}\right)^{\beta} \frac{\theta}{\beta\sigma} s^{-\frac{\theta}{\sigma-1}-1}.$$

Setting

CES utility.

Power function investment cost.

Total cost of exporting: $\tau q/\varphi + \kappa_X$.

Timing:

- Entry Stage.
- Investment Stage.
- Oroduction Stage: each firm can further decides whether to export and the price to charge.

Optimality

Production optimality implies that

$$\pi_D(\varphi) = \frac{A\rho^{\sigma}}{\sigma - 1}\varphi^{\sigma - 1} - \kappa_D,$$

$$\pi_{X}(\varphi) = \tau^{1-\sigma} \frac{A\rho^{\sigma}}{\sigma - 1} \varphi^{\sigma - 1} - \kappa_{X},$$

where

$$A \equiv L/P^{1-\sigma}$$
.

Optimal Investment

Profit for non-exporters and exporters:

$$\Pi_{D}(\varphi) = \pi_{D}(\varphi) - \gamma \varphi^{\beta},$$

$$\Pi_{X}(\varphi) = \pi_{D}(\varphi) + \pi_{X}(\varphi) - \gamma \varphi^{\beta}.$$

Optimal Productivity

$$\varphi = \begin{cases} A^{\frac{1}{\theta}} \left(\frac{\rho^{\sigma}}{\beta}\right)^{\frac{1}{\theta}} \gamma^{-\frac{1}{\theta}} & \text{for non-exporting firms,} \\ \left(1 + \tau^{1-\sigma}\right)^{\frac{1}{\theta}} A^{\frac{1}{\theta}} \left(\frac{\rho^{\sigma}}{\beta}\right)^{\frac{1}{\theta}} \gamma^{-\frac{1}{\theta}} & \text{for exporting firms.} \end{cases}$$

Zero Cutoff Profit Conditions

Firms must not make negative profits: $\Pi_D(\gamma) \ge 0$ and $\Pi_X(\gamma) \ge \Pi_D(\gamma)$.

Therefore:

$$\begin{split} \gamma_D &\equiv \left[\kappa_D^{-1} A^{\frac{\beta}{\theta}} \left(\frac{\rho^{\sigma}}{\beta}\right)^{\frac{\beta}{\theta}} \left(\frac{\beta}{\sigma-1}-1\right)\right]^{\frac{\theta}{\sigma-1}}, \\ \gamma_X &\equiv \left[\kappa_X^{-1} \left[\left(1+\tau^{1-\sigma}\right)^{\frac{\beta}{\theta}}-1\right] A^{\frac{\beta}{\theta}} \left(\frac{\rho^{\sigma}}{\beta}\right)^{\frac{\beta}{\theta}} \left(\frac{\beta}{\sigma-1}-1\right)\right]^{\frac{\theta}{\sigma-1}}. \end{split}$$

Zero Cutoff Profit Conditions

Assumption

Assumption 2. Assume that

$$\frac{\gamma_X}{\gamma_D} \equiv \delta \equiv \left(\frac{\kappa_D}{\kappa_X}\right)^{\frac{\theta}{\sigma-1}} \left[\left(1 + \tau^{1-\sigma}\right)^{\frac{\beta}{\theta}} - 1 \right]^{\frac{\theta}{\sigma-1}} < 1,$$

i.e., the fixed exporting cost κ_X must be large enough.

This means that $\kappa_X > \kappa_D$.

Otherwise, all firms are exporters.

Free Entry

Firms are subjected to free entry

$$\overline{\pi} = \kappa_e$$
,

where

$$\overline{\pi} = \int_{0}^{\gamma_{X}} \Pi_{X}(\gamma) dF(\gamma) + \int_{\gamma_{X}}^{\gamma_{D}} \Pi_{D}(\gamma) dF(\gamma).$$

The aggregate price relates mass of entrants with $A \equiv L/P^{1-\sigma}$.

$$P^{1-\sigma} = M_{e} \left[\int_{\gamma_{X}}^{\gamma_{D}} \rho^{\sigma-1} \varphi (\gamma)^{\sigma-1} dF (\gamma) + \int_{0}^{\gamma_{X}} \rho^{\sigma-1} \varphi (\gamma)^{\sigma-1} dF (\gamma) \right]$$
$$+ M_{e} \int_{0}^{\gamma_{X}} \tau^{1-\sigma} \rho^{\sigma-1} \varphi (\gamma)^{\sigma-1} dF (\gamma) .$$

Equilibrium Productivity

Equilibrium productivity:

$$\varphi(\gamma) = \begin{cases} \kappa_D^{\frac{1}{\beta}} \gamma_D^{\frac{\sigma - 1}{\beta \theta}} \left(\frac{\beta}{\sigma - 1} - 1\right)^{-\frac{1}{\beta}} \gamma^{-\frac{1}{\theta}} & \text{if } \gamma \in (\gamma_X, \gamma_D] \\ \left(1 + \tau^{1 - \sigma}\right)^{\frac{1}{\theta}} \kappa_D^{\frac{1}{\beta}} \gamma_D^{\frac{\sigma - 1}{\beta \theta}} \left(\frac{\beta}{\sigma - 1} - 1\right)^{-\frac{1}{\beta}} \gamma^{-\frac{1}{\theta}} & \text{if } \gamma \in [0, \gamma_X] \end{cases}$$

Let
$$\varphi_D \equiv \kappa_D^{\frac{1}{\beta}} \gamma_D^{\frac{\sigma-1}{\theta}} \left(\frac{\beta}{\sigma-1} - 1 \right)^{-\frac{1}{\beta}} \gamma_D^{-\frac{1}{\theta}}$$
,
$$\varphi_{DX} \equiv \left(1 + \tau^{1-\sigma} \right)^{\frac{1}{\theta}} \kappa_D^{\frac{1}{\beta}} \gamma_D^{\frac{\sigma-1}{\theta}} \left(\frac{\beta}{\sigma-1} - 1 \right)^{-\frac{1}{\beta}} \gamma_D^{-\frac{1}{\theta}}$$
, and
$$\varphi_X \equiv \left(1 + \tau^{1-\sigma} \right)^{\frac{1}{\theta}} \kappa_D^{\frac{1}{\beta}} \gamma_D^{\frac{\sigma-1}{\theta}} \left(\frac{\beta}{\sigma-1} - 1 \right)^{-\frac{1}{\beta}} \gamma_X^{-\frac{1}{\theta}}$$
.

Equilibrium Productivity

$$g\left(\varphi\right) = \begin{cases} \frac{f\left(\kappa_{D}^{\frac{\theta}{\beta}}\gamma_{D}^{\frac{\sigma-1}{\beta}}\left(\frac{\beta}{\sigma-1}-1\right)^{-\frac{\theta}{\beta}}\varphi^{-\theta}\right)}{F\left(\gamma_{D}\right)} \cdot \left[& \text{if } \varphi \in \left[\varphi_{D},\varphi_{DX}\right) \\ \kappa_{D}^{\frac{\theta}{\beta}}\gamma_{D}^{\frac{\sigma-1}{\beta}}\left(\frac{\beta}{\sigma-1}-1\right)^{-\frac{\theta}{\beta}}\right]\theta\varphi^{-\theta-1} & \text{if } \varphi \in \left[\varphi_{DX},\varphi_{X}\right) \\ \frac{f\left(\left(1+\tau^{1-\sigma}\right)\kappa_{D}^{\frac{\theta}{\beta}}\gamma_{D}^{\frac{\sigma-1}{\beta}}\left(\frac{\beta}{\sigma-1}-1\right)^{-\frac{\theta}{\beta}}\varphi^{-\theta}\right)}{F\left(\gamma_{D}\right)} \cdot \left[& \text{if } \varphi \in \left[\varphi_{X},\infty\right) \\ \left(1+\tau^{1-\sigma}\right)\kappa_{D}^{\frac{\theta}{\beta}}\gamma_{D}^{\frac{\sigma-1}{\beta}}\left(\frac{\beta}{\sigma-1}-1\right)^{-\frac{\theta}{\beta}}\right]\theta\varphi^{-\theta-1} & \text{if } \varphi \in \left[\varphi_{X},\infty\right) \end{cases}$$

Equilibrium Productivity

Proposition 1 perfectly holds here.

au affects the productivity of large firms **directly**.

The country size *L* does not affect productivity.

General Power Function (GPF) Class

Definition

Definition 3. (Mrazova, Neary and Parenti [2017]) The distribution of φ is of GPF class if its c.d.f. can be expressed as $H\left(\theta_0+\theta_1\varphi^{\theta_2}\right)$, where θ_0 , θ_1 and θ_2 are parameters, and $H\left(\cdot\right)$ is a monotonic function.

Corollary

Corollary 2. Let $G(\cdot)$ denotes the c.d.f. of productivity. The productivity distribution belongs to the General Power Function (GPF) with a Pareto tail, where

$$G\left(\varphi\right) = \begin{cases} 1 - F\left(\kappa_{D}^{\frac{\theta}{\beta}}\gamma_{D}^{\frac{\sigma-1}{\beta}}\left(\frac{\beta}{\sigma-1} - 1\right)^{-\frac{\theta}{\beta}}\varphi^{-\theta}\right)\frac{1}{F(\gamma_{D})} & \text{if } \varphi < \varphi_{X} \\ 1 - F\left(\left(1 + \tau^{1-\sigma}\right)\kappa_{D}^{\frac{\theta}{\beta}}\gamma_{D}^{\frac{\sigma-1}{\beta}}\left(\frac{\beta}{\sigma-1} - 1\right)^{-\frac{\theta}{\beta}}\varphi^{-\theta}\right)\frac{1}{F(\gamma_{D})} & \text{if } \varphi \geq \varphi_{X} \end{cases}$$

Proposition 2

Figure: The Effect of an Increment of κ_D

Proposition 2

Figure: The Effect of an Increment of κ_X

Proposition 2

Figure: The Effect of an Increment of au

Welfare equation of Melitz (2003):

$$d \ln W_0^{ACR} = \frac{d \ln \lambda_0}{1 - \sigma - \frac{\eta_{D0}^{ACR}}{\Phi_{D0}}} - \frac{d \ln M_{e0}}{1 - \sigma - \frac{\eta_{D0}^{ACR}}{\Phi_{D0}}},$$

where $\frac{\eta_{D0}^{ACR}}{\Phi_{D0}} > 0$.

Welfare equation of productivity model:

$$d\ln W_0 = \frac{d\ln \lambda_0 - d\ln M_{\rm e0} - \frac{\widetilde{\lambda}_{X0}}{\lambda_0} \left(T\xi - \frac{\eta_{X0}}{\Gamma_{X0}}\Xi\right) d\ln \tau}{1 - \sigma - (\sigma - 1)\frac{\sigma - 1}{\theta} - \beta \left(\frac{\widetilde{\lambda}_{D0}}{\lambda_0} \frac{\eta_{D0}}{\Gamma_{D0}} + \frac{\widetilde{\lambda}_{X0}}{\lambda_0} \frac{\eta_{X0}}{\Gamma_{X0}}\right)},$$

where
$$T>0$$
, $\xi<0$, $\Xi>0$, $\widetilde{\lambda}_{X0}>0$, $\widetilde{\lambda}_{D0}>0$, $\widetilde{\lambda}_{X0}+\widetilde{\lambda}_{D0}=\lambda_0$, $\frac{\eta_{D0}}{\Gamma_{X0}}>0$, $\frac{\eta_{X0}}{\Gamma_{X0}}>0$.

Melitz model has the extensive margin $\eta_{D0}^{ACR}/\Phi_{D0}$ only.

We have:

- $\begin{array}{l} \textbf{ 1.} \quad \text{Extensive margin: } \frac{\widetilde{\lambda}_{D0}}{\lambda_0} \frac{\eta_{D0}}{\Gamma_{D0}}, \ \frac{\widetilde{\lambda}_{X0}}{\lambda_0} \frac{\eta_{X0}}{\Gamma_{X0}}, \ \text{and } \frac{\widetilde{\lambda}_{X0}}{\lambda_D} \frac{\eta_{X0}}{\Gamma_{X0}} \Xi d \ln \tau. \\ \text{Key: } d \ln \gamma_{X0} = \beta d \ln P_0 \Xi d \ln \tau. \end{array}$
- ② Intensive margin: $\frac{\widetilde{\lambda}_{X0}}{\lambda_D} T \xi d \ln \tau$ and $(\sigma 1) \frac{\sigma 1}{\theta}$ The direct effect of τ , and the substitution effect.

Benchmark: $g(\varphi) = \theta \varphi^{-\theta-1}$ v.s. $f(\gamma) = \gamma_H^{-1}$.

Melitz:

$$d \ln W_0^{ACR} = \frac{d \ln \lambda_0}{-\theta},$$

$$\varepsilon_{0x}^{ACR} = \varepsilon^{ACR} = -\theta \ \forall x.$$

Our model:

$$d \ln W_0 = -\frac{d \ln \lambda_0}{\beta} + \frac{\widetilde{\lambda}_{X0}}{\lambda_0} \frac{T\xi - \frac{\theta - \sigma + 1}{\theta} \Xi}{\beta} d \ln \tau,$$

$$\varepsilon_{0x} = \varepsilon = 1 - \sigma + \xi - \frac{\widetilde{\lambda}_{X0}}{\lambda_0} T \xi - \frac{\theta - \sigma + 1}{\theta} \left(1 - \frac{\widetilde{\lambda}_{X0}}{\lambda_0} \right) \Xi \ \forall x.$$

Within model comparision: firm selection v.s. no firm selection.

(R3) is not important if no firm selection

$$\begin{split} d\ln W_0^{\textit{NoSelection}} &= \frac{d\ln \lambda_0}{1 - \sigma - (\sigma - 1)\frac{\sigma - 1}{\theta}} - \frac{\xi d\ln \tau}{1 - \sigma - (\sigma - 1)\frac{\sigma - 1}{\theta}}, \\ & \varepsilon^{\textit{NoSelection}} = 1 - \sigma. \end{split}$$

Similar channel but different magnitude.

Our model v.s. Melitz:

- The variable trade cost affects the welfare directly: more sensitive to trade.
- 2 Less welfare elasticity: less sensitive to trade.

Our model with and without selection:

- Higher welfare elasticity without selection.
- **2** The effect from $d \ln \tau$ differs.

Conclusion

We obtain the following results under a general setting.

- Microfundation for power law in productivity and firm size.
- Intensive margin of productivity matters a lot!
- Provides empirical insights on the new channel of gains from trade.