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Abstract

Following ideas in Hume, monetary shocks are embedded in the Lagos-Wright

(2005) model in a new way: there are only nominal shocks that are accomplished

by way of individual transfers and there is suffi cient noise in individual transfers so

that realizations of those transfers do not permit the agents to deduce much about

the aggregate realization. The last condition is achieved by assuming that the dis-

tribution of aggregate shocks is almost degenerate. For such rare shocks, aggregate

output is increasing in the aggregate shock– our definition of the Phillips curve.
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1 Introduction

In his Nobel lecture [9] entitled “Monetary Neutrality,”Lucas begins by describing Hume’s

[5] views about the effects of changes in the money supply. Lucas emphasizes that Hume’s

views were dependent on how changes in the quantity of money come about. In order

to get neutrality, Hume set out very special conceptual experiments which, when correct,

amount to changes in monetary units. For some other kinds of changes, Hume says that

there is a short-run Phillips curve:
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Accordingly we find that, in every kingdom into which money begins to

flow in greater abundance than formerly, everything takes a new face: labour

and industry gain life, the merchant bcomes more enterprising...

To account, then, for this phenomenon, we must consider, that though the

high price of commodities be a necessary consequence of the encrease of gold

and silver, yet it follows not immediately upon that encrease, but some time

is required before the money circulates through the whole state, and makes

its effect be felt on all ranks of people. At first, no alteration is perceived;

by degrees the price rises, first of one commodity, then of another, till the

whole at last reaches a just proportion with the new quantity of specie in the

kingdom. In my opinion, it is only in this interval or intermediate situation,

between the acquisition and rise of prices, that the encreasing quantity of gold

and silver is favorable to industry. When any quantity of money is imported

into a nation, it is not at first dispersed into many hands but is confined to

the coffers of a few persons, who immediately seek to employ it to advantage.

[Hume [5], page 37.]

Hume asserts that there is a positive association between increases in the stock of money

and the level of real economic activity, which is our definition of the Phillips curve. He

also offers what may at some time have been regarded as an explanation of it. A modern

economist would not treat his discussion as an explanation, but might look to it for hints

about modeling ingredients that when rigorously analyzed could conceivably constitute

an explanation.

The passage from which the above excerpt comes contains at least two hints about

modeling ingredients. First, changes in the quantity of money come about in a way

that gives rise to changes in relative money holdings among people. In particular, the

changes for individuals are not uniformly proportional to initial holdings as is required

for neutrality. Second, trade seems to be occurring within small groups, rather than in a

centralized market. That suggests the use of some sort of search/matching model. Given

those ingredients, the passage hints at two conjectures that might be studied. One is

that a change in relative money holdings has Phillips-curve type effects that dissipate

over time through the effects of subsequent trades on those relative holdings. The other

is that the change occurs in a way that is not seen by everyone when it occurs and that

the Phillips-curve type effects dissipate when people learn about it. Although these are

not mutually exclusive conjectures, we pursue only the second here.

In order to study it, we embed monetary shocks in Lagos-Wright [7] (LW) and assume

that the aggregate monetary shocks are observed with a lag and are accomplished by
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way of individual transfers in such a way that those transfers do not permit the agents

to deduce much about the aggregate realization. That is, the individual transfers are

very imperfect signals about the aggregate shock, where imperfection is modeled in the

usual way: there is a fixed support for individual transfers and the aggregate shock

determines the distribution over that fixed support. In order to make those signals almost

uninformative, we assume for our main result that the distribution of the aggregate shock

is close to a degenerate distribution. For such almost-degeneracy of aggregate shocks–

that is, for rare shocks– we show that there is a Phillips curve.

We are not the first to use some version of LW to study the Phillips curve. Faig and

Li [3] embed a version of the signal-extraction problem in Lucas [8] into that model. That

signal-extraction problem involves a delicate confounding of real and nominal shocks and

the sign of the slope of the Phillips curve depends on preferences. Our specification is

closer to Hume and is conceptually simpler. People meet in pairs and do not see the

transfers received or the trades in other meetings. Also, because people meet in pairs to

trade, there is no price that aggregates the effect of the individual transfers and that allows

people to deduce the aggregate shock. Notice, by the way, that pairwise meetings and the

assumption that people do not see what is happening in other meetings is, arguably, the

most attractive way of producing a necessary condition for essentiality of money– namely,

some privacy of individual trading histories (see Wallace [13]).

After presenting that main result, we comment on robustness– in particular, on what

might happen for other aggregate shock processes and what might happen if we abandon

the special structure in LW in a way that leads to wealth effects.

2 The model

The background model is that in LW. Time is discrete and there are two stages at each

date. In the first stage, the decentralized market (the DM), production and consumption

occur in pairwise meetings that occur at random in the following way. Just prior to such

meetings, each person looks forward to being a consumer (a buyer) who meets a random

producer (seller) with probability σ, looks forward to being a producer who meets a

random consumer with probability σ, and looks forward to a no-coincidence meeting with

probability 1− 2σ, where σ ≤ 1/2. In the DM, u(y) is the utility of consuming and c(y)

is the disutility of producing, where u and c are twice differentiable, u(0) = c(0) = 0, u

is strictly concave, c is convex, and u′(0) − c′(0) converges to infinity. We also assume

that y∗ = arg maxy[u(y) − c(y)] exists. In the second stage all agents can consume and

produce and meet in the centralized market (the CM), where the utility of consuming
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is z and where negative z is production. At each stage production is perishable and the

discount factor between dates is β ∈ (0, 1).

In our version, the gross growth rate of the money stock follows an iid process with

finite support S, where S = {s1, s2, ..., sN} with 1 ≤ sn < sn+1. We let π denote the

distribution over S. The changes in the stock of money are accomplished by random

proportional transfers to individuals. We let τ ∈ T = {τ 1, τ 2, ..., τ I} be the set of possible
gross proportional transfers to a person, where 1 ≤ τ i < τ i+1. We let µs(τ) be the

probability that an agent receives the transfer τ ∈ T conditional on the aggregate state
s. (As this suggests, conditional on s, agents receive independently drawn transfers.) We

assume that µs satisfies the following conditions. First, the individual transfers aggregate

to s. That is,
I∑
i=1

µs(τ i)τ i = s (1)

for each s ∈ S. Second, except for one of the neutrality results, we assume that µs has
full support for all s ∈ S and that it satisfies the following strict version of first-order

stochastic dominance: for any m > n and for all i = 1, ..., I − 1,

i∑
k=1

µsm(τ k) <
i∑

k=1

µsn(τ k). (2)

The weak inequality of version of (2) is first-order stochastic dominance.1

There are two versions of the model; one with an information lag and one without such

a lag. The sequence of actions when there is an information lag is as follows. After people

leave the CM, the growth rate of the stock of money, s ∈ S, is realized, but is not observed.
Then, agents meet at random in pairs. Then each agent receives a proportional money

transfer, a draw from µs(τ). Within a meeting, both the pre-transfer and post-transfer

money holdings are common knowledge. In a meeting where the transfers received are τ i
and τ j, the common posterior about s is given by Baye’s rule:

pij(s) =
π(s)µs(τ i)µs(τ j)∑N

n=1 π(sn)µsn(τ i)µsn(τ j)
. (3)

If the meeting is between a buyer and seller, then the buyer makes a take-it-or-leave-it

offer. After meetings, agents learn s and enter the next CM.2 If an agent leaves the

pairwise trade stage, the DM, with m amount of money, then the agent enters the next

1Condition (1) and the full support assumption about µs imply that the range of S is a strict subset

of the range of T .
2In a somewhat different context, Araujo and Shevchenko [1] study the complications that arise when

the information lag is longer.
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CM with m/s amount of money. (This is the standard way of normalizing inflation so

that the per capita quantity of money and the price of money can be constant.) Then, in

price-taking trade, the good trades for money at the next CM.

The sequence of actions when there is no information-lag is identical except that the

growth rate of the stock of money, s, is observed when it is realized. In that case, pij(s)

in (3) is replaced by a distribution that is degenerate on the realized s.3

We model the transfers as proportional to money holdings in order to isolate the effect

of heterogeneous transfers. As we show below, if µs(τ) is degenerate– which by (1) implies

that τ = s for some τ– then S and π do not matter. Otherwise, both matter, whether or

not there is an information-lag.

3 Stationary equilibrium

We start with existence of stationary monetary equilibrium. The real objects in a sta-

tionary monetary equilibrium are output in buyer-seller meetings– denoted yij, where τ i
is the transfer received by the buyer and τ j is that received by the seller– and the price

of money in the CM– denoted v.

Proposition 1. In each version of the model, either with or without an information-lag,
there exists a unique valued-money stationary equilibrium. In that equilibrium yij < y∗

for at least some (i, j). Moreover, yij and v are continuous in π.

The proof, which follows, is familiar from other expositions of LW. The strategy is

guess-and-verify: we guess that the value function entering the CM is affi ne, and that the

rate-of-return of money from one CM to next CM is equal to one. Given that guess, the

equilibrium condition reduces to the solution to an optimal saving decision in the CM, a

decision which is common to everyone.

Proof. Assume that there is an information-lag. (As we remark at the end, the no-
information-lag version is a special case.) We refer to the current centralized market as

3As may be evident, the information-lag version and the no information-lag version are special cases

of a more general specification. The buyer’s transfer and the seller’s transfer play very different roles

in the model. Both symmetrically affect the posterior over the aggregate realization in the information-

lag version. In addition, the buyer’s transfer affects spending directly in both versions. Therefore, the

information-lag version is equivalent to a setting in which only the buyer realizes a transfer, but the

pair in a meeting see the buyer’s transfer and also see the buyer’s transfer in one other randomly chosen

meeting. But, then, what if the pair in a meeting see the buyer’s transfer and that in l randomly chosen

meetings? Obviously, as l→∞, there is convergence to the no-information-lag version.
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the CM. We guess that the continuation value of entering the next CM with m′ amount

of money is v′m′ + A, where v′ is the price of money and A is a constant. We also guess

that v′ = v, the price of money in the current CM.

A person who enters the DM with m amount of money is a buyer with probability

σ, a seller with probability σ, or is in a no-coincidence meeting with probability 1 − 2σ.

Given the assumed continuation value in the next CM, we start by considering the buyer’s

problem, the only significant one in the DM,

Consider a buyer who enters the DM with m amount of money and is in meeting

(i, j), one in which the buyer receives transfer τ i and the seller receives transfer τ j. The

problem of the buyer is to choose output, yij, and the amount of money to offer, dij, to

maximize u(yij) + v′(mτ i − dij)Eij(1/s) subject to mτ i − dij ≥ 0 and

c(yij) ≤ v′dijEij(1/s). (4)

Here, Eij(1/s) =
∑N

n=1 pij(sn)/sn, where pij(sn) is given by (3) and where Eij(1/s) =

Eji(1/s). Because the value function in the next CM is affi ne, the seller’s money holding

appears in (4) only by way of Eij(1/s). At a solution to this problem, (4) holds at equality.

(If not, then increase yij.) Substituting (4) at equality into the objective, the objective

becomes u(yij)− c(yij). Therefore, the solution has two branches depending on whether
the constraint mτ i − dij ≥ 0 is binding. The nonbinding case has yij = y∗ and dij given

by (4) at equality. The binding case has dij = mτ i and yij given by (4) at equality. That

is,

yij =


y∗ if c(y∗) ≤ v′mτ iEij(1/s)

c−1(v′mτ iEij(1/s)) if c(y∗) > v′mτ iEij(1/s)

(5)

and

dij =


c(y∗)/v′Eij(1/s) if c(y∗) ≤ v′mτ iEij(1/s)

mτ i if c(y∗) > v′mτ iEij(1/s)

. (6)

Therefore, the buyer’s payoff is u(yij) + (mτ i − dij)v′Eij(1/s) + A.

Now suppose the person with m is not a buyer but realizes transfer τ i when the

trading partner realizes transfer τ j. This person’s payoff is the same whether the person

is a seller or is in a no-coincidence meeting because sellers receive no gains from trade– (4)

at equality with the roles of i and j reversed. Thus, the person’s payoff as a seller or in a

no-coincidence meeting is v′mτ iEij(1/s) + A.
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Therefore, ignoring constant terms, both money brought into the CM and the constant

A, the CM problem is

max
m≥0
−zm+ β

∑
i,j

γij {σ [u(yij)− v′dijEij(1/s)] + v′mτ iEij(1/s)} , (7)

where γij =
∑

n π(sn)µsn(τ i)µsn(τ j), which by the law of iterated expectations, is the

unconditional probability that the person receives transfer τ i and is in a meeting with

a person who receives τ j. Now, because
∑

i,j γijτ iEij(1/s) = 1 (see Lemma 1 in the

appendix), this becomes

max
m≥0
−vm+ βv′m+ βσ

∑
i,j

γij [u(yij)− v′dijEij(1/s)] . (8)

Letting x = mv, real saving, and imposing v = v′, an equivalent choice problem is

max
x≥0

G(x) ≡ −(β−1 − 1)x+ σ
∑
i,j

γij{u[ỹij(x)]− vd̃ij(x)Eij(1/s)}, (9)

where, by (5) and (6),

ỹij(x) =


y∗ if c(y∗) ≤ xτ iEij(1/s)

c−1(xτ iEij(1/s)) if c(y∗) > xτ iEij(1/s)

(10)

and

vd̃ij(x) =


c(y∗)/Eij(1/s) if c(y∗) ≤ xτ iEij(1/s)

xτ i if c(y∗) > xτ iEij(1/s)

. (11)

The rest of the proof appears in the appendix. There, it is shown that G is differen-

tiable with derivative denoted G′(x). It is then shown that G′(0) > 0 and that G′(x) < 0

for x ≥ x̄, where

x̄ =
mini,j[τ iEij(1/s)]

c(y∗)
. (12)

It follows that the choice of x can be limited to the compact domain [0, x̄], that G has

a maximum, and that any maximum occurs in the interval (0, x̄). Then it is shown that

G′(x) is strictly decreasing on (0, x̄), which implies that G is strictly concave on (0, x̄).

That implies that the maximum, denoted x̂, is unique. And, because x̄ is continuous in π,

the Theorem of the Maximum implies that x̂ is continuous in π. Because yij is continuous

in x, it also is continuous in π. If the per capita quantity of money is unity, another

normalization, we get v = x̂ by equating real saving to the real value of money. To see

that yij < y∗ for some (i, j), consider two cases. If mini,j[τ iEij(1/s)] = τ kEkl(1/s) for all
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(k, l), then x̂ < x̄ implies ykl < y∗ for all (k, l). Otherwise, ykl < y∗ for all (k, l) such that

mini,j[τ iEij(1/s)] < τ kEkl(1/s). The proof for the no-information-lag version is identical

except that Eij(1/s) is replaced by 1/s.�

Two neutrality results follow from the above exposition.

Corollary 1. If economies 1 and 2 are identical except that S2 = αS1 and T 2 = αT 1 for

some α > 1, then both economies have the same real equilibria.

Proof. It is immediate that E2ij(1/s) = (1/α)E1ij(1/s). From that it follows that α does

not appear in (9)-(12).�

It follows that we can without loss of generality impose τ 1 = 1, as we do in some

examples below.

Corollary 2. If there is no heterogeneity in realized individual transfers– meaning that
for each s, µs(τ) = 1 for some τ– then the equilibrium is the same as that of an economy

with a degenerate π (no aggregate uncertainty).

Proof. Let s be the realized aggregate shock. By the hypothesis, there exists τ(s) such

that µs[τ(s)] = 1. It follows that Eij(1/s) = 1/s and from (1) that τ(s) = s. Therefore,

using (10), and (11), u[ỹij(x)]− vd̃ij(x)Eij(1/s) does not depend on s and (9) reduces to

the special case of no randomness.�

4 The Phillips Curve under near degeneracy

Now we turn to our main result, the existence of a Phillips curve. Proposition 1 establishes

the existence of a unique stationary monetary equilibrium. For any π ∈ ∆(S), let y1ij(π)

be the corresponding equilibrium DM output for meeting type (τ i, τ j) with an information

lag, and let y0nij(π) be that without an information lag for meeting type (sn, τ i, τ j). Then,

the respective aggregate DM outputs are

Y 1(sn, π) = σ
∑
i,j

µsn(τ i)µsn(τ j)y
1
ij(π) (13)

and

Y 0(sn, π) = σ
∑
i,j

µsn(τ i)µsn(τ j)y
0
nij(π) = σ

∑
i

µsn(τ i)y
0
ni(π), (14)

where the second equality in (14) holds because output does not depend on the seller’s

transfer when there is no information lag.

We say that a Phillips curve exists in version i if Y i(sn, π) is strictly increasing in sn.

The entire discussion is about output in the DM, because output in the CM does not
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depend on the realized aggregate shock. We start with a discussion of what we can say

about aggregate DM output when there is no information-lag.

The following corollary (of Proposition 1) gives a suffi cient condition for aggregate

output to be constant when there is no information-lag.

Corollary 3. If (i) c(y) = y and (ii) β is small enough so that y0ni < y∗ for all n and i,

then Y 0(sn, π) does not depend on sn.

Proof. Let xπ be the equilibrium real balance in the CMwhen there is no information-lag.

Under the assumptions,

Y 0(sn, π) = σ
∑
i

µsn(τ i)y
0
ni(π) = σ

∑
i

µsn(τ i)τ ixπ/sn = σxπ

[∑
i

µsn(τ i)τ i

]
/sn = σxπ,

(15)

where the second inequality follows from the second line of (10) and Eij(1/s) = 1/s, and

where the last equality follows from (1).�

Now we present an example that shows that curvature in c(y) is enough to make

Y 0(sn, π) nonmonotone in sn. It implies that nothing general can be said about the

Phillips curve in the absence of an information-lag.4

Example 1. Consider the model without an information-lag. Suppose that c(y) = y2,

T = {1, τ}, and that β is small enough so that yni(π) < y∗ for all n, i. Then, Y 0(sn, π) is

nonmonotone in sn. (The proof is in the appendix.)

Now, we turn to what happens with an information lag. According to (13), aggregate

output is a weighted average of meeting specific outputs. The meeting specific outputs,

represented by the matrix [y1ij]i,j, do not depend on s. And according to (2), the higher

is s, the more weight is placed on those components of the matrix with higher transfers.

Intuitively, a Phillips curve would be obtained if meetings with higher transfers are as-

sociated with higher outputs. But that is delicate. Although high transfers to buyers

tend to increase spending in the meetings, high transfers (no matter whether to buyers

or to sellers) also suggest that the aggregate shock is high and, therefore, tend to offset

the higher spending effect. Our main Phillips-curve result limits the informational role of

transfers by describing what happens in a neighborhood of a degenerate π. (In the next

section on robustness, we present some examples that go beyond near-degeneracy.)

Proposition 2. Let π̃ ∈ ∆(S) and ñ be such that π̃(sñ) = 1. There is a neighborhood

4As is well-known, for some purposes, c(y) = y can be regarded as a normalization, which treats

output in a DM meeting as the disutility of production. However, we want to take seriously that output

in the definition of the Phillips curve is production and not the disutility of production.
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of π̃ such that for all π in that neighborhood: (i) Y 1(s, π) is strictly increasing in s; and

(ii) Y 1(s, π)− Y 0(s, π) > 0 for all s > sñ and Y 1(s, π)− Y 0(s, π) < 0 for all s < sñ.

Proof. (i) Because Y 1 is continuous in π, it suffi ces to show that Y 1(s, π̃) is strictly

increasing in s. For π = π̃, pij(sñ) = 1. This implies that Eij(1/s) = 1/sñ for all i, j.

Therefore, y1ij(π̃) does not depend on j and, as implied by Proposition 1, y11j(π̃) < y∗.

Also, by (10), y1ij(π̃) is weakly increasing in i and is not constant. Hence, by our strict

stochastic dominance assumption (see (2), Y 1(s, π̃) is strictly increasing in s.

(ii) Because Y 1(s, π) and Y 0(s, π) are continuous in π, it is enough to establish the

inequalities for π = π̃. For π = π̃, the equilibrium real balance, x̂, does not depend on

whether or not there is an information-lag. Therefore, y1ij(π̃) = y0ñij(π̃). By (10) with

Eij(1/s) = 1/s, y0nij(π̃) < y0n′ij(π̃) for all n > n′and all i, j such that y0nij(π̃) < y∗ (which

necessarily holds for i = 1). Therefore, for n > ñ,

[Y 1(sn, π̃)− Y 0(sn, π̃)]

= σ
∑
i,j

µsn(τ i)µsn(τ j)[y
1
ij(π̃)− y0nij(π̃)] (16)

= σ
∑
i,j

µsn(τ i)µsn(τ j)[y
0
ñij(π̃)− y0nij(π̃)] > 0.

Similarly, for n < ñ,

[Y 1(sn, π̃)− Y 0(sn, π̃)]

= σ
∑
i,j

µsn(τ i)µsn(τ j)[y
1
ij(π̃)− y0nij(π̃)] (17)

= σ
∑
i,j

µsn(τ i)µsn(τ j)[y
0
ñij(π̃)− y0nij(π̃)] < 0,

which completes the proof.�

Notice that part (ii) of Proposition 2 says that the output effects of (rare) shocks

are larger when there is an information-lag. There is no claim about whether there is a

Phillips curve when there is no information-lag. Also, it is obvious that Proposition 2

holds when the pair in a meeting see any finite number of individual transfers from other

meetings.

5 Robustness

There are special aspects of the model and special aspects of the process for aggregate

shocks in Proposition 2. Here we discuss whether the Phillips curve result will survive if

we depart from some of them.
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5.1 More general iid shocks

Here we provide some examples that consider more general iid processes in the model with

an information lag. In all these examples, we assume a two-point support for individual

transfers– namely, T = {1, τ}– that c(y) = y, and that β is suffi ciently small so that

the buyer constraint is always binding in equilibrium.5 A two-point support for T is not

crucial for these examples but is convenient because condition (1) then determines µs(τ)

and condition (2) is implied.

We start with an example for which there is a Phillips curve when the pair in a meeting

get a single signal; that is, when a common transfer is received by both the buyer and the

seller.

Example 2. Assume that the buyer and seller in each meeting receive the same transfer
and that π is such that E(s) = (1 + τ)/2. Then Y 1(s, π) is affi ne and strictly increasing

in s. (The proof is in the appendix.)

Notice that the only distributional assumption in Example 2 is that E(s) is at the mid-

point of the support of T . However, as the following counter-example to monotonicity

shows, the assumption of a single signal is important.

Example 3. For each N ∈ N, let SN = {1+ε, 1+2ε, ..., 1+Nε} with ε = (τ−1)/(N+1)

and let

π(1 + ε) = π(τ − ε) =
1

2
(1− δ),

and

π(1 + nε) =
δ

N − 2
for all 2 ≤ n ≤ N − 1

for some small δ > 0. Then, there exist (large) N̄ and (small) δ̄ > 0 such that if N > N̄

and if δ < δ̄, then Y 1(s, π) is not monotone in s. (The proof is in the appendix.)

It is straightforward to verify that E(s) = (1 + τ)/2 in Example 3. Hence, aside from

having two signals, Example 3 is a special case of Example 2. In example 2, there are only

two types of meetings, one with a common transfer of τ and the other with a common

transfer 1. In Example 3, in contrast, there are four kinds of meetings, which implies that

aggregate output is a quadratic function of s. As N gets large and δ gets small, π gets

concentrated on two points that are near 1 and τ . Therefore, if both the buyer and the

seller receive τ , then they are almost certain that the state is near τ , while if both receive

1, then they are almost certain that the state is near 1. If they were certain, then output

would be the same in those two meetings. If they are almost certain, then output when

5These examples satisfy the assumptions of Corollary 3. Therefore, total output is independent of s

when there is no information lag.
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both receive τ is slightly larger than when both receive 1. When one receives τ and the

other receives 1, their interim belief is almost identical to the prior belief, and average

output over those two meetings is higher than that for the other two kinds of meetings.

Hence, aggregate output is increasing in the measure of meetings with mixed transfers, a

measure which is increasing in s for small s and decreasing in s for large s.

Although Example 3 tells us that we will not get a Phillips curve without strengthening

the general assumptions we make, it is very special in two senses. First, if we amend it

by assuming that the range of S is suffi ciently far from the end points in T , and if the

right end of T is not too large, then monotonicity is restored.

Example 4. Suppose that T = {1, τ} with τ < 6, and that π is symmetric with E(s) =

(1 + τ)/2. If S ⊂ [0.3τ + 0.7, 0.7τ + 0.3], then Y 1(s, π) is strictly increasing. (The proof

is in the appendix.)

Second, Example 3 is a counter-example only because our definition of the Phillips

curves calls for Y 1(s, π) to be monotone in s– even over parts of S that occur with very

low probability. A different approach would define the Phillips curve probabilistically– for

example, as a positive correlation between total output and s. Defined as a correlation,

Example 3 fails as a counter-example because the endpoints of S occur with arbitrarily

high probability, and output at the high endpoint is larger than at the low endpoint for

N large. For example, if u(y) =
√
y, β = 1/1.05, σ = 0.3, τ = 1.2, and π is as specified

in Example 3 with N = 200 and δ = 0.05, then Y 1(s, π) is non-monotone in s but the

correlation between Y 1(s, π) and s is 0.99.

5.2 Markov aggregate shocks

With Markov shocks, the state entering a CM is the realized s from the previous period.

Then the guess is that there is a stationary equilibrium in which the price of money in

the CM depends on the realized aggregate shock from the previous period, denoted v(s).

If so, then people in the CM in state s face a return distribution between that CM and

the next CM, where the realized return is v(s′)/v(s) and s′ is the realized aggregate shock

in the current period. The stationary equilibrium conditions implied by optimal saving

choices give rise to N simultaneous equations in v(s) for s ∈ S. In that case, existence
requires a fixed point argument and the well-known challenge is to choose a domain for

v(s) for s ∈ S that excludes v(s) = 0 for all s ∈ S.

However, if we assume that the Markov process is nearly degenerate– has a transition

matrix for s which has a column all of whose elements are near unity– then our result in
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Proposition 2 applies by way of the implicit function theorem. In addition, our technique

for getting a Phillips curve should also apply for a Markov process that is nearly degenerate

in a different sense– namely, has a transition matrix that is close to the identity matrix.

5.3 Wealth effects

Barro [2] (pages 2 and 3) expresses the following concern about the robustness of the

Phillips curve in Lucas [8]. The transfer in Lucas goes entirely to potential consumers–

as it does in Faig and Li [3]. If both consumers and producers receive transfers, then

richer producers may want to produce less and that could offset the greater spending by

consumers. We have transfers going to both consumers and producers, but the structure

of LW precludes wealth effects on producers. In particular, the transfer that the seller

receives matters for the trade in the DM only because it is a signal about the aggregate

shock.6

There are generalizations of LW that have wealth effects. The LW structure imposes a

periodic quasi-terminal condition: when the CM stage occurs, the economy restarts from

that stage with a degenerate distribution of money holdings and, hence, with no state

variable. If there are many DM stages before the CM stage in each period, then there

are wealth effects before the last DM stage because the continuation value of money will

be strictly concave at least over some of its domain. Indeed, with a large number of DM

stages, the model at intermediate DM stages resembles the divisible-money versions of

the Shi [11] and Trejos and Wright [12] matching models studied by Zhu [14] and Molico

[10], versions without aggregate shocks. With aggregate shock realizations at each DM

stage and even with the realized aggregate shock at a stage announced just prior to the

next stage, such a model combines both the role of an information lag and the role of

shocks on the evolution of the distribution of money holdings.

As might be expected, not much is known about such a version of the model. Some

very preliminary investigation of a version with two DM stages suggests that the implied

seller wealth effects do tend to weaken the kind of Phillips curve effects found for the one

DM-stage model. However, the implications seem to depend on the details of the model.

6There seems to be no work that explores an incomplete-information theory of the Phillips curve and

allows for producer wealth effects (c.f. Hellwig [4]). Katzman et. al. [6] claim that their specification

avoids Barro’s concern because they have transfers going to both consumers and producers. However, their

results are for {0, 1} money holdings and depend on a condition on the distribution of money holdings–
namely, that fewer than half the population has money. That condition is troublesome because it seems

to have no analogue when money is divisible.
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6 Concluding remark

Although we established a Phillips curve only in the LW model and for rare aggregate

shocks, the general message is that it is not hard to get a Phillips curve if one follows some

of the ideas in Hume; namely, heterogeneous transfers of money, small group trade, and

incomplete information about aggregate transfers. Although Hume wrote in the 1740’s,

economists were not able to work with those ideas until at least the 1980’s. One can only

wonder how different the history of macroeconomics would have been if those ideas had

been analyzed much earlier.

7 Appendix

Here we give the missing proofs. We begin with a lemma that is used in the proof of

Proposition 1.

Lemma 1.
∑

i,j γijτ iEij(1/s) = 1.

Proof. We have ∑
i,j

γijτ iEij(1/s)

=
∑
i,j

γijτ i

[∑
s′

pij(s
′)

1

s′

]

=
∑
s,i,j

γijτ i
[
π(s)µs(τ i)µs(τ j)/γij

] 1

s

=
∑
s,i,j

γijπ(s)µs(τ i)µs(τ j)
1

s

=
∑
s,j

π(s)µs(τ j)
1

s

[∑
i

µs(τ i)τ i

]
=

∑
s,j

π(s)µs(τ j) = 1.�

Completion of Proof of Proposition 1.

In order to complete the proof, we need to establish the two claims about G set out below.

We start by repeating the definition of G.
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max
x≥0

G(x) ≡ −(β−1 − 1)x+ σ
∑
i,j

γij{u[ỹij(x)]− vd̃ij(x)Eij(1/s)}, (18)

where, by (5) and (6),

ỹij(x) =


y∗ if c(y∗) ≤ xτ iEij(1/s)

c−1(xτ iEij(1/s)) if c(y∗) > xτ iEij(1/s)

(19)

and

vd̃ij(x) =


c(y∗)/Eij(1/s) if c(y∗) ≤ xτ iEij(1/s)

xτ i if c(y∗) > xτ iEij(1/s)

. (20)

Claim 1. G is differentiable with derivative denoted G′. Moreover, G′(0) > 0 and

G′(x) < 0 for all x ≥ x̄, where

x̄ =
mini,j[τ iEij(1/s)]

c(y∗)
. (21)

Proof. For existence of G′, it suffi ces to show that u[ỹij(x)]− vd̃ij(x)Eij(1/s) is differen-

tiable for each (i, j). There are two relevant cases. If c(y∗) > xτ iEij(1/s), then ỹij(x) < y∗

and
d

dx

[
u[ỹij(x)]− vd̃ij(x)Eij(1/s)

]
=

[
u′(ỹij(x))

c′(ỹij(x))
− 1

]
τ iEij(1/s). (22)

If c(y∗) > xτ iEij(1/s),then, ỹij(x) = y∗ and

d

dx

[
u[ỹij(x)]− vd̃ij(x)Eij(1/s)

]
= 0. (23)

Because both derivatives coincide at c(y∗) = xτ iEij(1/s), G is differentiable. Also, by

(22), G′(0) > 0. And by (23), G′(x) < 0 for all x ≥ x̄. 2

Claim 2. G′(x) is strictly decreasing on (0, x̄).

Proof. For any x ∈ (0, x̄), G′(x) is a sum of terms, some of which are given by (22)

and others of which are constant. Obviously, those given by (22) are strictly decreasing

because ỹij(x) < y∗. Hence, the result follows.�

Example 1.

Consider the model without an information-lag. Suppose that c(y) = y2, T = {1, τ}, and
that β is small enough so that yni(π) < y∗ for all n, i. Then, Y 0(sn, π) is nonmonotone in

sn.
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Proof. Let x(π) be the equilibrium price for money in the CM. In this case, we have

yni(π) =
√
τ ix(π)/sn.

Thus,

Y 0(sn, π) = µsn(1)yn1(π) + µsn(τ)yn2(π)

=
τ − s
τ − 1

√
x(π)/sn +

s− 1

τ − 1

√
τx(π)/sn

=

√
x(π)

√
sn(τ − 1)

[
(sn − 1)

√
τ + τ − sn

]
=

√
x(π)

√
sn(τ − 1)

[
(sn +

√
τ)(
√
τ − 1)

]
=

√
x(π)

√
sn(
√
τ + 1)

(sn +
√
τ)

=

√
x(π)

τ − 1

(
√
sn +

√
τ

sn

)
.

Now, let fn =
√
sn +

√
τ
sn
, and hence

f 2n = sn +
τ

sn
+ 2,

which is increasing in sn if and only if sn ≥
√
τ . 2

For Examples 2, 3, and 4, recall that we assume an information lag, c(y) = y, T =

{1, τ} and β small enough so that yij < y∗ in all meetings.

Example 2.

Assume that the buyer and seller in each meeting receive the same transfer. Suppose that

π has E(s) = (1 + τ)/2. Then, Y 1(s, π) is affi ne and strictly increasing in s.

Proof. To keep track of the transfers, we use τh to denote τ and τ ` to denote 1. Since

the pair receive the same transfer, we use Eτh and Eτ` to denote the interim expectation

with transfer τh or τ `. Thus,

Eτh(1/s) =
1− τ `E(1/s)

E(s)− τ `
, Eτ`(1/s) =

τhE(1/s)− 1

τh − E(s)
.

Since the buyer constraint is always binding and c(y) = y, it follows that

Y 1(s, π) = σ
xπ

τh − τ `

{
(τh − s)

τhE(1/s)− 1

τh − E(s)
τ ` + (s− τh)

1− τ `E(1/s)

E(s)− τ `
τh

}
, (24)
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where xπ is the equilibrium real balance. This shows that the aggregate output is linear

in s. By (24), Y (s) is strictly increasing in s iff

[τh − E(s)][E(s)− τ `]− τhτ ` [E(s)E(1/s)− 1] > 0.

Since E(s) = 1
2
(τh + τ `), this holds iff

1

2

(
1

τ `
+

1

τh

)
> E(1/s).

Now,

E(1/s) =
∑
s≥E(s)

π(s)
1

s
+
∑
s<E(s)

π(s)
1

s

=
∑
s≥E(s)

π(s)
2E(s)− s

[s− E(s) + E(s)][E(s)− (s− E(s))]

+
∑
s<E(s)

π(s)
2E(s)− s

[E(s)− (E(s)− s)][E(s) + (E(s)− s)]

<
∑
s≥E(s)

π(s)
2E(s)− s
τhτ `

+
∑
s<E(s)

π(s)
2E(s)− s
τhτ `

=
∑
s∈S

π(s)[2E(s)− s]
τhτ `

=
E(s)

τhτ `
=

1

2

[
1

τh
+

1

τ `

]
.

To see the strict inequality in the above equations, consider s ≥ E(s) and let ε = s−E(s).

Then, s = E(s) + ε and ε < τh − E(s) = E(s)− τ `. Thus,

1

[s− E(s) + E(s)][E(s)− (s− E(s))]

=
1

[E(s) + ε][E(s)− ε] =
1

E(s)2 − ε2 <
1

E(s)2 − [E(s)− τ `]2
=

1

τhτ `
.

2

Example 3.

For each N ∈ N, let SN = {1 + ε, 1 + 2ε, ..., 1 +Nε} with ε = (τ − 1)/(N + 1) and let

π(1 + ε) = π(τ − ε) =
1

2
(1− δ),

and

π(1 + nε) =
δ

N − 2
for all 2 ≤ n ≤ N − 1

17



for some small δ > 0. Then, there exist (large) N̄ and (small) δ̄ > 0 such that if N > N̄

and if δ < δ̄, then Y 1(s, π) is not monotone in s.

Proof. Let δ = 0. It is easy to verify the following.

Eττ (1/s) =
Eπ(s) + Eπ(1/s)− 2

Eπ(s2)− 2Eπ(s) + 1
,

Eτ1(1/s) = E1τ (1/s) =
(1 + τ)− Eπ(s)− τEπ(1/s)

(1 + τ)Eπ(s)− Eπ(s2)− τ ,

E11(1/s) =
τ 2Eπ(1/s)− 2τ + Eπ(s)

τ 2 − 2τEπ(s) + Eπ(s2)
.

Now, assuming that the buyer constraint is always binding, we have

Y (sn, π) ∝ (sn − 1)2

(τ − 1)2
Eττ (1/s)τ +

(sn − 1)(τ − sn)

(τ − 1)2
Eτ1(1/s)(1 + τ) + E11(1/s)

(τ − sn)2

(τ − 1)2
.

Under π(1 + ε) = π(τ − ε) = 1/2, we have

Eπ(s) =
1

2
(1 + τ),

Eπ(s2) =
1

2
(τ 2 − 2(τ − 1)ε+ 2ε2 + 1),

Eπ(1/s) =
1

2

τ + 1

(τ − ε)(1 + ε)
.

Taking N →∞, or, equivalently, ε→ 0, we have

lim
ε→0

Eττ (1/s) = lim
ε→0

1
2
(1 + τ) + 1

2
τ+1

(τ−ε)(1+ε) − 2
1
2
(τ 2 − 2(τ − 1)ε+ 2ε2 + 1)− 21

2
(1 + τ) + 1

=
1

τ
,

lim
ε→0

Eτ1(1/s) = lim
ε→0

(1 + τ)− 1
2
(1 + τ)− τ 1

2
τ+1

(τ−ε)(1+ε)

(1 + τ)1
2
(1 + τ)− 1

2
(τ 2 − 2(τ − 1)ε+ 2ε2 + 1)− τ

=
1

2

τ + 1

τ
,

lim
ε→0

E11(1/s) = lim
ε→0

τ 2 1
2

τ+1
(τ−ε)(1+ε) − 2τ + 1

2
(1 + τ)

τ 2 − 2τ 1
2
(1 + τ) + 1

2
(τ 2 − 2(τ − 1)ε+ 2ε2 + 1)

= 1.

Thus, we have

lim
ε→0

Y (s, π) ∝ (s− 1)2

(τ − 1)2
+

(s− 1)(τ − s)
(τ − 1)2

(1 + τ)2

2τ
+

(τ − s)2
(τ − 1)2

=
s+ τ + sτ − s2

2τ
.

Therefore, Y (s, π) is increasing iff s ≤ 1+τ
2
. For ε suffi ciently small, the Phillips curve

increases first (between s = 1 + ε and s = 1+τ
2
), and then decreases at the tail (between

s = 1+τ
2
and s = τ − ε). Since the function Y (s, π) is continuous in ε and in δ (note that

π implicitly depends on δ), the non-monotonicity holds for small ε and small δ as well. 2
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Example 4.

Suppose that T = {1, τ} with τ < 6, and that π is symmetric with E(s) = (1 + τ)/2. If

S ⊂ [0.3τ + 0.7, 0.7τ + 0.3], then Y 1(s, π) is strictly increasing.

Proof. To keep track of the transfers, we use τh to denote τ and τ ` to denote 1. Since

T = {τ ` < τh}, we have

Eτh,τh(1/s) =
Eπ(s) + τ `Eπ(1/s)− 2τ `
Eπ(s2)− 2τ `Eπ(s) + τ 2`

,

Eτh,τ`(1/s) = Eτ`,τh(1/s) =
(τh + τ `)− Eπ(s)− τhτ `Eπ(1/s)

(τh + τ `)Eπ(s)− Eπ(s2)− τhτ `
,

Eτ`,τ`(1/s) =
τ 2hEπ(1/s)− 2τh + Eπ(s)

τ 2h − 2τhEπ(s) + Eπ(s2)
.

Since buyer constraint is always binding and c(y) = y, we have

Y 1(sn, π) ∝ (sn − τ `)2
(τh − τ `)2

Eτh,τh(1/s)τh+
(sn − τ `)(τh − sn)

(τh − τ `)2
Eτh,τ`(1/s)(τ `+τh)+

(τh − sn)2

(τh − τ `)2
Eτ`,τ`(1/s)τ `.

Then, we have
d

ds
Y 1(s, π) ∝ 2

(τh − τ `)2

[
A+B

(
s− τh + τ `

2

)]
,

where

A =
τh − τ `

2

{
Eπ(s) + τ `Eπ(1/s)− 2τ `
Eπ(s2)− 2τ `Eπ(s) + τ 2`

τh −
τ 2hEπ(1/s)− 2τh + Eπ(s)

τ 2h − 2τhEπ(s) + Eπ(s2)
τ `

}
,

B =
Eπ(s) + τ `Eπ(1/s)− 2τ `
Eπ(s2)− 2τ `Eπ(s) + τ 2`

τh +
τ 2hEπ(1/s)− 2τh + Eπ(s)

τ 2h − 2τhEπ(s) + Eπ(s2)
τ `

− (τh + τ `)− Eπ(s)− τhτ `Eπ(1/s)

(τh + τ `)Eπ(s)− Eπ(s2)− τhτ `
(τh + τ `).

Now,

A = (τh − τ `)2
τh + τ ` − 2τhτ `Eπ(1/s)

(τh − τ `)2 + 4V arπ(s)
,

B = 16(τh − τ `)2
τhτ ` [Eπ(s)Eπ(1/s)− 1]− V arπ(s)

(τh − τ `)4 − 16V ar(s)2

Now, S = {s1, ..., sN} and consider the case where N is even. Since π is symmetric, for

some ε1 > ... > εN/2 > 0, sn = E(s)− εn and sN−n = E(s) + εn with π(sN−n) = π(sn) for

all n = 1, ..., N/2. Let t = τh+τ`
2

and let e = τh−τ`
2
. Since S ⊂ [0.3τh+0.7τ `, 0.7τh+0.3τ `],

it follows that εn < 0.7e for all n = 1, ..., N/2.

Now, V arπ(s) =
∑N/2

n=1 2π(sn)ε2n. We also use π to denote the distribution over εn’s.
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Then,

A = 4e2

{
2t− 2(t− e)(t+ e)Eπ

[
t

t2−ε2
]

4e2 + 4Eπ(ε2)

}

> 4e2

{
2t− 2(t− e)(t+ e) t

t2−(0.7e)2

4e2 + 4(0.7e)2

}
> 0.

Similarly,

B = 16(4e2)

{
(t− e)(t+ e)

[
tEπ

[
t

t2−ε2
]
− 1
]
− Eπ(ε2)

16e4 − 16Eπ(ε2)2

}

= −4e2

Eπ
(
e2−ε2
t2−ε2 ε

2
)

e4 − Eπ(ε2)2

 > −4e2


e2−(0.7e)2
t2−(0.7e)2 (0.7e)2

e4 − (0.7e)4

 ,

where the second inequality follows from the fact that e2−ε2
t2−ε2 ε

2 is increasing in ε as long as

ε < 0.7e:
d

d(ε2)

(
e2 − ε2
t2 − ε2 ε

2

)
=

(e2 − 2ε2)(t2 − ε2) + (e2ε2 − ε4)
(t2 − ε2)2 > 0

if and only if

e2t2 − 2t2ε2 + ε4 > 0,

which holds if e2 > 2ε2.

Now, since A > 0 and B < 0, d
ds
Y 1(s) > 0 for all s ∈ S if

A+B(0.7e) > 0,

which holds if{
2t− 2(t− e)(t+ e) t

t2−(0.7e)2

4e2 + 4(0.7e)2

}
−


e2−(0.7e)2
t2−(0.7e)2 (0.7e)2

e4 − (0.7e)4

 (0.7e) > 0,

which holds if
1

2
e2

1/2

(1− 1/4)(t2 − 0.5e2)
(t− 0.7e− 0.5t) > 0,

which is equivalent to 0.5t > 0.7e, that is, τh < 6τ `. 2
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