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Abstract

Formal analysis plans limit false discoveries by registering and multiplicity adjusting sta-

tistical tests. As each registered test reduces power on other tests, researchers prune hypothe-

ses based on prior knowledge, often by combining related indicators into evenly-weighted

indices. We propose two improvements to maximize learning within these types of analysis

plans. First, we develop data-driven optimized indices that can yield more powerful tests than

evenly-weighted indices. Second, we discuss organizing the logical structure of an analysis

plan into a gated tree that directs type I error towards these high-powered tests. In simula-

tions we show that researchers may prefer these “optimus gates” across a wide range of data-

generating processes. We then assess our strategy using the community-driven development

(CDD) application from Casey et al. (2012) and the Oregon Health Insurance Experiment from

Finkelstein et al. (2012). We find substantial power gains in both applications, meaningfully

changing the conclusions of Casey et al. (2012).
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1 Introduction

A classic tradeoff in data analysis exists between estimating large numbers of parameters and gen-

erating results that do not reproduce in new samples. In computer science and machine learning

this problem is known as “overfitting”; in biostatistics it manifests itself in “large-scale multiple

testing.” In the past decade it has become a critical issue in empirical microeconomics with the

widespread use of field experiments.1 Researchers designing field experiments often face high

fixed costs in setting up the experiment and low marginal costs in adding additional survey out-

comes. Increasing sample size is expensive, and the samples in many field experiments are too

small to detect anything less than a large effect. Given these constraints and the focus on positive

results in economics and other social sciences (Gerber and Malhotra 2008; Yong 2012), researchers

face strong incentives to test for effects on many outcomes or subgroups and then emphasize the

subset of significant results. Unfortunately this behavior maximizes the chances of “false discov-

eries” (type I errors) that do not replicate in new samples.

Economists have a range of tools available, both formal and informal, to limit false discov-

eries. Statistical methods that control the familywise error rate (FWER) or false discovery rate

(FDR) formally test whether p-values are more extreme than would be expected under the null

hypothesis based on the number of reported results. Credibly implementing these procedures,

however, requires documenting the full set of conducted tests, usually through a preanalysis plan

(PAP).2 With a PAP, the researcher publicly documents the set of hypotheses that she intends to

test prior to collecting the data, allowing formal control of type I error. Informal methods that limit

false discoveries are also available; for example, registering a set of hypotheses through the AEA

registry, or basing an analysis on a well-described (and perhaps registered) theory. Documenting

the intent to pursue a particular direction of research demonstrates that the overall line of inquiry

was not influenced by sample characteristics but allows researchers to respond to new ideas and

information in the analysis, albeit at the cost of being unable to credibly control FWER at a specific

value.

The tension between formal and informal control of false discoveries is driven by a tradeoff

between statistical power and false discoveries. The fact that all hypotheses in a PAP must be

1It is also an issue in many observational studies, but it is difficult to establish when a researcher first had access to

the data in an observational study. Establishing this timeline is critical to any method for limiting false discoveries.
2This method follows an approach used for decades in biostatistics (Simes 1986; Horton and Smith 1999) and

appeared in economics at least as early as Neumark (2001). Casey et al. (2012) established best practices and popu-

larized the use of PAPs among empirical microeconomics using a case of a Community-Driven Development (CDD)

program in Sierra Leone. Both field experiments and PAPs have increased sharply in prevalence since 2010 (Currie

et al. 2020).
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anticipated constrains researchers and generates concerns about type II errors — failures to reject

false hypotheses. Since each hypothesis included in a PAP that controls FWER increases test crit-

ical values for other hypotheses, power depends on the researcher correctly anticipating the set

of hypotheses which are likely false and excluding those which are not. Individual researchers

care about power, and the field as a whole suffers if novel discoveries are precluded or tests lack

power to detect economically meaningful effects. Consolidating or otherwise reducing the number

hypotheses can thus be attractive. Casey et al. (2012), for example, suggest combining outcome

indicators into a range of unweighted summary indices to minimize the number of tests conducted.

Olken (2015) recommends prespecifying a very small number of primary hypotheses, and forego-

ing formal FWER control over remaining hypotheses of interest. Banerjee et al. (2020) propose

parallel streams for a “populated PAP”, which reports the primary effects of an intervention, and a

separate analysis in an academic paper, which foregoes control of false discoveries across the non-

prespecified hypotheses. Such an approach balances the desire to demonstrate meaningful positive

results on some indicators against the cost that novel findings may represent false discoveries.

This paper builds on Banerjee et al. (2020)’s insights to develop a key advantage of analysis

plans: by formally controlling type I error we can generate statistical tests of correct size for any

hypothesis. In doing so, we integrate and nest insights from classical econometrics, biostatistics,

and machine learning (ML). We propose two tools to increase power on hypotheses of interest.

First, we suggest an algorithm which maximizes power over the set of potential summary index

hypotheses, allowing researchers to summarize many outcome variables in a single high-powered

“optimus” test. As an index test, the optimus index retains the interpretation of an average treat-

ment effect across multiple outcome indicators. Our approach strives to divorce anticipation of the

most relevant indicators of interest from multiple inference control and instead uses the data to in-

form researchers as to which candidate index hypotheses are likely to represent high-powered tests.

This approach leverages the analysis plan to avoid what would otherwise be a data-mining exer-

cise resulting in tests with incorrect size. Second, we consider gatekeeping approaches to integrate

the logical structure of an economic argument into the allocation of type I error. Gatekeeping ap-

proaches test hypotheses in serial rather than in parallel; in doing so they generate higher-powered

tests on the first hypotheses examined at the potential cost of lower power on hypotheses tested

subsequently. We demonstrate that combining gatekeeping with the optimized index generates a

powerful test structure which yields substantial power gains over existing methods of controlling

false discoveries. We expect this structure may be applicable in many economic contexts.

We consider two empirical applications. First, we reconsider the community-driven develop-

ment (CDD) intervention studied by Casey et al. (2012). This application has several advantages:
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it is the seminal application which popularized PAPs among microeconomists, and its PAP orga-

nizes indicators into families and suggests a clear logical structure for hypothesis tests. We adapt

the pure PAP suggested by Casey et al. (2012) into a gatekeeping structure with optimized index

tests. We conclude that the additional power generated by these tools would have led to important

differences in the qualitative and quantitative understanding of the effects of the CDD program.

Second, we consider the Oregon Health Insurance Experiment (OHIE), analyzed in Finkelstein

et al. (2012). The analysis of OHIE was also prespecified. In contrast to Casey et al. (2012),

however, the sample was large, effect sizes were more homogeneous, and the PAP-guided analy-

sis yielded strong evidence in support of the effects of health insurance on healthcare utilization

and some health outcomes. We thus treat the positive results presented in Finkelstein et al. (2012)

as the true data generating process (DGP) and demonstrate that, in samples an order of magni-

tude smaller than the original sample, a gated optimus approach would have substantially higher

statistical power to reject the null hypothesis than other available estimators.

The tools developed in this paper allow precise control of type I error and speak directly to two

of the costs of formal analysis plans identified in Banerjee et al. (2020). First, statistical power

may be greatly boosted by researchers using the optimus index over any other potential index that

they could identify. Since the algorithm is prespecified, readers and reviewers need not worry about

cherry-picking or the potential for false discoveries. Second, analysis plans based on these methods

can be quite simple. To implement an optimus index test, one needs only know which indicators

are grouped into which families of hypotheses. We suggest a simple gatekeeping structure which

will be intuitive in many contexts: a first-stage gate that measures whether variables related to

program implementation respond to treatment, a second-stage gate that tests one or more optimus

indices in parallel, and a final stage that tests individual outcome indicators. Since the use of the

optimus index generates high-power tests at each of the gates, researchers can concentrate error on

each set of tests knowing that they have identified the highest power potential test to run. While

the use of these tools does not replace the need for analysis and research beyond the registered

analyses, the tools may greatly expand what can be learned through the rigorously-controlled PAP

whenever power is not abundant.

While the optimus approach yields tests of the correct size, interpretation of effect sizes is a

separate issue. We propose using a K-fold hold-out sample to form the optimus index, and demon-

strate that the K-fold optimus regression coefficient is an unbiased estimator of a weighted average

of treatment effects. The optimus weights towards outcomes with larger (true) treatment effects,

however, so it does not represent the estimated effect size for the average outcome indicator (which

could be reported separately). Nevertheless, as we demonstrate in our applications, the optimus
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coefficient is often smaller in magnitude than the average coefficient on outcome indicators with

positive results in a conventional PAP, because its higher power reduces the bias inherent in focus-

ing on significant results (Andrews and Kasy, 2019).

The paper proceeds as follows. First, we set up a research environment in which researchers

have access to a large number of outcome indicators (i.e. hypotheses) and are interested in test-

ing for treatment effects on these outcomes. We then suggest that many of these indicators may

be measurements of underlying latent variables, and discuss potential index tests deriving from

these latent variable hypotheses. Next, we introduce the optimus index, and discuss gatekeeping

approaches to error allocation. Section 3 describes numerical simulations, and Sections 4 and 5

discuss and present results for our applications. Section 6 concludes with recommendations.

2 Background

To structure the discussion, consider the case of a researcher who conducts a field experiment

which assigns treatment, T , to a random fraction of the sample. For each participant i, she collects

data on a set of H outcomes, {Yi1, Yi2, ..., YiH}. These outcomes may be a mixture of individual

variables and indices that aggregate multiple variables. They map to H hypotheses, where the

underlying relationship is

Yih = βhTi + εih (1)

The researcher wishes to test the null hypothesis H0
h : βh = 0 against the two-sided alternative

HA
h : βh 6= 0. Using the sample data, we can estimate the average treatment effect, β̂h, and an

accompanying standard error, s.e.(β̂h), that is an estimate of σh (the standard deviation of β̂h).

These are used to form a t-statistic under the null hypothesis, t̂h = β̂h−0

s.e.(β̂h)
. Using the t-distribution

with N − 1 degrees of freedom, the researcher can find a critical value of tα/2.3 If the estimated

t̂h falls above tα/2 or below −tα/2, we reject the null hypothesis H0
h at the α significance level. As

scientific convention, we take α = 0.05.

The set H = {1, ..., H} enumerates all candidate outcome variables Yh, where h ∈ H is

associated with a hypothesis as described above. In most field experiments the implementation of

the treatment is expensive, but measuring an additional outcome has low marginal cost. Often H

is therefore large.

We denote the benchmark objective function as the Simple Rejection Problem. In the Simple

Rejection Problem, the researcher maximizes the expected sum of statistically significant treatment

3Let t ∼ tN−1(0, 1) be distributed according to the centered t-distribution with N − 1 degrees of freedom and

standard deviation of 1. The probability of t falling anywhere above the critical value tα/2 or below −tα/2 is α.
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effects. This objective function accords with one of the definitions of power that Romano et al.

(2010) propose (p. 95), and we use it throughout the paper. The researcher forms expectations

about rejections according to a prior belief Fh over {βh, σh} and selects a subset of hypotheses to

test,H′ ⊆ H, that solves

max
H′∈2H

E

[∑
h∈H′

I{|t̂h| > tα/2}

]
= max
H′∈2H

∑
h∈H′

PFh
(
|t̂h| > tα/2

)
(2)

There is no constraint in the maximization problem above, so the maximizing subset, H∗,
is the subset of hypotheses with a positive probability of rejection. Since even true hypotheses

reject at rate α, the maximizing subset is H∗ = H, and the researcher tests for effects on every

possible outcome. This solution naturally opens the door to false discoveries, and limiting these

false discoveries is a critical issue in most empirical disciplines (Sterling 1959).

2.1 False Discovery Problem

The fundamental problem with testing every hypothesis inH is that in any hypothesis test there is a

chance that the sample statistic falls in the rejection region, even if the null hypothesis is true. This

false discovery problem leads to costly but ultimately futile future research, as well as potentially

dangerous policy. More broadly, it erodes the trust that the public has in the results that researchers

find. Thus it is important to minimize the rejection of true hypotheses, or the type I error rate.4

Returning to the researcher’s decision in Equation (2), in the worst-case scenario all the null

hypotheses in H are true. Even though the study contains no false hypotheses, it still rejects

α · |H| of the hypotheses in expectation. As an example, suppose 100 hypotheses are tested at

a significance level of 0.05. Even if all 100 null hypotheses are true, we expect the study to

(incorrectly) reject five of the null hypotheses, generating five significant findings.

To address this issue, multiplicity adjustments work to control the overall type I error rate of the

study. This error rate is either the probability that the study makes at least one incorrect rejection

— the familywise error rate — or the expected proportion of rejections that are incorrect — the

false discovery rate. The simplest adjustment is the Bonferroni correction, which controls FWER.

With the Bonferroni correction, we divide α by the number of hypotheses tested, in this case, |H′|.5

4This paper is not the first to discuss the false discovery problem in the context of randomized experiments in

economics or the general social sciences. For example, see Anderson (2008), Anderson and Magruder (2017), and

Fafchamps and Labonne (2017) for related discussions of these issues and techniques for controlling the type I error

rate.
5More sophisticated adjustments exist that minimize the power reduction associated with additional tests. Nev-

ertheless, it is inherent in the control of FWER, or the probability of making any type I error (i.e. false rejection),
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The researcher’s problem becomes6

max
H′∈2H

E

[∑
h∈H′

I{|t̂h| > tα/2|H′|}

]
= max
H′∈2H

∑
h∈H′

PFh
(
|t̂h| > tα/2|H′|

)
(3)

where tα/2|H′| is the critical value above which a standard t-statistic has probability α
2|H′| of

falling.

The critical value tα/2|H′| increases with |H′|; for example, tα/2|H′| = 3.49 if |H′| = 100. In this

example, a hypothesis that would reject with 80% probability prior to multiplicity adjustment — a

common benchmark in study design — would reject with only 24% probability after multiplicity

adjustment. The more hypotheses the researcher tests, the higher the critical value becomes, and

the lower the probability of rejecting a given hypothesis becomes.

A straightforward response to this tension is to reduce the dimensionality of H′, and a fre-

quently utilized tool to do so is to aggregate related indicators into a small number of index hy-

potheses (e.g. Kling et al. (2007)). Ideally, this preserves the economic result identified by the

test while paying a double dividend for power: it reduces the number of hypotheses tested and

generates indices with smaller standard deviations than their underlying components.

At the same time, whether the researcher aggregates indicators or not, the validity of the mul-

tiplicity adjustment requires honest disclosure of H′, which creates an incentive problem for re-

searchers. A researcher motivated to increase rejections could test every hypothesis inH but report

a subset, Hr, that contains only hypotheses with large t-statistics. In many cases |Hr| << |H|,
and the multiplicity adjustment for each test becomes much less severe.7 Thus, multiplicity adjust-

ments are only effective when researchers can credibly communicate the number of hypotheses

they have tested.

Historically, biostatistics has taken a strong interest in controlling false discoveries. This inter-

est arises from the large financial incentives and potential welfare impacts related to false discover-

ies in clinical trials and the massive number of hypotheses tested in many genomics studies. It has

thus become standard practice in the medical literature that clinical trials should register analysis

plans prior to enrolling patients (De Angelis et al. 2004). More recently, empirical microeconomics

has begun to adopt this model for field experiments in the form of preanalysis plans.

that adding more tests requires more stringent adjustment of p-values. Otherwise, the probability of making at least

one error rises. The only case in which FWER would not rise would be the case in which the new test is perfectly

correlated with one or more of the existing tests. In this case the new test does not represent new information.
6Here I{·} is the indicator function, equal to 1 if the condition {·} is true, and equal to 0 otherwise.
7When there exist many candidate index hypotheses, the problem is arguably greater: researchers motivated by

rejections can fine-tune the selection of indicators into the index with the best in-sample performance.
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2.2 Preanalysis Plans

One way to credibly communicate the number of hypotheses to be tested is to file a preanalysis

plan. A PAP describes in detail the analyses that a researcher intends to perform, including the

construction of any index hypotheses. An effective PAP requires that the researcher upload it

to a public site, such as the AEA RCT Registry, prior to collecting her data. With a publicly

registered PAP, the researcher “ties her hands” with respect to the analysis, thus preventing “cherry

picking” of results or “p-hacking.” Formally, readers can be confident that the reported set of

tested hypotheses, Hr, represents the true set of tested hypotheses, H′. In what follows, we define

the exhaustive PAP to indicate the PAP which prespecifies every hypothesis in H, that is the PAP

whereHr = H′ = H.

In addition to specifying the hypotheses to be tested, an effective PAP must specify some form

of multiplicity adjustment for statistical tests (assuming it tests more than one hypothesis). Without

any multiplicity adjustment, the researcher’s optimal strategy is to include as many hypotheses as

possible, even those that may be very unlikely to reject or of little interest, since the option value

of including any given hypothesis test in the PAP is weakly positive. The constraints on the PAP

thus become the researcher’s creativity and value of time.

Multiplicity adjustments formalize the implicit tradeoff that motivates PAPs to begin with.

Each additional test has option value in that it may reject and be of interest, but it also carries an

explicit cost in that it reduces the power of other included tests. These adjustments thus impose

discipline on the researcher’s hypothesis selection process.

2.3 Aggregate Indices in PAPs

In many contexts, a number of indicator variables may correspond to the same latent economic

or conceptual hypothesis. In such cases, we may be able to partition the hypothesis set H into

G groups, such that Hg contains the hypotheses belonging to group g, and treatment effects are

anticipated to be weakly monotonic within a group.8 Then we can represent the data generating

8This weak monotonicity assumption, expressed in Equation (4) as γhg ∈ [0, c), assists with interpretation of

the estimated treatment effect, but the test we propose maintains the correct size even if weak monotonicity fails.

Nevertheless, higher power estimators that do not impose weak monotonicity may be possible if the indicators are not

weakly monotonic.
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process as

y∗ig = δgTi + ε∗ig (4)

yihg = γhgy
∗
ig + uihg ∀ h ∈ Hg

γhg ∈ [0, c)

Now βhg = δgγhg. In these cases, the researcher may be primarily interested in rejecting the

hypothesis Hg : δg = 0; then, rejecting any convex combination of the indicators in Hg suffices to

reject Hg. This insight motivates reducing the problem of dimensionality in the hypothesis space

through the construction of an aggregate index hypothesis, which are often unweighted averages

of outcomes (Kling et al., 2007). That is, researchers test βȳ = 0 by estimating the regression

1

|Hg|
∑
h∈Hg

yihg = βȳTi + νig (5)

for hypotheses in group g. More generally, they may test a weighted version of the index

w′gyig = βwgTi + νiwg (6)

where yig is a |Hg|×1 column vector of outcomes in group g, wg is a |Hg|×1 column vector of

weights summing to one (and otherwise unrestricted), and βwg and νiwg are scalars. They may use

generalized least squares (GLS) weights to increase power (O’Brien, 1984; Anderson, 2008); then,

w′g = (1′Σ−1
g 1)−1(1′Σ−1

g ), where 1 is a column vector of ones and Σg is the covariance matrix for

yig.

In practice, many authors follow Kling et al. (2007) in using unweighted mean indices across

all outcomes in a group g. In what follows, we define the index containing an unweighted average

of all standardized outcomes in group g as the KLK index for that group. This is a natural choice:

if hypotheses are homogeneous with respect to βhg and Σg (i.e. all outcomes have the same stan-

dardized treatment effects and are equally correlated with each other), the KLK index maximizes

statistical power (see Corollary 1.2 in Appendix A2.1). On the other hand, if there is dispersion in

the distribution of βhg or the elements of Σg, then an index based off the hypotheses with larger

treatment effects or lower covariances can be more powerful than the KLK index. Of course, de-

signing such an index would require researchers to correctly anticipate the vector βhg and matrix

Σg, which is often unrealistic.

Even if the latent index representation is not literally correct, mean indices have several ap-

pealing qualities. They allow researchers to infer that the regression coefficient is the effect on a

(weighted) average of outcomes in a well-specified index. If the member hypotheses in the index
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have similar treatment effects, then estimating Equation (5) leads to a higher-powered test than

testing any individual hypothesis in isolation (see Corollary 1.1 in Appendix A2.1). Furthermore,

it allows the p-values to be corrected only for the number of groups G, not the number of indicator

hypotheses H . Nevertheless, mean indices are not costless. In a PAP, they induce the possibility

of type II error if researcher priors are inaccurate. In particular, if the researcher does not correctly

anticipate the full vector of indicator effects and covariance matrix of those effects, then they may

design indices which increase the likelihood of type II error (i.e. have lower power than testing

individual indicators, even after multiplicity adjustment).

2.4 Optimized Aggregate Indices

The use of an analysis plan opens the opportunity to identify and test other index hypotheses.

Specifically, an analysis plan can define an algorithm allowing the data to suggest a high-powered

index hypothesis. Suppose that a researcher receives utility from rejecting Hg : δg = 0, the family-

level hypothesis in Equation (4), but no additional utility from rejecting individual indicator-level

hypotheses Hhg : βhg = 0. Then the researcher will wish to maximize power across possible

indices composed of elements of Hg, the index “donor pool”. We define the “optimus index”,

which maximizes power across potential indices for group g:

max
wg

PFHg
(
|t̂ȳwg | > tc

)
. (7)

Deriving the optimus index requires knowledge of the DGP, which we denote FHg . Specifi-

cally it requires the coefficients βhg and the covariance matrix Σg for all h ∈ Hg. Let βg be a

|Hg| × 1 column vector containing βhg for all h ∈ Hg. In Appendix A2.1 we derive the following

proposition for known βg and Σg:

Proposition 1. Consider an index ȳiwg = w′gyig. Let β̂wg be the regression coefficient from

estimating Equation (6) and let σβ̂wg =
√

V(β̂wg). A one-sided test of βwg = 0 based on β̂wg/σβ̂wg
with critical value Φ−1(1− α) has power Φ( βg

′wg√
w′gΣgwg

+ Φ−1(α)).

Absent detailed priors researchers generally default to the KLK index, which contains an un-

weighted average of all indicators in the donor set Hg. Access to sample estimates, however, can

generate a higher powered test. A natural approach for deriving the optimus index is to replace

βg and Σg with sample estimates β̂g and Σ̂g. Doing so, however, results in an overestimate of the

test’s power (and the treatment effect size), since the procedure heavily weights outcomes with the

largest t-statistics, which would likely experience mean reversion in a hold-out sample. In essence,

there is an overfitting problem; specifically, the estimates β̂hg and Σ̂g are overdispersed relative to
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the true βhg and Σg (the largest β̂hg is likely large both because the true βhg is large and because it

experienced a sampling error shock of the same sign as βhg). In Appendix A2.2 we demonstrate

formally that utilizing the full sample to estimate β̂hg and Σ̂g forming the optimus using these

estimates results in a biased estimator:

Proposition 2. Let ωg = argmaxwg
Φ(

β̂′gwg√
wgΣ̂gwg

+ Φ−1(α)), where β̂g and Σ̂g are sample

estimates of βg and Σg. Let βωg = E[βg
′ωg | ωg]. Consider an index ȳiωg = ω′gyig. A regression of

ȳiωg on Ti yields a biased estimate of βωg .

To address this bias we incorporate several machine-learning techniques when deriving the

optimus index. First, we utilize sample splitting. With sample splitting, researchers can estimate

β̂hg and Σ̂g in a training sample and then apply the derived optimus index in a test sample. For the

simulations and applications we incorporate 5-fold sample splitting (Hastie et al. 2009, p. 242).

For each fold, we estimate the optimus index using the data that omits that fold, and then apply

the estimated optimus index weights to the omitted fold. Aggregating these indices across folds

generates an optimus test that can be implemented on the full sample. As different folds of the data

may feature different constructions of the optimus index, rejecting the optimus test using a K-fold

approach implies that there is a mean treatment effect on a subset of variables in group G, where

the weights of the specific component indicators may be summarized across the full sample.

In Appendix A2.2 we formally demonstrate that estimating Equation (6) using the K-fold

version of the optimus test produces an unbiased estimator of the expected weighted average of the

elements of βg , with weights determined by the K-fold procedure:

Proposition 3. Randomly assign N observations to K folds. For each fold k, compute weights

ω−k,g = argmaxw−k,g
Φ(

β̂′−k,gw−k,g√
w−k,gΣ̂−k,gw−k,g

+ Φ−1(α)), where β̂−k,g and Σ̂−k,g are estimates of βg

and Σg using all observations not in fold k. Let T̃ be a demeaned N × 1 vector of treatment

assignments and Ỹg be a N × 1 vector of weighted outcomes, with element i equal to ω′−k,gyig.

The K-fold optimus estimator (T̃′T̃)−1T̃′Ỹg is unbiased for E[βg
′ω−k,g].

Proposition 3 states that the optimus K-fold procedure is unbiased for a weighted average of

treatment coefficients βg, with weights equal to the expected optimus K-fold weights. Further-

more, the average weights across folds, ω̄g = 1
K

∑
k ω−k,g, represent an unbiased estimate of the

expected weights due to the random assignment of folds. Thus in our applications we report the

average optimus weight (across folds) that each outcome receives.

Nevertheless, the t-statistic for the K-fold optimus estimator is not distributed t, because each

fold is ultimately used both to form the optimus weights and to estimate the treatment effect (see
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Corollary 3.1 in Appendix A2.2). Therefore, test statistics from this approach should be tested

against critical values generated by randomization inference (that is, randomly permuting treatment

across the full sample and implementing the procedure on these random treatment permutations

many times).

While the K-fold optimus is unbiased, the overdispersion in estimates of βg may reduce the

finite sample efficiency of the estimator. To counteract the overdispersion that tends to arise in

estimates of βg, we modify the objective function in Proposition 1 to include a penalty for indices

that concentrate weight on a smaller number of indicators. Specifically, we evaluate

max
wg

Φ(
β̂′gwg√
w′gΣ̂gwg

+ Φ−1(α))− λHHIwg (8)

whereHHIwg represents the Herfindhal-Hirschmann index (HHI) for weights wg (i.e.
∑

h∈Hg w
2
hg).

This penalty index, which by construction must lie on the unit interval, encourages the optimus test

to be a well-defined index hypothesis which presents average treatment effects across a range of

variables rather than, for example, selecting the single indicator with the most significant t-statistic.

In the simulations, we experiment with a range of values of λ to determine which penalty weight

generates the highest power index across different DGPs. In the applications we apply the preferred

penalty weight from the simulations.9

Next, the off-diagonal elements of the estimated covariance matrix, Σ̂g, may be particularly

overdispersed, and small or negative off-diagonal entries can have substantial effects on the in-

dices’ predicted power. To address this overdispersion we derive an Empirical Bayes shrinkage

estimator for Σ̂g and use it to shrink the off-diagonal elements of Σ̂g in our applications (see Ap-

pendix A3).

Finally, it is common in the existing literature to assume that effects on individual indicators,

appropriately transformed, are weakly monotonic. This weak monotonicity assumption leverages

the underlying latent index model of Equation (4). Formally, it implies that the index loadings,

γhg, are weakly positive (or weakly negative). Enforcing weak monotonicity is also appealing

because a mixture of positive and negative weights confounds the directional interpretation of the

weighted index, regardless of the underlying DGP.10 Thus researchers may wish to restrict the

optimus weights to be weakly monotonic, as we do in our simulations and applications. The only

9In an actual application one could also tune the penalty weight using cross-validation. Doing so in our applica-

tions, however, would be computationally prohibitive, in part because we draw multiple samples to explore perfor-

mance in different scenarios.
10The possibility of a mixture of positive and negative weights is a key reason why researchers often avoid the

GLS-weighted index (Pocock et al., 1987; Dallow et al., 2008).
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downside to this restiction is that if the true loadings are not weakly monotonic, then an index that

mixes positive and negative weights could be more powerful, though less interpretable.

These approaches together leverage an analysis plan to identify an index test which is highly

powered, which controls type 1 error, and which is an unbiased estimator of a well-defined weighted

average of treatment effects across variables belonging to a given family. The cost of doing so is

that the researcher is not guaranteed a test of the unweighted average across indicators comprising

the KLK index; instead, the data determines which outcome variables are most strongly associated

with treatment in a way that the researcher need not anticipate ex ante. The benefit of doing so is

a reduction in type 2 error. We explore the extent of these benefits by simulation in Section 3 and

in applications in Sections 4 and 5. The costs of using the optimus test depend on the difference

in inherent interest between the KLK index and the set of well-defined weighted average indices

which could exist on outcome variables in family g. In investigations where the researcher selects

the KLK index due to a well-defined theory that suggests homogeneous treatment effects across

outcomes in family g, these costs could be significant. On the other hand, in investigations where

the researcher anticipates heterogeneous treatment effects but selects a KLK index to maximize

statistical power because they have uninformed priors, they may be quite small.

The optimus test has clear analogues in other tests that have been implemented or proposed in

the literature. For example, while the optimus test maximizes the expected t-statistic of the index in

the confirmation sample (E[β̂/σ̂]), O’Brien’s GLS weights minimize the standard error (E[σ̂]). As

such, if treatment effects are uniform among the hypotheses in a group, the two should converge

to the same weighted index. Similarly, while the optimus test focuses on maximizing power to

detect mean treatment effects on a subset of indicators in the data, the machine learning based test

in Ludwig et al. (2019) (hereafter LMS) flexibly tests the sharp null hypothesis of any treatment

effects across the marginal and joint distributions of outcomes.11 The finite sample performance

of the two estimators, as well as the DGP (i.e. whether the primary treatment effects lie on the

mean effects of treatment or on the joint distribution of outcomes), determine which of these two

procedures has greater power. As in most econometric applications, imposing additional structure

can improve precision if that structure is consistent with the DGP. In our applications we test the

optimus index alongside the LMS procedure.

11In the Ludwig et al. (2019) case, the researcher inverts the problem and uses split sample and ML methods to

predict treatment using outcome variables.
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2.5 Optimizing Error Allocations through Gatekeeping

A second contributor to type II error that challenges PAPs in economics is the misallocation of type

I error. Tests which limit false discoveries by controlling type I error often treat hypothesis tests

concurrently and uniformly. This strategy may lead to allocating type I error to some hypotheses

which are of researcher interest only conditional on other rejections; if these latter rejections fail

to materialize, then type I error goes wasted.

Gatekeeping strategies define the propagation of type I error across hypotheses. The key insight

is that when a test rejects, its type I error can be recycled to another test in a prespecified manner.

Formally, a gatekeeping strategy controls FWER at level α across sequential families of hypotheses

F1, ..., FM . Each family represents a “gate” that must be passed. In a serial gatekeeping strategy,

hypotheses in family Fj are tested iff all hypotheses in family Fj−1 are rejected using p-values

that are multiplicity adjusted within family j − 1. In a parallel gatekeeping strategy, hypotheses

in family Fj are tested iff at least one hypothesis in family Fj−1 is rejected using p-values that

are multiplicity adjusted within family j − 1 (Dmitrienko and Tamhane 2007). Tree-structured

gatekeeping strategies may be most relevant to field experiment practitioners (Dmitrienko et al.

2007; Bretz et al. 2011), as they allow researchers to precisely specify how type I error flows

between hypotheses.

As a simple example, consider a field experiment with imperfect compliance and a relatively

small sample. A reasonable tree-structured gatekeeping strategy in this context could specify three

families: F1, F2, F3. F1 contains the first-stage t-statistic, F2 contains one or more aggregate index

tests, and F3 contains the outcomes comprising the aggregate indices. The researcher first tests

F1 with no multiplicity adjustment. If F1 rejects — i.e. there was a first-stage effect — she

then tests for any aggregate effect on outcomes via the test(s) in F2. Failure to reject F1 and F2

precludes testing of individual outcomes, but in this context it is unlikely the researcher could

generate compelling findings absent a first-stage or overall effect. If an aggregate index in F2

rejects, the individual indicators in F3 comprising that index could be tested in parallel.12

12If the outcomes of the field experiment can be partitioned into G groups, then a reasonable tree-structured gate-

keeping strategy in this context could specify four families: F1, ..., F4. F1 contains the first-stage t-statistic, F2 an

optimus index test across all outcomes in the study, F3 optimus or KLK index tests for each group g of the G groups,

and F4 the indicators comprising those indices. The researcher first tests F1 with no multiplicity adjustment. If F1

rejects — i.e. there was a first-stage effect — she then tests for any aggregate effect on outcomes using the optimus

index in F2 — a high-powered test suited to her small sample. If F2 rejects she then tests for effects on theG groups in

F3, multiplicity adjusting for G tests. Finally, any group that rejects would have its component indicators tested in F4,

with α/G type I error to allocate across all indicators in that group. Failure to reject a family at any stage precludes

testing of subsequent families.
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As the example makes clear, using gatekeeping changes the nature of misallocation error. With-

out the use of gates, researchers spread type I error across many hypotheses, running the risk of

reducing power on false hypotheses by including true ones. Using a gate allows researchers to

concentrate type I error on a high-powered test, but that advantage comes with a cost: failing to

reject the gate prevents formal testing of the indicators comprising the index test within the gate.

Gatekeeping methods are therefore likely to be most useful when there exist tests that have a high

probability of rejecting under the alternate hypothesis (e.g. an optimus index) and when the value

of some rejections increases conditional on other rejections.

For researchers with latent index hypotheses like Equation (4), the power advantages of aggre-

gate index hypotheses render them as natural gates. For a researcher with a prespecified plan and

incomplete knowledge of the underlying DGP, writing a PAP that uses KLK indices as gates may

be sensible. For two reasons, however, we anticipate that using optimus tests as gates will have

significant advantages for many researchers. First, since the optimus gate maximizes statistical

power among tests of mean treatment effects, using an optimus test as a gate both maximizes the

chance of producing statistical evidence for a mean treatment effect across a group of variables and

minimizes the risk of failing to pass the gate, which would preclude tests of component indicators.

The simulations and applications below explore the potential power differences between KLK in-

dex and optimus gates. Second, some research designs may be complex, with many potential sets

of hypothesis families. In this case, anticipating a network and path for the propagation of type

I error across families and hypotheses quickly becomes intractable (Olken, 2015; Banerjee et al.,

2020). By selecting indicators within a family which have the strongest relationship to treatment,

optimus gates control type I error over indices that are most related to treatment. In many cases,

the optimus test may help simplify analysis design by identifying an index of variables with strong

treatment effects instead of requiring the researcher to anticipate this set.

3 Analysis Plan Simulations

When combining our test strategies with FWER control procedures more sophisticated than the

Bonferroni correction, it is infeasible to analytically calculate power. We thus turn to Monte Carlo

simulations to evaluate the performance of different strategies across a wide range of potential data

generating processes. For the optimus test, the simulations also give us insight into reasonable

values for the HHI penalty weight in Equation (8).

15



3.1 Simulation Environment

We perform a series of Monte Carlo simulations that establish the power of our strategies relative

to KLK indices or an exhaustive PAP under a variety of scenarios. In this context we use “power”

to refer to the probability that a single test rejects or, when considering multiple tests, the expected

number of rejections. Power depends on some parameters that the researcher has direct control

over (number of tests, use of an aggregate index or gatekeeping strategy), some that she has limited

control over (sample size), and others that she has no control over (share of hypotheses that are

false, effect sizes, and inter-test correlation structure).

Effect size and sample size are fundamental to statistical power. These two factors interact to

generate the sampling distribution of the test statistic, which determines power. The question of

what t-statistics a researcher might expect to find thus informs her expected power. To limit the

parameter space of interest we conducted a literature review of field experiments with the goal of

determining the empirical distribution of published t-statistics (described in Appendix A1). This

literature review concluded that the median t-statistic in published field experiments was 2.6. We

thus simulated DGPs in which the expected t-statistic for a false hypothesis, E[th | βh 6= 0], ranged

from 1.5 to 4.0.

To assess the performance of optimus indices and gatekeeping strategies across a range of

contexts, we set up the following simulation environment. First, there are H outcomes with H

corresponding hypotheses. Of these H hypotheses, H1 are false, and the remainder true. False

hypotheses have a normalized mean “effect size” of µt = E[th | βh 6= 0], where the data-generating

process draws a coefficient βh using the degenerate distribution (homogeneous treatment effects)

or from a gamma distribution with shape parameter 2µt and scale parameter µt/2 (heterogeneous

treatment effects). True hypotheses have βh = 0. A fraction r of outcomes are correlated with

correlation coefficient ρ, generating correlated tests.

Let the H × 1 column vector β represent the H coefficients. To test for robustness in a broad

range of environments we vary total hypotheses (H), the number of false hypotheses (H1), average

effect size (µt), inter-outcome correlations (ρ), the share of outcomes that are correlated (r), and

the coefficient DGP (degenerate or gamma distributions) across simulations (see Table 1).

To simulate a K-fold optimus index, we draw K = 5 column vectors of coefficients, each

dimension H × 1, centered at β. Each element in each vector has variance K, such that the

average of β̂hk across all K vectors — i.e. the “full-sample coefficient” — has unit variance.

The full-sample coefficients are thus distributed standard normal around β and can be treated as

t-statistics. We generate two aggregate indices from the H outcomes. One is a KLK index that

includes all H outcomes, equally weighted. The second is an optimus index that solves Equation
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(7). Due to computational constraints, in the simulations we only consider unweighted optimus

indices, i.e. those in which the non-zero weights are identical.13 The KLK index is based off of

full-sample coefficients, β̂. The optimus index is derived K times using the K folds. For each

fold k, the optimus index is derived using β̂−k, i.e. coefficients estimated while omitting fold k,

and then applied to fold k. We average the resulting K optimus indices across the K folds. We

consider optimus objective functions (Equation (8)) that apply values of λ = 0, 0.01, 0.1, 0.5, 1, 2,

and 4 for the HHI penalty weight.

For gatekeeping purposes we apply either the KLK index or the optimus index as an initial gate.

For large H this structure simulates a scenario in which the index tests for any effect study-wide

and serves as a gate for the entire study; for smallH it simulates a scenario in which the index tests

for an effect on a subgroup and serves as a gate for that subgroup. If the gate rejects, we test all

the coefficients in β. We also simulate exhaustive PAPs by testing all the coefficients in β without

any indices, and we simulate “parallel plans” in which we test an index in parallel with all the

coefficients in β (i.e. we simultaneously conduct H + 1 tests). We correct for multiple hypothesis

testing with a Romano-Wolf (RW) algorithm that controls FWER.14 To ensure the correct test size

for our K-fold optimus index, we simulate the null distribution when setting β = 0 and reject

based on that distribution.

3.2 Simulation Results

Table 1 presents the different parameter values used in the simulations. We simulate power —

i.e. the expected number of rejections — for 2,600 combinations of parameter values in total.

In the discussion we also focus on “more empirically relevant” parameter values, which include

combinations for which µt ≤ 3 and H1/H ≤ 0.5 (i.e. studies with moderate power), based on

surveys we conducted of field experiments and PAPs (see Appendix A1). Results for the optimus

index depend in part on the value of the HHI penalty weight, λ. In general average power across

different parameter values did not vary strongly with λ, but overall the optimus appeared to perform

best with λ = 0.5. We thus report results using λ = 0.5 for the simulations and applications.

We first consider the scenario in which a researcher wishes to perform an aggregate index or

13Accordingly, we benchmark the optimus against an unweighted KLK index as opposed to, for example, a GLS-

weighted index.
14To run these simulations we generate positively correlated test statistics. Most FWER control procedures that

incorporate dependence between test statistics, such as the free step-down resampling method or the step-wise method

in Romano and Wolf (2005), rely on resampling to determine the correlation structure. Resampling is computationally

infeasible in our simulations, so we instead developed a rejection-region FWER control method based off the results

in Romano and Wolf (2005) that leverages the known correlation structure of our DGP.
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omnibus test. Table 2 characterizes the tradeoffs between using an optimus index or a KLK index.

Column (1) reports average power over all parameter combinations, while Columns (2) through (5)

report average power over parameter combinations that are more empirically relevant. Columns (3)

and (4), in particular, focus on small families (H ≤ 20) and large families (H ≥ 50) respectively.

Column (3) thus simulates a scenario in which a researcher tests an index corresponding to a subset

of hypotheses (e.g. educational outcomes in a conditional cash transfer experiment that measures

effects on educational, health, and financial outcomes), while Column (4) simulates a scenario in

which a researcher tests for any treatment effect across all outcomes.

Table 2 reports average power of a K-fold optimus index relative to a KLK index. Row 1

summarizes the case in which the researcher tests the index in isolation; thus there is no multiplicity

adjustment. In this case, the optimus test is between 1.8 and 3.5 times more powerful than the KLK

index on average. Row 2 summarizes the case in which the researcher tests the index in parallel

with an exhaustive PAP, multiplicity adjusting all tests. The optimus index averages between 3.6

and 15.9 times the power of the KLK index, with orders of magnitude gains in power when there

are many hypotheses. In summary, as power becomes more scarce (with increasingly heavier

multiplicity adjustments), the advantage of the optimus index becomes more stark.

Row 3 summarizes the average size (number of indicator variables) of an optimus index for

each set of parameter combinations. Across all parameter combinations the optimus contains an

average of 17.1 variables (Column (1)). Among smaller families, the optimus averages 4.9 vari-

ables (Column (3)), and among larger families it averages 18.5 variables (Column (4)). The results

demonstrate that the optimus, while smaller than the KLK index, still tends to capture effects

averaged across at least 5 to 20 variables.

The results in Table 2 suggest that researchers should generally prefer the optimus index unless

they get many times more utility from rejecting the KLK index. The only case in which the KLK

index averages more than half the power of the optimus index is the first row entry — i.e. an index

test in isolation — in Column (1). In this scenario, however, it is unlikely that the researcher wishes

to test only one hypothesis (the index) across the entire study. More likely, the index serves as a

gate that, if passed, allows the researcher to test other hypotheses. When the index serves as a gate,

then power becomes more important since rejecting the gate opens the door to further tests. In that

context a KLK index is typically unattractive (see Appendix Table A3).

Researchers may test the optimus index in a serial (i.e. as a gate) or parallel (i.e. in conjunction

with many other hypotheses) fashion. Table 3 analyzes the relative power of a K-fold optimus-

gated plan versus a plan that tests the K-fold optimus index in parallel. The optimus-gated plan

first tests an optimus index for evidence of any treatment effect; if the index rejects, it then tests
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prespecified individual outcomes. The optimus-parallel plan tests the same hypotheses, including

the optimus index, but conducts all tests simultaneously (i.e. there is no gate). A value of 1.00 in

a cell implies the two strategies have identical power. Each row corresponds to a different weight

that the researcher assigns the index test, with a weight of 1.0 implying that rejecting the index is

of equivalent value to rejecting a single outcome.

Regardless of weight, the optimus-gated plan is higher power on average than the optimus-

parallel plan, with power advantages increasing as the optimus index becomes more intrinsically

interesting. The intuition is that when few hypotheses are false, the power of the optimus index

is much higher than the power of the typical indicator variable, and it is beneficial to concentrate

type I error on the index (via gating). Alternatively, when many hypotheses are false, the optimus

index is highly powered, and there is little downside to using it as a gate. Moreover, the strong

preference to use the index as a gate when the optimus test is more interesting (i.e. its weight is

higher) is clear: if the optimus is just another indicator to test, then increasing the odds of rejecting

the optimus (at the cost of being unable to reject subsequent indicators if the optimus fails to reject)

can yield only modest gains. On the other hand, if rejecting the index test is more valuable than

rejecting a single outcome, then there are substantial benefits to concentrating power on the index

test first and, if it rejects, recycling the type I error to test individual outcomes.

To illustrate the distribution of relative power, Figure 1 plots histograms of the relative power of

an optimus-gated PAP against a KLK index-gated PAP. Figures 1a and 1b correspond to Columns

(1) and (2) of Table 2 respectively.15 The optimus-gated PAP dominates the KLK index-gated PAP

in most cases across all parameter combinations and virtually all cases across more empirically

relevant parameter combinations. Figures 1c and 1d plot distributions for small and large families

respectively (Columns (3) and (4) of Table 2). The mean power advantage is higher for large

families, but in both cases the optimus-gated plan dominates the KLK index-gated plan for virtually

all of the plotted parameter combinations. Figures 1e and 1f reproduce 1c and 1d but apply double

weight to rejecting the KLK index, relative to the optimus index (a weight of 4 versus 2). Even

with double weight on the KLK index, the optimus-gated plan continues to dominate the KLK

index-gated plan in most scenarios. Overall, the figure suggests that researchers will prefer an

optimus-gated plan over a KLK index-gated plan in most cases, and almost universally prefer it

when working with large families.

For researchers deciding whether to test any index at all, Figure 2 plots histograms of the

relative power of optimus-parallel and optimus-gated plans, with index weights of 1 and 3, against

15In this figure we apply an index weight of 2 to the optimus index (i.e. rejecting the optimus is twice as interesting

as rejecting a single indicator) to ensure that a gatekeeping plan is preferred over a parallel test plan. The KLK index

also receives a weight of 2, except in the last two panels, where it receives a weight of 4.
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an exhaustive PAP with no index tests. Figures 2a and 2b plot distributions for an optimus-parallel

plan in which the index receives weights 1 and 3 respectively (with a weight of 1 again implying

that rejecting the index is of equivalent value to rejecting a single outcome). The mean power

advantage is higher when the optimus weight is higher, but in both cases the optimus-parallel plan

dominates the exhaustive PAP for all parameter combinations. Figures 2c and 2d reproduce the

first two panels but switch to an optimus-gated plan (which is generally preferred over the parallel

plan). The advantage of the optimus-index plans becomes even more decisive.16

In summary, the simulations suggest that adding an optimus test in parallel to a PAP uniformly

dominates ignoring the optimus test for researchers who place any nontrivial value on rejecting

the optimus test. Furthermore, our results indicate that adopting an optimus-gated plan will be

superior to the parallel plan for most researchers, with particularly large gains for those who find

the (optimus) index test to be of intrinsic interest or who anticipate relatively low power in their

analysis plan. This straightforward conclusion belies the multidimensional nature of these research

strategies, with each dimension potentially interacting with the others. In principle researchers may

choose no index, an optimus index, or a KLK index, and a gatekeeping test strategy or a parallel

test strategy. Appendix A4 examines the relative power of the different combinations of research

strategies. It finds that, on average, plans with indices outperform plans without indices, and plans

with optimus indices outperform plans with (unweighted) KLK indices. Thus, in most cases, the

best strategy for a researcher is to include an optimus index test, typically as a gate.

4 Application: GoBiFo Revisited

Casey et al. (2012) document the impacts of GoBiFo, a community-driven development (CDD)

intervention in Sierra Leone. To control false discoveries in a survey collecting hundreds of out-

comes, they developed a preanalysis plan comprising of 12 KLK index hypotheses. We summarize

the Casey et al. (2012) discussion of the institutional features of GoBiFo here before noting several

features of the evaluation that make it an appealing choice of an application.

CDD programs are an important outlet for international donor funding, and GoBiFo had a

variety of features common to CDD-type programs in the developing world. First, it provided

block grants, training, and business start-up capital based on community proposals with a goal of

16Plans that include indices have a natural advantage over those that do not because they are testing an extra hy-

pothesis. In some cases, however, an outcome may reject both as part of an index and by itself. Appendix Figure

A1 reproduces Figure 2 but includes a double-rejection adjustment, described in Appendix A4, that ensures that re-

searchers do not receive extra utility from rejecting the same hypothesis twice. While the distribution of power ratios

shifts left, the plans which include indices dominate an exhaustive PAP in virtually all cases.
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enhancing public-goods access. These grants were substantial relative to local living standards:

financial outlays were $4,667 per village, or about $100 per household. To receive these grants,

village development committees (VDCs) were required to submit a development proposal to the

ward development committee (WDC), the next higher level of government bureaucracy, for review,

endorsement, and transmission to the relevant District Council for approval. 43% of grants were

used for local public goods (such as community centers, sports fields, primary school repairs and

sanitation); 40% applied to agriculture and livestock or fishing management (such as seed multipli-

cation, communal farming, or goat herding); and the remaining 17% went towards skills training

and small business development initiatives. Casey et al. (2012) describe these facets of the GoBiFo

intervention as the “hardware” of the intervention.

On top of block grants to create new public goods, GoBiFo had several features meant to build

democratic institutions, which may be particularly relevant in the traditional authority context of

Sierra Leone. In particular, GoBiFo both established VDCs, which would play a role in coor-

dinating local governance, and instituted participation requirements for historically marginalized

groups, such as women and youth. These participation requirements included, for example, that

VDC bank accounts included at least one female signatory and that public works proposals docu-

ment evidence of the inclusiveness of women and youth in the proposal generation requirements.

Inclusiveness and democratization were monitored by GoBiFo staff at substantial cost — monitor-

ing and facilitating this institution building cost about as much as the actual development grants

given out. Casey et al. (2012) describe this facet of GoBiFo as the “software” effects of the CDD

program.

Casey et al. (2012) introduce a PAP with twelve KLK index hypotheses, listed in Table 4.

The PAP also specifies t-statistics and FWER-adjusted p-values, reported in the paper. These 12

index hypotheses are split into two groups. The first three hypotheses relate to the “hardware”

of public-goods provision in the village, and in all three cases Casey et al. find strong evidence

that the “hardware” of public-goods provision changed. Examining the underlying variation, these

hypotheses confirm that GoBiFo was successfully implemented and led to an outlay of funds and

investment in public goods. The remaining nine hypotheses relate to the “software” of the pro-

gram, examining a range of outcomes, including participation in collective action, trust of leaders,

participation in local governance, and reductions in crime and conflict in the community. Casey

et al. (2012) find no evidence that GoBiFo affected any of these outcomes, at least after adjusting

p-values for the number of hypotheses tested (twelve). Ultimately they conclude that the pro-

gram was implemented as planned and led to some expenditures and a change in the public-goods

environment, but that there is no evidence that it changed the social institutions governing these
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villages.

The evaluation of GoBiFo makes for a natural test application of our methods for several rea-

sons. First, as one of the seminal papers introducing preanalysis plans to economists, it represents

a carefully thought out and well-regarded PAP that has become a template for PAPs in the litera-

ture. Second, the results are mixed. On the one hand, the study had more than adequate statistical

power to detect effects on the hardware hypotheses. However, the null effects on the software

hypotheses may reflect either a lack of impact on these institutions or a lack of statistical power

to detect these effects, given the number of prespecified hypotheses and the indicators selected to

join each index hypothesis. As such, there may be an opportunity to learn more about the impacts

of this program if procedures with greater statistical power can be leveraged. Finally, the PAP slots

naturally into a gatekeeping environment. Casey et al. clearly delineate two meta-hypotheses: that

GoBiFo was implemented successfully and influenced the “hardware” of public goods provision,

and that GoBiFo influenced the institutional “software” that underlies public goods provision. In

our framework, this suggests a natural gate structure to the hypotheses which we develop below.

We begin by replicating results from Casey et al. (2012). The twelve hypotheses in Casey et al.

(2012) are each average treatment effects across the whole sample, estimated by comparing endline

treatment and control outcomes. Thus, the primary results in the PAP and the initial presentation

come from estimating

yv = βTv + γXv + εv

where Xv are covariates used for stratification and Tv is an indicator for treatment status. In

all cases, the outcome variable yv refers to a KLK index hypothesis, constructed by normalizing

and summing indicator variables which relate to a particular hypothesis about the intervention

(following O’Brien (1984) and Kling et al. (2007)).

4.1 Alternate Indices and Gates in GoBiFo

The hypotheses presented in GoBiFo are heterogeneous in the number and types of outcome vari-

ables which enter each index. Inputs to index hypotheses include outcomes verifiable through

administrative data, objective and subjective survey data questions, and behaviors elicited through

“supervised community activities” — for example, direct observation of how community mem-

bers stored and shared a tarpaulin gifted by the survey team. These different data sources lead

to heterogeneous index variables, with as few as seven and as many as 47 variables averaged in

the construction of each hypothesis’s index. In this context, it seems plausible that treatment ef-

fects would be heterogeneous within indices, and that there exist alternate specifications for these

indices which might have also yielded similar levels of intrinsic interest.
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To generate a gated optimus index approach, we propose that a logical gating meta-hypothesis

is whether there are any impacts on the (aggregate) set of hardware hypotheses that serve as a

“first stage” test of GoBiFo. If GoBiFo had no impacts on any of the indicators in the hardware

section — i.e. the program was not implemented and did not deliver public goods — readers

would have good cause for skepticism about any positive statistical results that follow. If GoBiFo

was implemented successfully, so that some hardware indicators responded to treatment, then it

is plausible that the program might have impacts on institutional software as well. Researcher

priors over which hardware elements are critical to generate software change, however, may not be

detailed; as such, conducting an optimus-index test for “were there hardware effects?” may serve

as a high-powered gate.

The second meta-hypothesis refers to software effects. If GoBiFo had hardware effects, it is

natural to test next whether there were any software effects. As such, conducting an optimus test

over all the variables which comprise the nine software hypotheses represents a high-powered test

of this meta-hypothesis.17

Finally, if we conclude that there were both hardware and software effects, we may wonder

which of the 12 finer hardware and software hypotheses were impacted by GoBiFo. Once again,

if researchers do not have strong preferences over the weights assigned to indicator variables, they

can construct an optimus-style index of the variables belonging to each hypothesis and anticipate

greater statistical power, relative to regressions using KLK indices, based on the results in Section

3.2.18

Figure 3 summarizes the gating structure we use for GoBiFo. For each of the index hypotheses

— hardware effects, software effects, and the 12 prespecified hypotheses — we implement the op-

timus approach using 5-fold CV. Since it is impossible for us to “preregister” the fold assignments,

we generate results using many different fold assignments and record the distribution of p-values

across the different fold assignments. Specifically, we assign five folds at random 200 times, strati-

fying each draw of five folds on treatment. In each of these 200 iterations, we compute p-values by

comparing actual test statistics to those generated by the same procedure when randomly permut-

ing treatment under the null hypothesis 80 times. When examining multiple comparisons (in the

17In practice, the GoBiFo PAP prespecified a number of variables which contribute to multiple different hypotheses.

In some cases, a variable appears in both hardware and software hypotheses. For our implementation, we eliminate all

indicator variables that appear in any hardware hypothesis from the set of candidate software variables.
18If some of the hypotheses reject, the individual indicator hypotheses can then be tested in sequence if the larger

index gate hypotheses are rejected. To preserve the correct size of tests in this case, however, one needs to avoid using

sharpened p-values, because sharpened p-values recycle type I error within a parallel set of tests until it is exhausted

(e.g. one could not apply Romano-Wolf p-values). For brevity, we do not present those results here.
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analysis of the 12 hypotheses) we compute p-values using the Romano and Wolf (2005) algorithm.

Following Chernozukhov et al. (2018) and Romano and DiCiccio (2019), we conservatively reject

a hypothesis only if the median p-value of that hypothesis across the 200 5-fold assignments is less

than α/2. For optimus indices, we apply a HHI penalty weight of λ = 0.5 in the objective function

(based on results from Section 3).

We benchmark these results against three alternatives. First, we consider the results presented

in Casey et al. (2012) based on their original PAP, which tests all hypotheses in parallel. Second,

we construct a gatekeeping version of the original PAP, which uses KLK indices for hardware

and software outcomes. The hardware index includes all variables from Hypotheses 1–3, and the

software index includes all variables from Hypotheses 4–12 (omitting any variables also classified

as hardware). Third, we apply the Ludwig et al. (2019) omnibus procedure to the same gates. To

implement LMS we use an ensemble that combines a random forest with an elastic net to predict

treatment using the hardware dependent variables as a first gate; if we pass that gate then we do the

same for software variables. As Ludwig et al. (2019) also requires a sample split, we follow the

same procedure as for the optimus tests, estimating the LMS procedure on 200 sets of five folds

and computing p-values via permutation of the treatment indicator.

4.2 GoBiFo Results

In Table 5 we consider whether we reject the null of no hardware effects using the original PAP,

KLK index, optimus gate, and LMS approaches. All four approaches reject the hardware gate.

We therefore conclude that using any of these approaches would have (correctly) concluded that

GoBiFo had an effect on hardware outcomes, though the specific interpretations of each rejection

differ (as discussed in Section 2.4).

Since each approach rejects the hardware gate, we then consider whether GoBiFo had impacts

on software variables. Recall that the original PAP for GoBiFo failed to reject the null hypothesis

that GoBiFo had no effect on software outcomes. Combining all software variables into a single

KLK index does not change this conclusion, as shown in Column (1) of Table 5. Column (3) simi-

larly demonstrates that the LMS omnibus test does not reject the null hypothesis of no relationship

between software variables and treatment; the median p-value is 0.34. In contrast, the optimus

approach, reported in Column (2), rejects the null hypothesis of no software effects. Using the

5-fold optimus, the median p-value is 0.00, so that we reject the null hypothesis that there was no

relationship between GoBiFo and software variables at the conventional 5% significance level. On

average, the optimus test produces an index that is a weighted average of 22.8 indicator variables,

19 of which receive an average weight greater than 2.5%, and none of which receive an average
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weight above 10%.19 Appendix Table A5 reports the variables appearing most frequently in the

software optimus and their associated average weights.

Casey et al. (2012) note that one software variable — whether there is a community farm —

may be miscategorized as software, as it may have been directly built by the CDD grant. The third

row repeats the software optimus gate but excludes this variable; it still rejects the null based on an

average of 22 variables.

In summary, when applying an optimus test we conclude that GoBiFo affected some software

outcomes. Comparing point estimates between the KLK index (Column (1)) and the optimus

(Column (2)) illustrates why we see such a large difference. Column (1) indicates that GoBiFo is

associated with a 0.03 standard deviation average increase across 144 distinct software indicators;

Column (2) indicates that across the 22.8 components of the optimus test, the weighted average

effect is 0.15 standard deviations. Notably, the gap between the two estimates is of similar mag-

nitude to what we would expect if the treatment effects on all indicators excluded by the optimus

were zero.

Using the gated approach, only the optimus test has sufficient power to pass the software gate.

After passing the gate we can then test which of the underlying hypotheses contribute to this rejec-

tion. We construct 12 optimus indices for the 12 underlying hypotheses and test them in parallel,

computing p-values using the Romano and Wolf (2005) algorithm. As presented in Table 4, we

find that the optimus gate approach rejects each of the three individual hardware hypotheses with

large weighted average effect sizes. Among the software hypotheses, only Hypothesis 6 (“GoB-

iFo changes local systems of authority, including the role and perception of traditional leaders

(chiefs)”) approaches marginal significance; adjusting for the 12 tested hypotheses, the median

Romano-Wolf p-value of 0.0625 would not quite reject at the 10% level based on the conservative

Chernozukhov et al. (2018) bound.20

Examining the indicator variables that receive the greatest weight in the software optimus in-

dex (Appendix Table A5) yields insights as to why we find limited evidence to reject individual

software hypotheses. First, the five most heavily weighted variables each correspond to different

underlying software hypotheses. Summing across all indicator components of the optimus, the

19We count an indicator as appearing in the index if it receives at least as much weight as it would in a KLK index;

in this case that corresponds to 0.007 = 1
144 .

20The optimus test for both Hypothesis 6 and Hypothesis 4, “Participation in GoBiFo increases collective action

and contributions to public good” have median naive p-values below 0.025, so that either of these might reject in an

analysis plan with fewer prespecified hypotheses. Interestingly, the optimus test for H4 yields a greater than 70%

weight on the community farm variable, lending support to the hypothesis that that variable is misclassified hardware

(included indicators and weights for each hypothesis are presented in Appendix Table A5).
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single hypothesis receiving the greatest aggregate weight is the marginally-significant Hypothesis

6; weights on indicators comprising Hypothesis 6 sum to 27% of the total weight.21 This pattern

suggests that the overall software effects were spread across the identified software hypotheses

rather than concentrated within one of them. Rather than belonging to a specific hypothesis pro-

posed in the PAP, what stands out in the variables selected for heavy weights is that they tend

to focus on more objective measurements rather than subjective indicators, such as those which

examine beliefs and attitudes. In addition to the presence of a community farm (Hypothesis 4),

heavily weighted indicators include whether the respondent has been in a recent physical fight

(H11); whether minutes were taken at a recent village council meeting (H5); whether they are a

member of a women’s group (H8); whether newly elected chiefs were young (H6); and whether the

respondents can accurately name the year of the next general election (H9). This trend indicates

that the optimus is identifying treatment effects that exist across an index of relatively objective

measurements, perhaps because of measurement error in subjective assessments.

We conclude that GoBiFo had a meaningful effect on a subset of the software outcomes, that

that effect was distributed across prespecified hypotheses about software, and that of the considered

approaches only the gated optimus test had the statistical power to detect it.

5 Application: The Oregon Health Insurance Experiment

Finkelstein et al. (2012) examine the effects of a 2008 health insurance lottery in Oregon on health

care utilization, financial well-being, and self-reported health outcomes. In 2008 Oregon iden-

tified sufficient financial support to expand access to “OHP Standard” — a Medicaid-expansion

offering — to an additional 10,000 potential beneficiaries. To identify these beneficiaries, the

state proposed to allocate the plan by lottery among the 89,824 applicants who registered from

eligible households. The state selected 35,169 potential beneficiaries by lottery, of whom 30%

successfully enrolled in Medicaid. In comparing the randomly-selected beneficiaries to those who

were not selected, Finkelstein et al. (2012) combine rich administrative and survey data to provide

causal evidence on the effects of health insurance on health care utilization and financial and health

outcomes.

Finkelstein et al. (2012) follow a prespecified analysis plan. The PAP estimates the equation

yihj = β0 + β1lotteryh +Xihβ2 + εihj (9)

21Two of the heavily-weighted indicators are components of both Hypothesis 6 and another hypothesis (in one case

Hypothesis 5, and in another Hypothesis 12); the repeated use of the same indicators across hypotheses indicates some

of the challenges in partitioning hypotheses in institutional analysis.
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where yihj represents outcome j for individual i in household h, lotteryh indicates that household

h was a lottery winner, and Xih are covariates that determine the probability of winning the health-

insurance lottery (household size and survey-round fixed effects).22 Finkelstein et al. (2012) report

several key findings. First, access to health insurance boosted health-service utilization. Using

both administrative and survey data, lottery winners had more inpatient stays and outpatient visits

and were more likely to receive prescription drugs. They also engaged in more preventative care,

undergoing more cholesterol tests, high blood sugar tests, mammograms, and Pap smears. Consis-

tent with their utilization, they reported better access to health care: they were more likely to have

a usual clinic, a personal doctor, and to report receiving all needed medical care and prescription

drugs. Finally, access to health care had a positive impact on perceived health: lottery winners

reported being in better health, both physically and mentally.23

The OHIE study, with a sample size in the tens of thousands, had more than adequate statistical

power — many t-statistics for individual indicators are on the order of 5 to 10. We thus treat OHIE

as an opportunity to test the performance of our techniques in a context in which we know the

“true” DGP. Specifically, we sample a small fraction of the OHIE data and compare the power

of an optimus-gated analysis plan to plans gated by a KLK index or the LMS omnibus test and

to an exhaustive PAP that tests all outcomes in parallel (with no gate). We then verify that the

conclusions are consistent with the true DGP.

Figure 4 summarizes the structure of the OHIE analysis plan. As with GBF, a logical gating

meta-hypothesis is the existence of a first-stage effect — absent any effect on insurance status, it is

implausible that the lottery affected other outcomes. Assuming there is a first-stage effect, we can

then test whether any of the outcomes, including those related to utilization, financial strain, and

self-reported health, were affected. Finally, conditional on insurance having some effect, we can

test individual indicators to determine which were affected. We implement the optimus approach

using the same 5-fold CV algorithm described in Section 4.1.24

22Specifications using administrative data also include covariates to improve precision. The administrative data,

however, are not publicly available.
23Interestingly, Finkelstein et al. (2012) point out that a number of patterns suggest that this improvement in health

is not likely directly attributable to health service utilization, as these changes appear in survey data well before any

differences in health service utilization emerge.
24There are two subtle divergences from the GBF-analysis procedure. First, since we are not generating substantive

results for OHIE, we assume that the researcher could preregister the CV folds for the analysis, removing the need

to generate many sets of folds and apply the conservative Chernozukhov et al. (2018) bound for the median p-value.

Second, since OHIE treatment is only random conditional on covariates, we stratify the null treatment permutations

on covariates as well (i.e. we ensure that the average treatment probability in each covariate cell, after permutation,

matches the original treatment probability in that cell). This stratification is critical for generating tests of the correct
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For each targeted sample size we draw 100 random samples, executing the analysis 100 times.

We consider samples that are 8%, 10%, 12%, and 15% of the original sample. At each sample size

we ask what power an exhaustive PAP, a gated KLK index approach, a gated optimus approach,

or the LMS omnibus test would have. We focus on the survey data outcomes, as nearly all of the

administrative data outcomes are not publicly available. For simplicity we estimate intention-to-

treat (ITT) effects.25 We populate the family of outcomes using all measures listed in the original

PAP that could plausibly respond to treatment. The outcomes fall into three broad categories: care-

seeking behaviors, including outcomes related to health care utilization, preventative health care,

and health care access; self-reported health outcomes; and financial outcomes. To ensure that our

conclusions comparing different approaches are not specific to the pooling of all outcomes into

a single family, we also explore the power of the optimus index and KLK index when applied

separately to each of the three subfamilies.26 Appendix Table A6 lists the indicators used across all

three subfamilies, alongside measurements of the ITT effects and FWER-adjusted p-values from

the full (100%) sample.27 The table reveals that at least nine (of the 44) individual indicators reject

in the 100% sample, even when controlling FWER across all 44 tests, with at least one rejection in

each of the three subfamilies.

5.1 OHIE Results

Table 6 reports average rejection rates for different families (rows) across different analysis plans

(columns). We focus on the 10% sample because it represents a scenario in which power ap-

proaches, but does not reach, the 80% rule-of-thumb target. Appendix Table A8 presents anal-

ogous results for the 8%, 12%, and 15% samples. The first-stage test for an effect on Medicaid

coverage is identical across all analysis plans. The lottery strongly increased Medicaid coverage in

size.
25Instrumental variables estimates are approximately 3.5 times the ITT estimates; as documented in Section 5.1 the

first-stage estimation error is trivial.
26We note that these families are somewhat different from the indices reported in Finkelstein et al. (2012), who

report standardized effects at the sub-table level, often consisting of only two or three indicators. We adopt the larger

families to focus on highlighting statistical properties at much smaller subsamples, where aggregating over more

indicators would be attractive for statistical power. Nevertheless, we also report results for several small, homogeneous

table-level families defined in the OHIE PAP that formed the basis of Finkelstein et al. (2012).
27Our goal with the OHIE data is to compare the performance of different analytic strategies rather than to establish

novel substantive results. Thus we limit the 100% sample to individuals with complete data for the outcome indicators

we identify (N = 8, 141), rather than imputing data for missing outcomes. We take the 100% sample as the “true”

effects in the sense that they represent the estimands for estimates based on random subsamples of the data. These

estimates may not be unbiased for the true ITT effects, however, if OHIE outcome data are not missing at random.

28



the original study (F = 1, 930), and the first-stage rejects with 100% frequency in every sample.

Since all approaches reject the first stage, we then consider whether each approach finds that

OHIE impacted one or more of the 44 plausible outcomes. Column (1) reports the power to reject

this hypothesis for each approach. The optimus approach (correctly) concludes that OHIE affected

outcomes 71% of the time. This represents 22% higher power than the (unweighted) KLK index,

which rejects the null 58% of the time. The LMS omnibus test rejects 38% of the time, suggesting

that its additional flexibility is not helpful in this context. Finally, an exhaustive PAP that tests 44

indicators in parallel rejects one or more indicators 58% of the time, with a median rejection of

one indicator (conditional on rejecting anything).

Column (2) of Table 6 reports average effect sizes where relevant. As expected, the average

effect size for the optimus index, 0.09 standard deviations, is larger than the KLK index average

index effect size of 0.04 standard deviations. The gap between the two effect sizes is less pro-

nounced than in GoBiFo, reflecting the smaller family size and more modest effect heterogeneity

in OHIE. The gap between the two estimates is also smaller than what we would expect if the treat-

ment effects on all indicators excluded by the optimus were zero, suggesting that in this context the

optimus chooses indicators with larger effect sizes rather than all indicators with nonzero effects.

On average, the optimus procedure constructs an index that is a weighted average of 9.0 indi-

cator variables (Column (3)), six of which receive an average weight greater than 4%, and none of

which receive an average weight above 20%.28 Appendix Table A7 reports the variables appearing

most frequently in the optimus and their associated average weights. Outcomes that stand out in-

clude indicators for (not) paying any out-of-pocket medical costs in the past six months, reporting

the usual place of care is a clinic, having any primary care visits, and getting all needed medical

care in the past six months.

Column (4) of Table 6 reports the “true” optimus and KLK index effect sizes, based on the

100% sample. To compute these estimates we apply the average optimus index weights to generate

a weighted index in the 100% OHIE sample and then estimate Equation (9) in the 100% sample

using this weighted index as the outcome.29 We do the same for the KLK index index but use

identical weights for each indicator variable. The estimates in Columns (4) confirm that both

procedures estimate the correct effect sizes on average, and the modest differences in estimates

between Columns (2) and (4) are not statistically significant.

28We count an indicator as appearing in the index if it receives at least as much weight as it would in a KLK index;

in this case that corresponds to a weight of 0.023 = 1
44 .

29Let r index 10% sample draws (R = 100), h index indicator variables (H = 44), and whr be the optimus weight

for indicator h in sample draw r. The average optimus weight for indicator variable h, applied to construct the “true”

optimus index in the 100% sample, is:
∑R
r=1 whr/

∑H
h=1

∑R
r=1 whr.
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Table 6 also reports “effect sizes” and “index size” for an exhaustive PAP. The average PAP

“effect size”, reported in Column (2), corresponds to the average effect size for indicators that reject

with the exhaustive PAP; when no indicator rejects (which occurs 42% of the time), the calculation

includes the effect size for the most significant indicator. The average effect size for a PAP-rejected

indicator is 0.21 standard deviations — more than double the optimus effect size and five times the

overall average effect size. The average PAP “index size”, or number of rejected indicators, is 1.3.30

Finally, Column (4) reports the “true” average effect size (estimated on the 100% sample) for the

indicators that reject in the exhaustive PAP. The average true effect size for these indicators is 0.13

standard deviations, or 38% less than the estimated average effect size. The discrepancy between

the estimated effect size and the true effect size arises because the exhaustive PAP is underpowered

and selects the most significant indicators for rejection, inflating the effect sizes (Ioannidis, 2008).31

More generally, the PAP results in Table 6 highlight the difficulty in estimating and interpreting

effect sizes with a PAP that tests many outcome variables: few indicators may be significant; those

that are significant may feature large (true) effect sizes; and estimated effect sizes may be inflated

without additional bias corrections (Andrews et al., 2021).

The analysis plan in Figure 4 specifies the optimus as a gate for the 44 indicator hypotheses

— this is equivalent to executing an exhaustive PAP if and only if the optimus index rejects. The

bottom row in Table 6 reports the average PAP power and “index size” when the optimus gates the

PAP. In addition to rejecting the optimus index 71% of the time, the gated PAP rejects one or more

indicators 51% of the time, which is only 7 percentage points lower than the ungated exhaustive

PAP. Furthermore, the average number of rejections (conditional on rejecting anything) is virtually

identical for the gated and ungated PAPs. In summary, adding an optimus gate to the exhaustive

PAP comes at little cost — in 88% of cases in which the ungated exhaustive PAP would detect

an effect on any individual outcome, the gated exhaustive PAP would also detect an effect on the

same outcomes.

Appendix Table A8 reports the main results in Table 6 for the 8%, 12%, and 15% samples.

Across all four sample sizes (8%, 10%, 12%, and 15%) the results are qualitatively similar: the

optimus test has the highest power, followed by the KLK index, the exhaustive PAP, and the LMS

omnibus test. Power for all tests increases with sample size, and the optimus’s average effect

30To make the PAP result more comparable to the optimus and KLK index size figures, which are averaged across

all 100 random samples, we left-censor the PAP “index size” at 1 in the 42% of random samples that reject nothing. If

we set the PAP “index size” to 0 when nothing rejects, the average PAP “index size” is 0.9.
31Ironically, since the multiplicity-adjusted significance threshold is more stringent than the conventional signifi-

cance threshold, the inflation bias can be even more extreme with an exhaustive PAP than the typical case of publication

bias.
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size and index size increase modestly with sample size, suggesting that larger samples allow the

optimus to more precisely select variables for inclusion.

We also leverage the full dataset (i.e. 100% sample) to examine the frequency at which the op-

timus index includes indicators for which there is (approximately) a null effect. To determine this

frequency, we first enumerate the outcomes that reject in the full dataset when controlling the false

discovery rate at q < 0.1 (Benjamini et al., 2006); we find that there are 19 outcomes for which

there is compelling evidence of a treatment effect. We then compute the average optimus weight

assigned to each outcome across the 100 random 10% samples. We find that on average 81% of

the weight in the optimus index gets assigned to variables for which there is strong evidence of

a treatment effect in the full dataset. Only seven outcomes for which there is weak evidence of

a treatment effect receive more than 1% average weight, with the most frequent “null” outcome

(currently taking prescription medications) receiving 2.3% weight on average.32 Thus, in expecta-

tion a supermajority of the optimus weight goes to outcomes with treatment effects, implying that

in this case the optimus selects a broad index of variables that are generally affected by treatment.

By comparison, the KLK index places 57% (25/44) of its weight on outcomes for which there is

not strong evidence of a treatment effect.

Finally, we compare the performance of the optimus index and the KLK index when testing

the three OHIE subfamily hypotheses: utilization-related outcomes, health-related outcomes, and

financial outcomes. These estimates allow us to examine the performance of the different index

tests in smaller families of hypotheses. Instead of testing a single all-outcome gate, we now test

three subfamily indices in parallel. Appendix Table A9 reports average power, effect size, and

index size for these three subfamilies using the 10% sample.33 The tests are underpowered for all

three subfamilies, in part because we now multiplicity adjust the p-values to reflect that we test the

three subfamilies in parallel. Nevertheless, in each case the optimus outperforms the KLK index

in terms of power. For example, for utilization-related outcomes the optimus achieves 36% power

versus 21% power for the KLK index, while for financial-related outcomes the optimus achieves

23% power versus 17% power for the KLK index.34 The results are similar if we instead consider

power to pass an all-outcome gate and reject a subfamily index (Appendix Table A10), implying

that subfamily indices rarely reject when the all-outcome index fails to reject. Furthermore, even

32This outcome has an unadjusted p-value of 0.10 and a FDR control q-value of 0.14 in the full dataset, suggesting

that its null is more likely false than true.
33Appendix Table A7 reports the average weights received by each indicator when estimating a separate optimus

index for each subfamily.
34The KLK index achieves only 2% power for the health-related outcomes. This is effectively the size of the test,

since we multiplicity adjust the p-values for three parallel tests using the Romano-Wolf algorithm.
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when defining three small, homogeneous families that each correspond to only one or two tables

in the relevant OHIE PAP, we still find that the optimus outperforms a comparable KLK index.35

6 Conclusions and Recommendations

Analysis plans allow researchers to limit the rate of false discoveries through statistical adjustments

for multiple inference. They do so at a cost: formal tests for multiple inference are only available

for hypotheses which can be registered in an analysis plan, and these adjustments reduce power. If

researchers fail to anticipate which indicators are most impacted by treatment, or can be measured

with the least error, power concerns compound. These issues may lead to analysis plans which

foreclose true discoveries in attempts to avoid false ones. In large part for this reason, Banerjee

et al. (2020) emphasize the need for a central role of secondary evidence in academic research,

even at the risk of promoting results based on type I errors.

In this paper, we suggest an alternate approach for analysis plans. Rather than restricting atten-

tion to the types of tests which can be easily anticipated, researchers can allow the data to inform

the most powerful tests to be run. In a sense, specifying straightforward and easily anticipatable

tests is an informal means of controlling false discoveries that becomes redundant when an anal-

ysis plan allows formal control. This fact allows researchers to specify data-driven analysis plans

that can maximize the power of statistical tests. We propose the optimus gate as a method for do-

ing so: by maximizing power among weighted index hypotheses and directing type I error to that

high-power index test, researchers can be guaranteed a high power, easily interpretable test. We

demonstrate in simulations and in two applications that this approach has substantial power advan-

tages over other available approaches. The tradeoff for this power is a loss of control over which

indices are being tested; researchers with strong priors over heterogeneity in treatment effects and

who anticipate that a test based on a particular unweighted or weighted average treatment effect is

of more inherent interest than tests based on alternate weighted average treatment effects will need

to consider whether the gains in statistical power justify the loss of control.

The other challenge to the use of analysis plans to control false discoveries is complexity in

specifying algorithmic approaches. The optimus gate approach not only maximizes power among

available index hypotheses, it can also be straightforward to plan for, as a researcher need only

35We define three subfamilies that correspond to three key results tables in the Finkelstein et al. (2010) PAP: health

care utilization (Tables P1 and U1), financial strain (Table P2), and health (Table P3). These subfamilies each contain

eight, four, and seven indicators respectively. Appendix Table A11 reports average power, effect size, and index size

for these three subfamilies using the 10% sample. For all three subfamilies, the optimus index has higher power than

the KLK index.

32



categorize indicators into families. In many cases, particularly for researchers following the rec-

ommendations of Banerjee et al. (2020) in forming a preanalysis plan, these families may be rel-

atively simple. For example, a straightforward gating structure would be to categorize indicators

into first stage indicators which document whether a program was successfully implemented and

second stage indicators which indicate whether a successfully implemented program influenced

important economic outcomes. A simple preanalysis plan may set optimus gates for the first stage

hypothesis followed by the second, and in doing so would guarantee that researchers find a power-

ful test of whether the program was implemented and whether it impacted outcomes in a way that

maintains correct size on each test. Researchers with more time and stronger priors over which

potential categories of effects a program may have may add a third set of gates which test several

of these categories in parallel; an additional advantage of the optimus gate approach is that such a

plan would not harm statistical power on the first two primary tests.

While the optimus approach will not be preferred in all scenarios, it can be attractive in most

scenarios in which researchers anticipate testing large numbers of outcomes with heterogeneous

effect sizes in a limited sample. In our experience this scenario is well-represented among field

experiments.
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Figure 1: Distribution of Relative Power of Optimus versus KLK Index Gatekeeping Strategy

(a) All parameter combinations
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Notes: Panels (a) and (b) correspond to Columns (1) and (2) of Table 2 respectively, Panels (c) and (e) correspond to

Column (3), and Panels (d) and (f) correspond to Column (4).
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Figure 2: Distribution of Relative Power of Optimus Plans versus Exhaustive PAP

(a) Parallel optimus plan (index weight = 1)
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(b) Parallel optimus plan (index weight = 3)
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(c) Gated optimus plan (index weight = 1)
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Figure 3: Optimus Gate analysis plan for Casey et al. (2012)
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Figure 4: Optimus Gate analysis plan for Finkelstein et al. (2012)
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Table 1: Simulation Parameter Values

Parameter Values Mean Std Dev

Average “effect size” (E[th | βh 6= 0]) 1.5, 2.0, 2.5, 3.0, 4.0 2.6 0.9

Total hypotheses (H) 10, 20, 50, 100, 200 76 69

Share false (H1/H) 0.1, 0.2, 0.5, 1.0 0.45 0.35

Correlation between outcomes (ρ) 0, 0.1, 0.2, 0.5, 0.7 0.35 0.25

Share of outcomes correlated (r) 0.2, 0.5, 1.0 0.6 0.34
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Table 2: Relative Power of Optimus Index v. KLK Index

(1) (2) (3) (4) (5)

Index test only 1.77 2.24 2.55 3.28 3.48

Index test in parallel w/PAP 3.64 5.98 6.07 15.9 13.8

Optimus index size 17.1 14.5 4.9 18.5 13.8

Parameter restrictions:

Total hypotheses (H) ≤ 20 ≥ 50

Share false (H1/H) ≤ 0.5 ≤ 0.2 ≤ 0.2 0.1

Average effect size (µt) ≤ 3.0 ≤ 3.0 ≤ 3.0 ≤ 2.5

Combinations 2,600 1,560 416 624 390

Notes: Each cell reports the geometric mean power ratio of an optimus

index to a KLK index. The index is tested by itself (first row) or in

parallel with an exhaustive PAP (second row).

Table 3: Relative Power of Optimus-Gated Plans v. Optimus-Parallel Plans

Optimus-index weight: (1) (2) (3) (4) (5)

1.0 1.04 1.06 1.05 1.08 1.07

2.0 1.11 1.17 1.24 1.19 1.30

3.0 1.15 1.24 1.37 1.27 1.46

4.0 1.18 1.29 1.47 1.32 1.59

5.0 1.21 1.33 1.54 1.37 1.69

Parameter restrictions:

Total hypotheses (H) ≤ 20 ≥ 50

Share false (H1/H) ≤ 0.5 ≤ 0.2 ≤ 0.2 0.1

Average effect size (µt) ≤ 3.0 ≤ 3.0 ≤ 3.0 ≤ 2.5

Combinations 2,600 1,560 416 624 390

Notes: Each cell reports, for a given optimus-index weight, the geo-

metric mean power ratio of an optimus-index gated exhaustive PAP

to an exhaustive PAP that tests the optimus index in parallel with the

other hypotheses.
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Table 4: GoBiFo Results: Individual Hypotheses

(1) (2) (3) (4)

KLK Index Optimus KLK Index

Size

Optimus

Index Size

Hardware

H1: GoBiFo Program Implementation
0.695 1.633 7 2.5

[0.00] [0.000]

H2: Participation in GoBiFo improves the quality of

local public service infrastructure

0.206 0.494 18 6.8

[0.00] [0.000]

H3: Participation in GoBiFo improves General

Economic Welfare

0.362 1.864 15 2.9

[0.00] [0.000]

Software

H4: Participation in GoBiFo increases collective

action and contributions to public goods.

-0.001 0.288 11 2.3

[1] [.15]

H5: GoBiFo increases inclusion and participation in

community planning and implementation

-0.002 -0.004 46 0.9

[1] [.962]

H6: GoBiFo challenges local systems of authority
0.052 0.183 25 6.4

[.74] [.063]

H7: Participation in GoBiFo increases trust
0.036 0.043 12 1.7

[1] [.938]

H8: Participation in GoBiFo builds and strengthens

community groups and networks

0.027 0.209 15 2.6

[1] [.35]

H9: Participation in GoBiFo increases access to

information about local governance

0.01 0.043 15 2.6

[1] [.925]

H10: GoBiFo increases public participation in local

governance

-0.028 -0.041 14 0.8

[1] [.95]

H11: By increasing trust, GoBiFo reduces crime and

conflict in the community.

0.014 0.139 8 2.2

[1] [.681]

H12: GoBiFo changes political and social attitudes
0.035 0.062 9 2.5

[1] [.887]

Notes: Brackets contain Romano-Wolf p-values that control FWER across all 12 hypotheses, computed based on

80 permutations of treatment under the null hypothesis. Optimus index p-values represent the median RW p-value

across 200 sets of 5-fold assignments (computed based on 80 permutations of treatment under the null hypothesis

per set of fold assignments).
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Table 5: GoBiFo Results: Gating Hypotheses

(1) (2) (3) (4) (5)

KLK Index Optimus LMS

Omnibus

KLK Index

Size

Optimus

Index Size

Hardware 0.292 1.191 39 11.3

[0.000] [0.000] [0.000]

Software 0.014 0.151 144 22.8

[.473] [0.000] [.338]

Software (no Community Farm) 0.011 0.123 143 22.1

[.578] [.013] [.419]

Notes: Brackets contain p-values. Optimus and LMS omnibus p-values represent the median p-value across

200 sets of 5-fold assignments, computed based on 80 permutations of treatment under the null hypothesis

per set of fold assignments.
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Table 6: OHIE Results: Gating and Individual Indicator Hypotheses

(1) (2) (3) (4)

Test: Power Effect Size Index Size True Effect Size

Optimus 71% 0.092 9.0 0.099

KLK Index 58% 0.038 44 0.039

LMS Omnibus 38%

Exhaustive PAP 58% 0.213+ 1.3++ 0.131

PAP (post optimus gate) 51% 0.214+ 1.3++ 0.131

Notes: Results in Columns (1) – (3) represent averages across 100 random

10% samples of the OHIE data. Power denotes power to reject the sharp null

hypothesis for at least one indicator. True effect size represents the estimated

effect in the full (100% sample) OHIE dataset, with indicators weighted using

average weights underlying Column (2).

+ Average effect size for indicators rejected by the PAP (when no indicator

rejects, calculation includes the most significant indicator).

++ Average number of indicators rejected, left-censored at 1.
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Appendix
Not For Print Publication

A1 Empirical Distribution of t-statistics

Our sample consists of papers on field experiments published from 2013 to 2015 in a set of ten

general-interest economics journals: American Economic Journal: Applied Economics, Ameri-

can Economic Journal: Economic Policy, American Economic Review, Econometrica, Economic

Journal, Journal of the European Economic Association, Journal of Political Economy, Quarterly

Journal of Economics, Review of Economic Studies, and Review of Economics and Statistics. We

defined a paper as involving field experiments if it mentioned “field experiment” in its abstract

or listed JEL Code C93. These criteria generated a sample of 61 papers. Using this sample we

recorded the t-statistic for each paper’s featured result. The median t-statistic was 2.6, the 10th

percentile t-statistic was 1.7, and the 90th percentile t-statistic was 7.0. Due to the likelihood of

publication bias and p-hacking (Franco et al. 2014), we interpret this distribution as an overesti-

mate of the ex ante t-statistic distribution that a researcher should expect when beginning a typical

field experiment. Nevertheless, the results imply that most researchers should (at best) expect sta-

tistical power that corresponds to mean “effect sizes” (i.e. t-statistics) of 2.0 to 3.0 in our power

simulations, and we focus our discussion on effect sizes in this range.

A2 Mathematical Proofs

Let ȳiwg = w′gyig and β̂wg be the coefficient associated with a regression of ȳiwg on treatment

(represented by Equation (6)). Let all outcomes be standardized to have unit variance and let the

elements of wg sum to one.

A2.1 Index Power

Lemma 1. Let βg′ = (β1g β2g ... β|Hg |g). For a given wg, let βwg = βg
′wg. A regression of ȳiwg

on treatment estimates βwg .

Proof: Let T̃ be a demeaned N × 1 vector of treatment assignments, y any N × 1 vector of

outcomes, and Yg the N × |Hg| matrix of outcomes in group g. A regression of y on treatment
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recovers β̂ = (T̃′T̃)−1(T̃′y). Thus a regression of ȳiwg on treatment yields

(T̃′T̃)−1(T̃′ȳwg) = (T̃′T̃)−1(T̃′Ygwg)

= (T̃′T̃)−1(T̃′Yg)wg = β̂′gwg

For completeness note that β̂hg is a consistent estimator of βhg, so the regression coefficient is

a consistent estimator of βwg .

Lemma 2. For a given wg, let β̂wg be the coefficient associated with a regression of ȳiwg on

treatment. The variance of β̂wg is w′gΣgwg, where Σg represents the covariance matrix for β̂g.

Proof: From Lemma 1, β̂wg = β̂′gwg. Then

V(β̂wg) = V(β̂′gwg) = w′gV(β̂g)wg = w′gΣgwg

Proposition 1. Consider an index ȳiwg = w′gyig. Let β̂wg be the regression coefficient from esti-

mating Equation (6) and let σβ̂wg =
√

V(β̂wg). A one-sided test of βwg = 0 based on β̂wg/σβ̂wg
with critical value Φ−1(1− α) has power Φ( βg

′wg√
w′gΣgwg

+ Φ−1(α)).

Proof: Following convention, let β̂wg be distributed N(βwg ,V(β̂wg)). Applying Lemmas 1 and

2,

P(β̂wg/σβ̂wg > Φ−1(1− α))

= P((β̂wg − βwg)/σβ̂wg > −βwg/σβ̂wg − Φ−1(α))

= P((βwg − β̂wg)/σβ̂wg < βwg/σβ̂wg + Φ−1(α))

= Φ(βwg/σβ̂wg + Φ−1(α)))

= Φ( βg
′wg√

w′gΣgwg
+ Φ−1(α)).

Corollary 1.1. Consider a flatly-weighted KLK index for family g, ȳi = 1
|Hg |

∑
h∈Hg

yihg. Let β̂ȳ

be the regression coefficient from a regression of ȳi on treatment. Suppose βhg = β ∀ h ∈ Hg.

Let σβ̂ȳ =
√

V(β̂ȳ) and σβ̂hg =
√

V(β̂hg). A test of β > 0 based on β̂ȳ/σβ̂ȳ with critical value

Φ−1(1−α) is weakly more powerful than a test of β > 0 based on β̂hg/σβ̂hg with the same critical

value.

Proof: Following convention, let β̂hg be distributed N(β, σ2
β̂hg

). Note that ȳi =
1′yig
|Hg | , so wg for

the KLK index is 1
|Hg | . Applying Proposition 1, the test based on β̂ȳ/σβ̂ȳ has power Φ( βg

′1√
1′Σg1

+
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Φ−1(α)). In the special case in which wg contains a single non-zero element the test has power

Φ(
βhg
σβ̂hg

+ Φ−1(α)) ∀ h ∈ Hg. Then

P(β̂ȳ/σβ̂ȳ > Φ−1(1− α))

= Φ( βg
′1√

1′Σg1
+ Φ−1(α))

= Φ( |Hg |β√
1′Σg1

+ Φ−1(α))

≥ Φ( |Hg |β√
|Hg |2σ2

β̂hg

+ Φ−1(α))

= Φ(
βhg
σβ̂hg

+ Φ−1(α))

= P(β̂hg/σβ̂hg > Φ−1(1− α)).

Corollary 1.2. Consider a KLK index for family g, ȳi = 1
|Hg |

∑
h∈Hg

yihg, and an alternative index

w′gyig with wg 6∝ 1. Suppose βhg = β ∀ h ∈ Hg and Σg = σ2
β̂hg

[(1−ρ)·I+ρ·11′] for−1 ≤ ρ ≤ 1.

Let σβ̂ȳ =
√

V(β̂ȳ) and σβ̂wg =
√

V(β̂wg). A test of β > 0 based on β̂ȳ/σβ̂ȳ with critical value

Φ−1(1−α) is weakly more powerful than a test of β > 0 based on β̂wg/σβ̂wg with the same critical

value.

Proof: Applying Proposition 1, a test based on β̂wg/σβ̂wg has power Φ( βg
′wg√

w′gΣgwg
+ Φ−1(α)).

But βg′wg = β since w′g1 = 1, so maximizing power is equivalent to minimizing a(wg) =

w′gΣgwg. The gradient of a(wg) is 2Σgwg and the Hessian is 2Σg; thus ∂a/∂whg = 2(whg +

ρ
∑
j 6=h

wjg) ∀ h ∈ Hg. The optimal weights are therefore identical across hypotheses, with w∗g =

1/|Hg| given the constraint that weights sum to one. These optimal weights yield the KLK index

ȳi.

A2.2 Full Sample and K-fold Optimus Results

Consider a “full sample” optimus test that does not use cross-validation. We start with a group-

level stacked version of the statistical model in Equation (1)

yig = βgTi + εig (10)

with yig, βg, and Ti as defined previously, and εig as an i.i.d. (across i ) |Hg| × 1 column vector

containing errors for all hypotheses h ∈ Hg. After estimating Equation (10) we identify the vector
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of weights ωg that solves

ωg = argmaxwg
Φ(

β̂′gwg√
wgΣ̂gwg

+ Φ−1(α))

Proposition 2. Let ωg = argmaxwgΦ(
β̂′gwg√
wgΣ̂gwg

+Φ−1(α)), where β̂g and Σ̂g are sample estimates

of βg and Σg. Let βωg = E[βg
′ωg | ωg]. Consider an index ȳiωg = ω′gyig. A regression of ȳiωg on Ti

yields a biased estimate of βωg .

Proof: The use of the sample estimators β̂g and Σ̂g implies that ωg is a function of Ti and

εig ∀ i. In particular, the solution maximizes a generally increasing function of β̂′gwg = (βg
′ +

(T′T)−1T′εg)wg = βwg + (T′T)−1T′εgwg, where εg is a N × H matrix containing εig ∀ i. To

highlight this dependency we write ωg(T, εg). In the regression

ȳiωg = βωgTi + ωg(T, εg)
′εig

it is therefore generally the case that

E[ωg(T, εg)
′εig | Ti] 6= 0

Developing the optimus test using the full sample thus generates a biased estimator of βωg ,

even when defining the target parameter to be conditional on the estimated optimus weights.

Proposition 3. Randomly assign N observations to K folds. For each fold k, compute weights

ω−k,g = argmaxw−k,gΦ(
β̂′−k,gw−k,g√

w−k,gΣ̂−k,gw−k,g
+ Φ−1(α)), where β̂−k,g and Σ̂−k,g are estimates of βg

and Σg using all observations not in fold k. Let T̃ be a demeaned N × 1 vector of treatment

assignments and Ỹg be a N × 1 vector of weighted outcomes, with element i equal to ω′−k,gyig.

The K-fold optimus estimator (T̃′T̃)−1T̃′Ỹg is unbiased for E[βg
′ω−k,g].

Proof: Let p represent the proportion of treated observations (Ti = 1); thus
∑

i(Ti − T̄ )2 =

Np(1−p). Randomly assignN observations toK folds, stratifying folds on treatment Ti. Without

loss of generality, assume the fold index k weakly increases with i; we may write ki to refer to the

fold containing observation i. For each fold k, the optimus is derived from the other K − 1 folds,

with weights given by

ω−k,g = argmaxw−k,g
Φ(

β̂′−k,gw−k,g√
w−k,gΣ̂−k,gw−k,g

+ Φ−1(α))
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where β̂−k,g and Σ̂−k,g are estimates of βg and Σg computed using all observations not in fold

k. Let T̃ be a demeaned N × 1 vector of treatment assignments and let

Ỹg =


ω′−1,gy1g

ω′−1,gy2g

...

ω′−K,gyNg


TheK-fold optimus estimator is (T̃′T̃)−1T̃′Ỹg. To show unbiasedness first note thatE[T̃ 2

i ω
′
−ki,gβg] =

E[T̃ 2
i ]E[ω′−ki,gβg] and E[T̃iω

′
−ki,gεig] = 0 because ω−ki,g is a function of T−ki and ε−ki,g (i.e. data

from folds not containing i), and εig, εjg, Ti, and Tj are jointly independent ∀ i, j 3 i 6= j. Then

E[(T̃′T̃)−1T̃′Ỹg]

= E[

∑
i T̃iω

′
−ki,gyig∑
i T̃

2
i

]

= E[

∑
i T̃iω

′
−ki,g(βgTi + εig)

Np(1− p)
]

=

∑
iE[T̃ 2

i ω
′
−ki,gβg]

Np(1− p)
+

∑
iE[T̃iω

′
−ki,gεig]

Np(1− p)

=

∑
iE[T̃ 2

i ]E[ω′−ki,gβg]

Np(1− p)

=
p(1− p)

∑
iE[ω′−ki,gβg]

Np(1− p)
= E[ω′−ki,gβg]

Corollary 3.1. The OLS standard error for the K-fold optimus estimator (T̃′T̃)−1T̃′Ỹg is gener-

ally a biased estimate of the true standard error.

Proof: Let εωg = [ω′−1,gε1g, ω
′
−1,gε2g, ..., ω

′
−K,gεNg]

′. The OLS standard error for the K-fold

optimus estimator relies on the assumption E[εωg ε
ω
g
′] = σ2I . But E[ω′−ki,gεig · ω

′
−kj ,gεjg] 6= 0, even

when i 6= j, because ω−ki,g is a function of ε−ki,g, which generally includes εjg.

A3 Shrinkage Estimator

In general the researcher does not know the covariance matrix for the outcomes, Σg, and must

estimate it. While the sample covariance matrix Σ̂g is consistent for Σg, in any finite sample the
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off-diagonal elements suffer from a regression-to-the-mean problem: Large covariance values in

the estimated matrix tend to be large both because the true σjk (the covariance between outcomes

j and k) is non-zero and because there has been a stochastic shock in the sample correlation that is

in the same direction as σjk. Using the raw estimate Σ̂g thus tends to over (under) allocate weight

to outcomes with abnormally high negative (positive) covariance entries. This suggests applying a

shrinkage estimator to the off-diagonal elements of the estimated covariance matrix.36

The shrinkage estimator we consider is the Empirical Bayes estimator. This estimator applies

Bayes Theorem:

P(σjk|σ̂jk) =
P(σ̂jk|σjk) · P(σjk)

P(σ̂jk)

Using the empirical distribution of the covariance entries for group g and applying the law of

iterated expectations we estimate:

P(σjk|σ̂jk) =
P(σ̂jk|σjk) · 2/(H2

g −Hg)∑Hg
l=1

∑Hg
m=l+1 P(σ̂jk|σjk = σ̂lm) · 2/(H2

g −Hg)
(11)

In this context Hg represents the number of outcomes in group g. Note that we only evaluate

P(σjk|σ̂jk) for values of σjk corresponding to points of support in the empirical distribution of

σ̂jk, and the denominator is a constant that ensures the posterior probabilities sum to one.37 To

understand the estimator’s operation, consider the largest σ̂jk, σ̂max. The posterior for σmax is

centered below σ̂max because σ̂max is the upper bound of the support for any posterior. Other

coefficient estimates σ̂lm “pull down” E[σmax], with each posterior point of support σ̂lm receiving

weight P(σ̂max|σmax = σ̂lm). Thus the estimator “shrinks” larger covariance entries towards the

empirical mean of the covariance entries. In practice we find that there tends to be too much

shrinkage; for our final estimate of σjk we use the (unweighted) average the Empirical Bayes

estimate of σjk (Equation (11)) and the raw estimate σ̂jk.

A4 Analyses of Plans Incorporating Index Tests

This appendix analyzes the relative power of a rich variety of plans that combine index tests with

exhaustive PAPs. First we establish that parallel test plans that include an index generally dominate

equivalent plans that lack an index, as long as rejecting the index is of nontrivial value. Table A1

reports average power for a plan that tests an index, in parallel with other hypotheses, relative to the

same plan without an index test. Panel A compares a PAP with an optimus index to the same PAP
36Note that the diagonal elements are all of similar magnitude due to the standardization of the outcomes.
37To compute P(σ̂jk|σjk) we appeal to the Central Limit Theorem and assume an approximately normal distribution

for σ̂jk.
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without an optimus index, and Panel B compares a PAP with a KLK index to the same PAP without

a KLK index. Due to the optimus index’s power, plans with optimus indices are superior to their

equivalents without indices even when rejecting the index is only half as valuable as rejecting an

individual outcome (Panel A). PAPs with KLK indices are generally superior to their equivalents

without indices when the index weight is 0.5 (Panel B), but the advantage is not as pronounced as

it is with the optimus index (Panel A).

In high-powered cases in which many outcomes reject, rejecting the index along with many of

the outcomes comprising the index may be of limited value. Table A2 reproduces Table A1 but

applies a double-rejection adjustment so that the researcher does not receive double utility from

rejecting an indicator by itself and as part of an index. To achieve this, the correction multiplies

the index weight by 1 − a, where a is the fraction of index hypotheses that individually reject.38

While the value of adding an index as an additional test falls with the double-rejection adjustment,

the conclusions in Tables A1 and A2 are qualitatively similar. Thus, as long as researchers place a

nontrivial weight on rejecting an index, it is advantageous to include the index test.

Next we analyze the tradeoffs between using an optimus index or a KLK index in a variety of

scenarios. Table A3 presents the relative power of an optimus-gated PAP versus KLK index gated

PAPs for different index weights. The table reveals how much more valuable the KLK index needs

to be than the optimus index before researchers should switch from an optimus to a KLK index.

The weight applied to the optimus index varies across rows, while the weight applied to the KLK

index varies across columns. Panel A reports results for smaller families (Column (3) of Table

A1), while Panel B reports results for larger families (Column (4) of Table A1). A weight of 1.0

implies that a researcher values an index rejection equivalently to rejecting a single outcome.

For small families, if the optimus index has a weight of 1, the KLK index weight needs to

exceed 4 before a researcher is indifferent between using the KLK index or an optimus index.39

For large families, if the optimus index has a weight of 1, the researcher prefers it to the KLK index

even when she receives 8 times as much utility from rejecting the KLK index.

Table A4 presents, for different index weights, the relative power of PAPs that test an optimus

index in parallel with other hypotheses versus those that test a KLK index in parallel. As above,

these tables reveal how much more valuable the KLK index needs to be than the optimus index be-

fore researchers should switch from an optimus to a KLK index. Panel A reports results for smaller

38Since a will typically be much higher for the optimus index than the KLK index, the correction disproportionately

affects the optimus.
39It is tempting to assume that the indifference point for an optimus weight of 2 should be a KLK index weight of

8. This logic ignores the dual role that the indices play, however — they generate rejections themselves, and they gate

the testing of individual outcomes. Thus the power ratio of the two plans is not constant in the ratio of the two weights.
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families (Column (3) of Table A1), while Panel B reports results for larger families (Column (4)

of Table A1). For small families, if the optimus index has a weight of 1, the KLK index weight

needs to exceed 5 before a researcher is indifferent between using the KLK index or an optimus

index. For large families, if the optimus index has a weight of 1, the researcher prefers it to the

KLK index even when she receives 6 times as much utility from rejecting the KLK index.
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Figure A1: Distribution of Relative Power of Optimus Parallel Plan (with double-rejection adjust-

ment) versus Exhaustive PAP

(a) Small families (index weight = 1)

0
.0

5
.1

.1
5

Fr
ac

tio
n

1 1.1 1.2 1.3
Power ratio of optimus-parallel plan to exhaustive PAP

(b) Large families (index weight = 1)
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(c) Small families (index weight = 2)
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(d) Large families (index weight = 2)
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Notes: Panels (a) and (c) correspond to Column (3) of Table 2, and Panels (b) and (d) correspond to Column (4). The

double-rejection adjustment scales an index’s rejection utility by one minus the fraction of index components that

reject in the PAP.
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Table A1: Relative Power of Plans w/ Indices v. Plans w/o Indices

(1) (2) (3) (4) (5)

Index weight: A: Optimus + PAP v. PAP

0.5 1.10 1.12 1.15 1.11 1.11

1.0 1.20 1.23 1.31 1.21 1.22

1.5 1.29 1.35 1.47 1.32 1.33

2.0 1.38 1.46 1.63 1.42 1.45

B: KLK index + PAP v. PAP

0.5 1.04 1.04 1.01 1.02 1.00

1.0 1.09 1.08 1.04 1.04 1.02

1.5 1.13 1.12 1.08 1.06 1.03

2.0 1.17 1.15 1.11 1.08 1.05

Parameter restrictions:

Total hypotheses (H) ≤ 20 ≥ 50

Share false (H1/H) ≤ 0.5 ≤ 0.2 ≤ 0.2 0.1

Average effect size (µt) ≤ 3.0 ≤ 3.0 ≤ 3.0 ≤ 2.5

Combinations 2,600 1,560 416 624 390

Notes: Each cell reports, for a given index weight, the geometric

mean power ratio of a plan that tests an index in parallel with other

hypotheses to an equivalent plan that omits the index test. Panels

A and B respectively test an optimus index with an exhaustive

PAP and a KLK index with an exhaustive PAP.
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Table A2: Relative Power of Plans w/ Indices v. Plans w/o Indices, Double-rejection Adjusted

(1) (2) (3) (4) (5)

Index weight: A: Optimus + PAP v. PAP

0.5 1.04 1.06 1.05 1.07 1.05

1.0 1.09 1.12 1.11 1.14 1.12

1.5 1.14 1.18 1.18 1.21 1.18

2.0 1.18 1.24 1.24 1.27 1.24

B: KLK index + PAP v. PAP

0.5 1.03 1.03 1.01 1.02 1.00

1.0 1.07 1.07 1.04 1.04 1.02

1.5 1.11 1.10 1.06 1.06 1.03

2.0 1.14 1.14 1.09 1.07 1.04

Parameter restrictions:

Total hypotheses (H) ≤ 20 ≥ 50

Share false (H1/H) ≤ 0.5 ≤ 0.2 ≤ 0.2 0.1

Average effect size (µt) ≤ 3.0 ≤ 3.0 ≤ 3.0 ≤ 2.5

Combinations 2,600 1,560 416 624 390

Notes: Each cell reports, for a given index weight, the geomet-

ric mean power ratio of a plan that tests an index in parallel with

other hypotheses to an equivalent plan that omits the index test.

Panels A and B respectively test an optimus index with an exhaus-

tive PAP and a KLK index with an exhaustive PAP. The double-

rejection adjustment scales an index’s rejection utility by one mi-

nus the fraction of index components that reject in the PAP.
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Table A3: Relative Power of Optimus-Gated PAP v. KLK Index Gated PAP

KLK index weight: 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Optimus-index weight: A: H ≤ 20

1.0 2.41 1.66 1.27 1.03 0.87 0.75 0.66 0.59

2.0 3.54 2.44 1.87 1.52 1.28 1.10 0.97 0.87

3.0 4.67 3.22 2.47 2.00 1.68 1.45 1.28 1.14

4.0 5.79 4.00 3.06 2.48 2.09 1.80 1.59 1.42

B: H ≥ 50

1.0 2.54 2.06 1.74 1.52 1.35 1.21 1.10 1.01

2.0 3.27 2.65 2.24 1.95 1.73 1.56 1.42 1.30

3.0 3.97 3.22 2.72 2.37 2.11 1.89 1.72 1.58

4.0 4.66 3.77 3.20 2.78 2.47 2.22 2.02 1.86

Notes: Each cell reports, for a given combination of optimus-index and KLK

index weights, the geometric mean power ratio of an optimus-index gated

exhaustive PAP to a KLK index gated exhaustive PAP. Panel A uses the same

set of parameter combinations as Column (3) of Table 2, and Panel B uses the

same set of parameter combinations as Column (4) of Table 2 (416 and 624

parameter combinations respectively).
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Table A4: Relative Power of Optimus-Parallel PAP v. KLK Index Parallel PAP

KLK index weight: 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Optimus-index weight: A: H ≤ 20

1.0 1.25 1.18 1.12 1.06 1.01 0.97 0.93 0.89

2.0 1.56 1.47 1.39 1.32 1.26 1.21 1.16 1.11

3.0 1.86 1.75 1.66 1.58 1.50 1.44 1.38 1.32

4.0 2.16 2.03 1.92 1.83 1.74 1.67 1.60 1.54

B: H ≥ 50

1.0 1.17 1.13 1.09 1.06 1.03 1.01 0.98 0.96

2.0 1.37 1.32 1.28 1.24 1.21 1.18 1.15 1.13

3.0 1.56 1.51 1.46 1.42 1.38 1.35 1.32 1.29

4.0 1.76 1.70 1.64 1.60 1.55 1.51 1.48 1.45

Notes: Each cell reports, for a given combination of optimus-index and KLK

index weights, the geometric mean power ratio of an exhaustive PAP that tests

the optimus index in parallel to an exhaustive PAP that tests the KLK index

in parallel. Panel A uses the same set of parameter combinations as Column

(3) of Table 2, and Panel B uses the same set of parameter combinations as

Column (4) of Table 2 (416 and 624 parameter combinations respectively).
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Table A5: Indicators and Weights in GoBiFo Optimus

Hypothesis Variable Name Variable Label Weight PAP Family

Hardware

bank acct Does this community have a bank account? 0.281 H1,H3

vdc Since January 2006, has this community had a Village or Community Development Co 0.118 H1

vdp Does this community have a village development plan (i.e. an agreed plan with sp 0.094 H1

training In the past 2 years (since October 2007), have you participated in any skills tr 0.09 H3

func tba Does the community have a traditional birth attendant (TBA) house and is it func 0.089 H2

f comcntr Does the community have a community center and is it functional? 0.06 H2

f barrie Does the community have a court barrie and is it functional? 0.06 H2

f dryflr Does the community have a drying floor and is it functional? 0.05 H2

att wdc Have you personally talked with a member of the WDC or participated in a meeting 0.043 H1

seedbank Does this community have a seed bank (i.e. where people can borrow rice or groun 0.028 H2

quintile Quintile of Household PCA Asset/Amenities score 0.026 H3

petty [From supervisor tour of community] Have you seen anybody selling packaged goods 0.021 H3

tarp public [After asking the community how they have used (or plan to use) the tarp] SUPERV 0.02 H2

vis wdc Has this community been visited by a Ward Development Committee member in the pa 0.015 H1

Software

commfarm Does this community have any communal farms? 0.091 H4

no fight In the past 12 months, respondent has not been involved in any physical fighting 0.076 H11

minutes Did anyone take minutes (written record of what was said) at the most recent com 0.069 H5

list lc chf Relative view of ’do you think the Local Council [as opposed to Paramount chief] 0.065 H6

mbr wom Are you a member of any women’s groups (general)? 0.062 H8

rtarp public [Given current chief chosen since 2005] Is the current (or acting) village chief 0.06 H6

name elec Correctly able to name the year of the next general elections 0.055 H9

leader yth Respondent agrees with ’Responsible young people can be good leaders’ and not ’O 0.054 H6,H12

tstore notchf Village focus group says tarp is not stored in chief’s private residence 0.039 H6

vote Enumerator record of whether a vote occurred during the gift choice deliberation 0.039 H5,H6

name sc Correctly able to name the Section Chief for this section 0.039 H9

council listen Do you think the Local Council listens to what people in this town / neighborhoo 0.037 H10

trust ngo In your opinion, do you believe NGOs / donor projects or do you have to be caref 0.035 H7

mbr seed Are you a member of any seed multiplication groups? 0.035 H8

maj gift Gift (salt versus batteries) chosen reflects the view of the majority of househo 0.03 H5

mbr trad Are you a member of any traditional societies? 0.029 H8

say tarp Respondent feels that ’everybody in the village had equal say’ in deciding what 0.028 H5

store tarp Tarp is stored in a public place (community center, school/clinic, church/mosque 0.028 H5

meet yth Enumerator record of total youths (18-35 years) present at gift choice meeting ( 0.026 H5

vis pc Has this community been visited by the Paramount Chief in the past year? 0.019 H9

bribebad Respondent agrees with ’It’s wrong to pay a bribe to any government official’ an 0.017 H12

vh fem Is the current (or acting) village chief/Headman a woman? 0.016 H12

rmarket Have you ever given money to a nonhousehold member to buy something for you at t 0.014 H7

dues How much money have your given to church or mosque in the last month? [Add up al 0.013 H8

disabled meet Did any disabled people (blind, polio, amputee, wheelchair, etc.) attend the las 0.012 H5

notrad cards Respondent does not choose a chiefdom official or elder in response to ’who had 0.01 H6
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Hypothesis Variable Name Variable Label Weight PAP Family

Software (no

community

farm)

no fight In the past 12 months, respondent has not been involved in any physical fighting 0.086 H11

minutes Did anyone take minutes (written record of what was said) at the most recent com 0.073 H5

mbr wom Are you a member of any women’s groups (general)? 0.071 H8

list lc chf Relative view of ’do you think the Local Council [as opposed to Paramount chief] 0.066 H6

rtarp public [Given current chief chosen since 2005] Is the current (or acting) village chief 0.062 H6

name elec Correctly able to name the year of the next general elections 0.06 H9

leader yth Respondent agrees with ’Responsible young people can be good leaders’ and not ’O 0.06 H6,H12

council listen Do you think the Local Council listens to what people in this town / neighborhoo 0.049 H10

tstore notchf Village focus group says tarp is not stored in chief’s private residence 0.046 H6

trust ngo In your opinion, do you believe NGOs / donor projects or do you have to be caref 0.041 H7

mbr seed Are you a member of any seed multiplication groups? 0.039 H8

vote Enumerator record of whether a vote occurred during the gift choice deliberation 0.039 H5,H6

name sc Correctly able to name the Section Chief for this section 0.038 H9

meet yth Enumerator record of total youths (18-35 years) present at gift choice meeting ( 0.032 H5

say tarp Respondent feels that ’everybody in the village had equal say’ in deciding what 0.031 H5

maj gift Gift (salt versus batteries) chosen reflects the view of the majority of househo 0.03 H5

store tarp Tarp is stored in a public place (community center, school/clinic, church/mosque 0.029 H5

mbr trad Are you a member of any traditional societies? 0.026 H8

vis pc Has this community been visited by the Paramount Chief in the past year? 0.021 H9

bribebad Respondent agrees with ’It’s wrong to pay a bribe to any government official’ an 0.019 H12

vh fem Is the current (or acting) village chief/Headman a woman? 0.016 H12

rmarket Have you ever given money to a nonhousehold member to buy something for you at t 0.016 H7

dues How much money have your given to church or mosque in the last month? [Add up al 0.014 H8

disabled meet Did any disabled people (blind, polio, amputee, wheelchair, etc.) attend the las 0.012 H5

duration Enumerator record of duration of gift choice deliberation in minutes (field acti 0.011 H5

notrad cards Respondent does not choose a chiefdom official or elder in response to ’who had 0.01 H6

spend lc chf Relative view of ’if the Local Council [as opposed to Paramount chief] was given 0.01 H6

Hypothesis 1

bank acct Does this community have a bank account? 0.5 H1,H3

vdc Since January 2006, has this community had a Village or Community Development Co 0.227 H1

vdp Does this community have a village development plan (i.e. an agreed plan with sp 0.144 H1

att wdc Have you personally talked with a member of the WDC or participated in a meeting 0.082 H1

vis wdc Has this community been visited by a Ward Development Committee member in the pa 0.05 H1

Hypothesis 2

func tba Does the community have a traditional birth attendant (TBA) house and is it func 0.201 H2

seedbank Does this community have a seed bank (i.e. where people can borrow rice or groun 0.177 H2

f barrie Does the community have a court barrie and is it functional? 0.172 H2

f comcntr Does the community have a community center and is it functional? 0.153 H2

f latrine Does the community have a latrine and is it functional? 0.113 H2

f dryflr Does the community have a drying floor and is it functional? 0.077 H2

footunif Do any of the local sports teams have uniforms / vests? 0.046 H2

tarp public [After asking the community how they have used (or plan to use) the tarp] SUPERV 0.03 H2

func sports Does the community have a football / sports field and is it functional? 0.021 H2

f psch Does the community have a primary school and is it functional? 0.021 H2
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Hypothesis Variable Name Variable Label Weight PAP Family

Hypothesis 3

bank acct Does this community have a bank account? 0.6 H1,H3

training In the past 2 years (since October 2007), have you participated in any skills tr 0.186 H3

quintile Quintile of Household PCA Asset/Amenities score 0.071 H3

assets Household PCA Asset/Amenities score (includes hhs ownership of bicycle, mobile p 0.039 H3

tot goods Number of goods out of 10 common items (bread, soap, garri, country cloth/garra 0.036 H3

petty [From supervisor tour of community] Have you seen anybody selling packaged goods 0.028 H3

betteroff Supervisor assessment that community is ’much better off’ or ’a little better of 0.021 H3

tot petty How many houses and small shops (including tables, boxes and kiosks) are selling 0.02 H3

Hypothesis 4

commfarm Does this community have any communal farms? 0.713 H4

vchr tot How much money do you think the community will be able to raise to use the build 0.13 H4

mkt grp Do any people from different households here come together to sell agricultural 0.054 H4,H7,H8

cards Number of vouchers for building materials out of 6 maximum that the community re 0.046 H4

wkcomfrm In the past one year, did you work on a communal farm (this means a farm owned b 0.041 H4

Hypothesis 5

minutes Did anyone take minutes (written record of what was said) at the most recent com 0.014 H5

say tarp Respondent feels that ’everybody in the village had equal say’ in deciding what 0.01 H5

show tarp Supervisor asks to see the tarp at second round follow-up visit: can the communi 0.01 H5

Hypothesis 6

rtarp public [Given current chief chosen since 2005] Is the current (or acting) village chief 0.218 H6

list lc chf Relative view of ’do you think the Local Council [as opposed to Paramount chief] 0.177 H6

leader yth Respondent agrees with ’Responsible young people can be good leaders’ and not ’O 0.16 H6,H12

tstore notchf Village focus group says tarp is not stored in chief’s private residence 0.157 H6

notrad tarp Respondent does not choose a chiefdom official or elder in response to ’who had 0.113 H6

vote Enumerator record of whether a vote occurred during the gift choice deliberation 0.091 H5,H6

notrad cards Respondent does not choose a chiefdom official or elder in response to ’who had 0.028 H6

leader wmn Respondent agrees with ’Women can be good politicians and should be encouraged t 0.028 H6,H12

spend lc chf Relative view of ’if the Local Council [as opposed to Paramount chief] was given 0.017 H6

question auth Respondent agrees with ’As citizens, we should be more active in questioning the 0.016 H6

Hypothesis 7

trust ngo In your opinion, do you believe NGOs / donor projects or do you have to be caref 0.471 H7

rmarket Have you ever given money to a nonhousehold member to buy something for you at t 0.189 H7

hmarket Tomorrow, if you needed to buy something from town or the market but were unable 0.062 H7

osusu Are you a member of any credit or savings (osusu) groups? 0.032 H7,H8

trust pol In your opinion, do you believe the police or do you have to be careful when dea 0.025 H7

trust own In your opinion, do you believe people from you own village / town / neighborhoo 0.014 H7

trust out In your opinion, do you believe people from outside you own village / town / nei 0.012 H7
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Hypothesis Variable Name Variable Label Weight PAP Family

Hypothesis 8

mbr wom Are you a member of any women’s groups (general)? 0.524 H8

mbr seed Are you a member of any seed multiplication groups? 0.259 H8

mbr trad Are you a member of any traditional societies? 0.118 H8

dues How much money have your given to church or mosque in the last month? [Add up al 0.055 H8

osusu Are you a member of any credit or savings (osusu) groups? 0.021 H7,H8

Hypothesis 9

name elec Correctly able to name the year of the next general elections 0.377 H9

name sc Correctly able to name the Section Chief for this section 0.227 H9

name chr Correctly able to name the Chairperson of the Local Council 0.125 H9

vis pc Has this community been visited by the Paramount Chief in the past year? 0.1 H9

disp ind Supervisor assessment of whether there are any of the following items–awareness 0.034 H9

radio Do you get information from the radio about politics and what the government is 0.027 H9

Hypothesis 10

vote local Did you vote in the local government election (2008)? 0.206 H10

stand lc Did anyone in this community contest the party symbol in the 2008 local council 0.039 H10

change council Respondent thinks they have ’some’ or ’little’ as opposed to ’no’ chance to chan 0.029 H10

vote pres1 Enumerator verifies that respondent’s voter ID card has the correct hole punched 0.029 H10

cvote local Enumerator verifies that respondent’s voter ID card has the correct hole punched 0.022 H10

Hypothesis 11

no fight In the past 12 months, respondent has not been involved in any physical fighting 0.599 H11

no conflict No conflict that respondent needed help from someone outside the household to re 0.23 H11

nobeatchild Respondent agrees with ’Beating children will only teach them to use violence ag 0.035 H11

no witch During the last 12 months, respondent has not been a victim of witchcraft (juju) 0.03 H11

violence bad Respondent agrees with ’The use of violence is never justified in politics’ and 0.028 H11

no theft In the past 12 months, no livestock, household items or money stolen from the re 0.013 H11

Hypothesis 12

leader yth Respondent agrees with ’Responsible young people can be good leaders’ and not ’O 0.318 H6,H12

bribebad Respondent agrees with ’It’s wrong to pay a bribe to any government official’ an 0.164 H12

vh fem Is the current (or acting) village chief/Headman a woman? 0.135 H12

leader wmn Respondent agrees with ’Women can be good politicians and should be encouraged t 0.104 H6,H12

youthtreat Respondent agress with ’In this community, elders / authorities treat youths jus 0.016 H12
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Table A6: Disaggregated OHIE Results (100% Sample)

Indicator (standardized outcome) ITT estimate RW p-val

Subfamily: Utilization, prevention, access

Currently taking any prescription medications 0.039 0.845

(0.023)

Any primary care visits 0.103 0.000

(0.023)

Any ER visits 0.021 1.000

(0.023)

Any hospital visits -0.009 1.000

(0.023)

Number of prescription meds currently taking 0.069 0.090

(0.023)

Number of primary care visits 0.098 0.000

(0.023)

Number of ER visits 0.012 1.000

(0.023)

Number of hospital visits 0.012 1.000

(0.023)

Ever had cholesterol checked 0.031 0.965

(0.024)

Ever had diabetes checked 0.059 0.245

(0.023)

Ever had a mammogram 0.067 0.105

(0.023)

Ever had a pap smear 0.066 0.105

(0.022)

Ever had diabetes/sugar diabetes diagnosis -0.003 1.000

(0.023)

Ever had asthma diagnosis -0.013 1.000

(0.023)

Ever had high blood pressure diagnosis 0.014 1.000

(0.023)
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(1) (2)

Indicator (standardized outcome) ITT estimate RW p-val

Ever had COPD diagnosis 0.047 0.590

(0.023)

Ever had heart disease/angina diagnosis -0.036 0.890

(0.023)

Ever had congestive heart failure diagnosis 0.016 1.000

(0.024)

Ever had depression/anxiety diagnosis -0.007 1.000

(0.023)

Ever had high cholesterol diagnosis 0.011 1.000

(0.023)

Ever had kidney disease diagnosis -0.027 0.975

(0.023)

Usual place of care is clinic 0.154 0.000

(0.024)

Have personal doctor 0.129 0.000

(0.024)

Got all needed medical care in last 6 months 0.158 0.000

(0.023)

Got all needed prescriptions in last 6 months 0.105 0.000

(0.023)

Did not use ER for non-ER care -0.002 1.000

(0.023)

Subfamily: Health

Overall health excellent/good 0.051 0.490

(0.023)

Overall health not poor 0.047 0.620

(0.023)

Change in overall health (positive is better) 0.097 0.000

(0.023)

Number of days (in past 30) not impaired by poor health 0.013 1.000

(0.023)

Number of days (in past 30) when physical health good 0.009 1.000

(0.023)
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(1) (2)

Indicator (standardized outcome) ITT estimate RW p-val

Number of days (in past 30) when mental health good -0.002 1.000

(0.024)

Not depressed in past 2 weeks -0.005 1.000

(0.023)

Not current smoker -0.029 0.965

(0.023)

Physical activity (compared to others of same age) -0.027 0.975

(0.023)

Current overall happiness (higher is better) 0.063 0.150

(0.023)

Subfamily: Financial

Household income as percent of federal poverty line 0.009 1.000

(0.024)

Household income category 0.016 1.000

(0.024)

Currently employed -0.003 1.000

(0.023)

Average weekly hours worked 0 1.000

(0.023)

No out of pocket costs for medical care in past 6 months 0.183 0.000

(0.023)

Do not currently owe money for medical expenses 0.045 0.665

(0.023)

Haven’t borrowed to pay health care bills in past 6 months 0.109 0.000

(0.024)

Haven’t been refused care because owed money for past treatment 0.048 0.620

(0.023)

Notes: Results in Column (1) represent coefficients from a regression of the listed indicator (standardized

to unit variance) on an intention-to-treat indicator using the 100% sample (N = 8, 141), controlling

for household size and survey round fixed effects. Parentheses contain standard errors clustered at the

household level. Column (2) reports Romano-Wolf p-values that control FWER across the 44 outcomes

in the table.
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Table A7: Indicators and Weights in OHIE

Hypothesis Variable Name Variable Label Weight

All Outcomes

neg cost any oop 12m No out of pocket costs for medical care in past 6 months 0.194

usual clinic 12m Usual place of care is clinic 0.088

doc any 12m Any primary care visits 0.067

needmet med 12m Got all needed medical care in last 6 months 0.060

needmet rx 12m Got all needed prescriptions in last 6 months 0.044

health chgflip bin 12m Change in overall health (positive is better) 0.040

usual doc 12m Have personal doctor 0.036

neg cost borrow 12m Haven’t borrowed to pay health care bills in past 6 months 0.033

doc num mod 12m Number of primary care visits 0.033

emp dx 12m Ever had COPD diagnosis 0.032

rx num mod 12m Number of prescription meds currently taking 0.027

dia chk bin 12m Ever had diabetes checked 0.026

mam chk bin all 12m Ever had a mammogram 0.026

rx any 12m Currently taking any prescription medications 0.023

pap chk bin all 12m Ever had a pap smear 0.023

neg cost refused 12m Haven’t been refused care because owed money for past treatment 0.017

neg cost any owe 12m Do not currently owe money for medical expenses 0.016

poshappiness bin 12m Current overall happiness (higher is better) 0.016

health notpoor 12m Overall health not poor 0.016

chl dx 12m Ever had high cholesterol diagnosis 0.013

hhinc pctfpl 12m Household income as percent of federal poverty line 0.012

chf dx 12m Ever had congestive heart failure diagnosis 0.012

er any 12m Any ER visits 0.012

er num mod 12m Number of ER visits 0.012

health genflip bin 12m Overall health excellent/good 0.012

hbp dx 12m Ever had high blood pressure diagnosis 0.010

chl chk bin 12m Ever had cholesterol checked 0.010

employ hrs 12m Average weekly hours worked 0.010

hhinc cat 12m Household income category 0.010
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Hypothesis Variable Name Variable Label Weight

Utilization,

prevention,

access

needmet med 12m Got all needed medical care in last 6 months 0.177

usual clinic 12m Usual place of care is clinic 0.129

needmet rx 12m Got all needed prescriptions in last 6 months 0.123

doc any 12m Any primary care visits 0.052

emp dx 12m Ever had COPD diagnosis 0.050

usual doc 12m Have personal doctor 0.050

doc num mod 12m Number of primary care visits 0.045

dia chk bin 12m Ever had diabetes checked 0.039

pap chk bin all 12m Ever had a pap smear 0.038

mam chk bin all 12m Ever had a mammogram 0.037

rx num mod 12m Number of prescription meds currently taking 0.026

chf dx 12m Ever had congestive heart failure diagnosis 0.019

er any 12m Any ER visits 0.018

chl dx 12m Ever had high cholesterol diagnosis 0.017

not er noner 12m Did not use ER for non-ER care 0.016

hosp num mod 12m Number of hospital visits 0.015

hbp dx 12m Ever had high blood pressure diagnosis 0.014

chl chk bin 12m Ever had cholesterol checked 0.014

rx any 12m Currently taking any prescription medications 0.014

dep dx 12m Ever had depression/anxiety diagnosis 0.014

er num mod 12m Number of ER visits 0.013

dia dx 12m Ever had diabetes/sugar diabetes diagnosis 0.011

ast dx 12m Ever had asthma diagnosis 0.011
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Hypothesis Variable Name Variable Label Weight

Health

health chgflip bin 12m Change in overall health (positive is better) 0.198

poshappiness bin 12m Current overall happiness (higher is better) 0.123

nonsmk curr 12m Not current smoker 0.097

health notpoor 12m Overall health not poor 0.094

more active 12m Physical activity (compared to others of same age) 0.072

health genflip bin 12m Overall health excellent/good 0.062

nodep screen 12m Not depressed in past 2 weeks 0.052

notbaddays tot 12m Number of days (in past 30) not impaired by poor health 0.038

notbaddays phys 12m Number of days (in past 30) when physical health good 0.032

notbaddays ment 12m Number of days (in past 30) when mental health good 0.026

Financial

neg cost any oop 12m No out of pocket costs for medical care in past 6 months 0.399

neg cost borrow 12m Haven’t borrowed to pay health care bills in past 6 months 0.142

neg cost refused 12m Haven’t been refused care because owed money for past treatment 0.110

hhinc pctfpl 12m Household income as percent of federal poverty line 0.072

neg cost any owe 12m Do not currently owe money for medical expenses 0.066

hhinc cat 12m Household income category 0.062

employ hrs 12m Average weekly hours worked 0.045

employ 12m Currently employed 0.038

Notes: Hypothesis refers to the family or subfamily of indicators used to construct the optimus index. Weight

represents average weight received by an indicator variable across 100 random 10% samples.
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Table A8: OHIE Results by Sample Size: Gating Hypotheses and Individual Indicators

(1) (2) (3) (4)

Test Power Effect Size Index Size True Effect Size

Panel A: 8% sample

Optimus 54% 0.086 8.8 0.092

KLK Index 50% 0.041 44 0.039

LMS Omnibus 38%

Exhaustive PAP 48% 0.211+ 1.3++ 0.115

PAP (post optimus gate) 34% 0.211+ 1.2++ 0.115

Panel B: 12% sample

Optimus 85% 0.097 9.6 0.102

KLK Index 71% 0.04 44 0.039

LMS Omnibus 57%

Exhaustive PAP 67% 0.207+ 1.6++ 0.136

PAP (post optimus gate) 61% 0.207+ 1.5++ 0.137

Panel C: 15% sample

Optimus 90% 0.097 9.9 0.105

KLK Index 77% 0.037 44 0.039

LMS Omnibus 57%

Exhaustive PAP 75% 0.209+ 1.8++ 0.141

PAP (post optimus gate) 70% 0.209+ 1.8++ 0.141

Notes: Results in Columns (1) – (3) represent averages across 100 random

8%, 12%, or 15% samples of the OHIE data. Power denotes power to reject

the sharp null hypothesis for at least one indicator. True effect size represents

the estimated effect in the full (100% sample) OHIE dataset, with indicators

weighted using average weights underlying Column (2).

+ Average effect size for indicators rejected by the PAP (when no indicator

rejects, calculation includes the most significant indicator).

++ Average number of indicators rejected, left-censored at 1.
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Table A9: OHIE Results: Ungated Subfamily Hypotheses

(1) (2) (3) (4)

Test Power Effect Size Index Size True Effect Size

Panel A: Utilization outcomes

Optimus 36% 0.087 5.6 0.094

KLK Index 21% 0.042 26 0.043

Panel B: Health outcomes

Optimus 7% 0.028 2.3 0.038

KLK Index 2% 0.021 10 0.022

Panel C: Financial outcomes

Optimus 23% 0.095 2.7 0.105

KLK Index 17% 0.049 8 0.051

Notes: Results in Columns (1) – (3) represent averages across 100

random 10% samples of the OHIE data. Power denotes power to

reject the sharp null hypothesis for at least one subfamily indi-

cator, multiplicity adjusted for the three parallel subfamily tests.

True effect size represents the estimated effect in the full (100%

sample) OHIE dataset, with indicators weighted using average

weights underlying Column (2).
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Table A10: OHIE Results: Gated Subfamily Hypotheses

(1) (2) (3) (4)

Test Power Effect Size Index Size True Effect Size

Panel A: Utilization outcomes

Optimus 34% 0.087 5.6 0.094

KLK Index 20% 0.042 26 0.043

Panel B: Health outcomes

Optimus 7% 0.028 2.3 0.038

KLK Index 2% 0.021 10 0.022

Panel C: Financial outcomes

Optimus 22% 0.095 2.7 0.105

KLK Index 15% 0.049 8 0.051

Notes: Results in Columns (1) – (3) represent averages across 100

random 10% samples of the OHIE data. Power denotes power to

pass the all-outcome gate and reject the sharp null hypothesis for

at least one subfamily indicator, multiplicity adjusted for the three

parallel subfamily tests. True effect size represents the estimated

effect in the full (100% sample) OHIE dataset, with indicators

weighted using average weights underlying Column (2).

71



Table A11: OHIE Results: Ungated OHIE PAP Table Hypotheses

(1) (2) (3)

Test Power Effect Size Index Size

Panel A: Tables P1 + U1

Optimus 13% 0.055 2.2

KLK Index 9% 0.038 8

Panel B: Table P2

Optimus 57% -0.127 1.7

KLK Index 44% -0.097 4

Panel C: Table P3

Optimus 23% 0.050 1.9

KLK Index 8% 0.034 7

Notes: Results in Columns (1) – (3) represent

averages across 100 random 10% samples of the

OHIE data. Power denotes power to reject the

sharp null hypothesis for at least one subfamily

indicator, with no multiplicity adjustment. Each

panel includes outcomes from the referenced ta-

bles in Finkelstein et al. (2010). Tables P1 and

U1 contain eight utilization outcomes, Table P2

contains four financial strain outcomes, and Ta-

ble P3 contains seven health outcomes.
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