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Abstract

We study aT-period contracting game between a group of players without
access to external financing. We show that the long-termiegifiy loss is bound-
ed from below by the short-term efficiency loss that beconedfsesident at the
end of a period. WhefT is large, the efficiency bound can be approached by
a contract that involves side payments between players.ré&3uits apply to all
monitoring structures and strategy profiles. They encompaes inefficiency re-
sult in Abreu, Milgrom, and Pearce (1991), as well as the aaprate-efficiency
results in Compte (1998), Obara (2009), and Chan and Zh&1ig)2

1 Introduction

In a team moral-hazard problem where it is impossible tordgtee which player has
shirked (Holmstrom, 1982; Radner, Myerson, and Masking)9&ach player can free-
ride on the efforts of the other players. As a result, the Naghilibrium outcome is
typically inefficient. The inefficiency persists even whha players can write a binding
incentive contract among themselves so long as no budgettdefillowed. For if one
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player’s punishment is transferred to another player asvarce then the latter may
deliberately choose an action to get the first player pukishince, motivating every
player may call for all players to be punished simultanepusbr example, a cartel may
have to resort to costly price wars to sustain collusionclefficy can be restored if the
players can contract with a third party who can provide ekEfinances to break the
no-budget-deficit constraint. Thus, in his seminal papefmstrom (1982) notes that
“The fact that capitalistic firms feature separation of oveh@ and labor implies that
the free-rider problem is less pronounced in such firms thafosed organizations like
partnerships.”

In this paper, we argue that the incentive problem of havidg-payments between
players is greatly reduced when players interact repgatedl, as a consequence, ac-
cess to external finances may not be as important as it sedorgiterm partnerships.
We formalize our idea in @ -period contracting game between a group of players. In
each period each player chooses a private action and thenvels private signal about
the chosen actions. At the end of peribdthe players report their signals publicly. A
contract maps the players’ reports into a payment to eaglepld8ecause there is no
external financing, the total payment must be non-positikeay strictly negative total
payment must be destroyed.

We characterize the minimum efficiency loss in enforcing réate stage-game ac-
tion profile throughout the contract. A central concept im aoalysis is the notion
of self-evidentevents, which was introduced by Aumann (1976) to analyzefsah
incomplete-information games. We apply the concept torifesinformation that be-
comes common knowledge after the players observe themtpraignals at the end of
a period. For example, if a signal is public, then its reaicrais self-evident because
every player observes the signal and knows that every playserves the signal and
so on. Using the notion of self-evident events, we first disfalan upper bound on the
long-term efficiency of a partnership. We then show that wtheriength of the contract
is sufficiently long, the efficiency bound can be approachead §imple contract where-
by each player is penalized or rewarded depending on whieitharverage performance
is below or above a performance standard.

Since there is no external financing, one player’s overgoarance bonus has to be
paid by another player. In a short-term partnership, thig meerfere with the incen-



tives of the paying player. In a long-term relationshipkiing incentives across periods
makes this incentive problem much less severe. This is Bedauequilibrium a non-
deviating player is exceedingly unlikely to over-perforonsistently. Unless a player’s
performance is self-evident (e.g., when it is public), &eill always be some play-
er who would believe that the chance of consistent ovempadnce by the receiving
player is so small that having to pay the bonus would causgankgligible effect on
his incentives. Real-life cartels have often relied on gidgments to enforce collusion
(Harrington and Skrzypacz, 2011). Our results show thateufairly weak conditions,
such payments could be made incentive compatible.

Whether long-term partnerships can be efficiently run isxg4standing question in
the theory of repeated games. In a seminal paper, Abreurdigand Pearce (1991)
show that in a repeated Prisoners’ Dilemma, if the playeseple a noisy public signal
immediately at the end of each period, then the equilibriwtt@me must be ineffi-
cient. However, if the signals are observed with a lag, thenplayers can reduce the
efficiency loss by linking incentives across periods. Sghsat research has applied the
insights of Abreu, Milgrom, and Pearce (1991) to repeatedagawith private monitor-
ing. Following Abreu, Milgrom, and Pearce (1991), the ktieire has mainly focused
on two polar cases: imperfect public monitoring where livtkincentives has no value
(Abreu, Milgrom, and Pearce, 1991; Sannikov and Skrzyp2@@y7) and conditional-
ly independent monitoring where linking improves efficigr{€ompte, 1998; Obara,
2009; Chan and Zhang, 2016). Using the notion of self-etidgants, we generalize
the results of Abreu, Milgrom, and Pearce (1991) to gendaglesgames. Our results
provide a unifying framework that applies not only to the fwadar cases but also to the
in-between cases where players observe correlated psigatals.

In the setting of one-shot interaction, Rahman (2012) aridi®an and Obara (2010)
characterize the action profiles that can be enforced witkifigiency loss. They show
that an action profile can be enforced without efficiency lbesery deviating strategy
is attributable. We extend this characterization toThperiod contracting game. We
show that in order for efficiency to be attainable in long¥ieelationships, every deviat-
ing strategy must beitherattributableor detectable within a self-evident event. When
efficiency loss is inevitable, we provide a similar charaetgion for the efficiency loss.

The rest of the paper is organized as follows. The next seases a repeated Pris-



oners’ Dilemma example to bring out the main ideas of thisgpapection 3 introduces
the general model. Our main results are introduced in Sextband 5. Section 6
discusses the related literature in details. Section 7lades.

2 Example

In this section we illustrate how side-payments betweeygstacan improve efficiency
through aT -period two-person noisy Prisoners’ Dilemma game. In eagiodt = 1,
..., T, each player = 1,2 independently choos&sor D. The expected stage-game
payoff is given in Table 1. If both players chodSethen each player obtains a payoff
of 1. If one player chooseS and the other choosés, then the player who play®
receiveg1+d), while the player who play8 receives-h, whered, h > 0. The unique
stage-game Nash equilibrium(B, D).

C D
C 1,1 —h,1+d
D |1+d,—-h 0,0

Table 1: Payoff matrix.

At the end of each period, each play@bserves a private signale {H,L}. Table
2 describes the signal distributions conditional on theagtrofiles(C,C), (C,D), and
(D,C). If both players playC, theny; = H with probability p. If one player chooses
and the other choos&; theny; = H with probabilityqg < p. The correlation between
the players’ signals depends on the parameter{0, p] for somep > 1. Whenp =0,
the signals are perfectly correlated. In this case, theeptagire effectively observing
a public signal. Whem = 1, the signals are conditionally independent and a player
cannot learn about the other player’s signal from his own.elyih+£ 0, 1, the signals
are imperfectly correlated. The correlation is positiveewlp € (0,1) and negative
whenp € (1,p).

The players hire a principal to design a contract to enf@@c€) in every period. At
the end of period’, the principal asks the players to report their signals. drirecipal

LAssume thap is not too large such that the signal distributions are wefire:d.



H L H L

H | p—pp(1-p) pp(1—p) H | g—pq(1-q) pa(l-q)
L ppl-p | (A-p)d-pp) L pal-9 |(A-0)(1-pg)
Signal distribution undefC,C) Signal distribution undefC, D) or (D,C)

Table 2: Signal distributions.

can neither pay the players with outside resources noraxeaources from them. He
can, however, commit to destroying resourcesT -fieriod contractw’™ = (W] ,w}) is,
therefore, a function that maps the players’ reports to ayesy to each player, subject
to the constraint that the total payment be non-postiveo simplify exposition, we
assume in this section that the players’ discount factomss o that the utility of a
player is equal to the total stage-game payoffs plus theacinpayment.

Since the total payment must be negative, providing ingestis costly. Consider
the one-period case. Let= (w1,w,) denote a stage-game contract. With a slight abuse
of notation, letw;(H) andw; (L) denote player's payment when playeri reports that
his signal isH andL, respectively? It is straightforward to see that it is optimal for
playeri to chooseC if and only if

(p—a) (W (H) —wi(L)) >d.4

Since a player’'s payment depends only on the report of ther gilayer, the players
have no incentive to lie about their reports. Given the aaistw;(H),w;i(L) < 0, the
most efficient way to enforcéC,C) is to set

wi(H) = 0

wi(l) = _%.

2The restriction to negative total transfer arises natyialtifferent contexts. For example, if bonus

contracts are not legally enforceable, then the principay imave to commit to “burn” the difference
between a lump sum and the actual bonus (MacLeod, 2003; F20083%). In repeated games, players

can enforce cooperation only by switching to inefficienttommation paths.

3Player—i is the player who is nat

4In the single-period case, there is no efficiency gain by mgkj a function of playei’s own report,
and the optimal contract does not depengbon



The per-player efficiency loss is thys — p)d/(p— q); see Figure 1. The example

_(1-pyd
p—q
/\

0 __d
p—q

Figure 1: The one-period contract and efficiency loss.

captures a fundamental issue in team moral-hazard problsimse both(C,D) and
(D,C) lead to the same signal distribution, it is not possible tbvikich player has
deviated. As a result, there is no budget-balanced corttrattan enforcéC,C). In

the terminology of Rahman and Obara (2010), the deviatidd i® non-attributable

The negative paymert/(p — q) must be destroyed and cannot be transferred to the
other player. If player 1 simply pays playerd? (p — q) when player 2’s report i,
player 2 will always report..

When the contract lasts for multiple periods, the principah still use the one-
period contrac{w;(H),wi(L)) = (0,—d/(p—q)) to enforce(C,C) period by period.
The question is whether the principal can do better by usimgralinear contract. The
existing literature has largely focused on two polar cages:0 andp = 1. Our con-
tribution is to extend the analysis o+ 0,1. Before proceeding to our results, we first
briefly recount the two polar cases.

2.1 Caselp=0.

We will use the two-period case to illustrate the result ofé&\l) Milgrom, and Pearce
(1991) that linking has no value when the signal is public enfgctly correlated. We
derive a lower bound on the efficiency loss of a relaxed catitrg problem in which
the players must report their signals truthfully. Since aagtract that enforcel&C,C)
in the original contracting problem must also enfof€eC) in the relaxed problem, the
lower bound applies to the original contracting problem a#.w

Assume that the players must report truthfully. To ind@€eC) in both periods,
three incentive-compatibility constraints must be satsfnamely, the first period, the



second period after the players obseir/eand the second period after the players ob-
servel..> See Figure 2.

Figure 2: The two-period case.

Supposew? is a two-period contract that enforcé§,C) in both periods. Let
E [vviz\y(l),CC} denote the expected payment to plaiyeonditional on the first-period
signaly(1) and the second-period action profif@,C). Since both players obsert
the values ofv; (L(1),H(2)) andw; (L(1),L(2)) do not affect the players’ incentives in
the second period aftét.® As a result, enforcingC,C) in the second period aftét is
the same as enforcin@,C) in a single-period game. Hence,

E [W2|H,CC] < —(l—p)%. )

The incentive-compatibility constraint in period 1 recasrthat
(p—a) (E [Wf|H,CC] —E [wf|L,CC]) > d. 2)

Combining (1) and (2), we have

d
= [WaZIL,CC} <-(2-p p—q
and
d
P—q
Thus, the two-period per-player efficiency loss must be tgrethan twice the one-
period efficiency loss. In this case, the players cannot dieib#han enforcindC,C)

PE [WZ|H,CC| + (1- p)E [W?|L,CC| < —2(1—p)

5Since the signals are perfectly correlated, we just merntiercommon signal.
SLikewise, the values ofi; (H(1),H(2)) andw; (H(1),L(2)) have no effect on the players’ incentives

in the second period aftér.



period by period with two stage-game contracts. The argtroan be extended to
T > 2 by induction. The following observation is the key lessbthis example.

Observation 1. Incentives following different realizations of a publigsal must
be separately provided. As a result, the difference betweetotal payments following
two different realizations of a public signal in a short#tercontract imposes a lower
bound on the long-term efficiency loss.

In Section 4, we apply this insight to derive a lower bound loa long-term effi-
ciency loss for general stage games (Theorem 1). We the pinat the bound is tight
under a fairly weak condition (Theorem 2). It follows thats@dl is representative of
all inefficient long-term partnerships (Theorem 3).

2.2 Case2p=1.

Since the players may observe different signals, let us$tiaadL; to denote théd and
L signals observed by playerLety’ = (yi(1),...,yi(T)) denote thel -period profile
of playeri’s signal. Writey" for (y].y). For anyy', denote the number &f signals
that player—i observes iry" by f (L_i|y").

Consider a “linear” contradk’ that enforce¢C,C) period by period. For= 1,2

W (§7) =—(f(Luil§") =T (12— p—v)) (d/(p—a) +¢), 3)

wherey’ = (VI,@) denotes the players’ reports, ané@ndv are small positive con-
stants. The contract punishes playby (d/ (p—q) + €) for everyL signal that player
—i reports. Since playeis payment does not depend on his own reports, it is optimal to
report truthfully. Sincee > 0, the contract strictly enforcé€,C). However, it violates
the constraint that the total payment be non-positive. Wiagh players observe fewer
thanT (1— p—v) L signals, each player will receive a strictly positive paytne

To satisfy the non-positive-payment constraint, we trmﬁ at zero to obtain a
“truncated” contrac’, where

W (§") =—max(f (Lily") - T (1—p—v),0)(d/(p—q)+¢). (4)

UnderW!, playeri pays a penalty ofd/ (p—q) + €) for everyL signal that player-i
reports that is in excess &f(1— p— v). Note that¥| is no longer linear irf (L \VT).



Whether player will be punished for ah. signal that playeri observes in a certain pe-
riod now depends on how many otHesignals player-i observes during the contract.
Playeri’s incentives are thuknked across periods.

Compared to the linear contrai , the truncated contrad@’ does not “reward” the
players when the number bfsignals is below the threshold. The truncated incentive is

R(§") = —min(f (Li|y") ~T (1—p—v),0) (d/(p—q) +¢). 5)

The distortionary effect of the truncation is very small whe is large. If playeri
choose£ in every period (assuming that player also chooseg8), the average number
of L signals that playeri should observe i$ (1— p). In equilibrium playeli expects
player—i to report truthfully. By the law of large numbers, the prottibthat player
—i reports observing less than(1— p— v) L signals is exceedingly smdllSince the
signals are conditionally independent whee- 1, playeri cannot learn aboq»tfi from
his own signals. As a result, the distortionary effect reraaiery small throughout the
contract and is compensated by the small extra punishmedrence, it is optimal for
each player to choog&in every period.

The expected per-player per-period efficiency loss cauya?zins approximately

v(d/(p—0q)+e).

As T becomes largey ande can be chosen so that the per-player per-period efficiency
loss goes to zero.

Observation 2. When T is large, it is “normal” for a player i to observid — p) T
L signals during the contract. Instead of punishing playerfor every L, it suffices to
punish player—i when his long-term performance is worse than the mean.

2.3 Case3p+#0,1.

Case 2 is essentially the argument of Abreu, Milgrom, anddegd 991). Our approach
here follows more closely the review strategies of Rubinst£979), Rubinstein and
Yaari (1983), and Fong, Gossner, Horner, and Sannikovl(P(Mote that the truncated
contractW’ does not enforcéC,C) whenp # 1. For example, whep € (0,1), a

"If playeri choose® in some periods, the probability will be even lower.



playeri who has observed very felv signals in the early periods will infer from his
own signals that the probability thét(L_; |yT) is less thar{1— p— v)T is non-trivial
and, hence, may deviate in the remaining periods. Thisenfsx problem becomes
more severe as the correlation between the two playersalsigncreases. One may
therefore expect that linking would be less effectivepagets close to 0. It turns out
thatp = 0 is a special case. As long ps# 0, we can enforcéC,C) almost efficiently
by supplementingi” with a nexus of side payments between players.

So what is special aboywt = 0? When signal is public, any realization, no matter
how unlikely ex ante, becomes common knowledge among tlyers& For example, it
may be extremely unlikely that the public signaHsn every period. But if it happens,
it will still be common knowledge. This property holds onlyienp = 0. Whenp =1,
each player can learn nothing about playei’s signal from his own. As a result, when
T is large, each playerbelieves that it is extremely unlikely for the realized sggof
player —i to be different from the prior expectation. When# 0,1, it is no longer
true that player cannot learn about playeri’s signal. Yet, it remains the case that
whenT is large,anyrealized signal distribution that is different significlgrftom prior
expectation must be regarded as extremely unlikelgdopeplayer conditional on that
player’s private signals.

We formally state this result as a lemma. For any signal @rgfi) let f (yi,y_i |yT)
andf (yi|y") denote the numbers of timég,y_;) andy; occur iny", respectively. The
prior expectations of (y;,y_ily") andf (yi|y"), conditional on(C,C) being chosen in
every period, are

E[f(vi,y-ily")] = prob(y,y-i|(C,C))T; (6)
E[f(vly")] = prob(yi|(C,C)T. (7)

At the end of the contract, playérobservesf (Hily") and f (Lily"). His posterior
expectation about (y;,y_i|y") conditional ony is

E[f(yi,y-ily") Iy | = prob(yi,y-i|(C,C),¥) f (ily") . (8)

Let
Z (&) ={y" 3y [Fy-ily") —E[f (v,y-ily")]| > TE}

8For our purpose, the difference between common knowledgeammon belief is unimportant.
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denote the set of’ in which the occurrence of some outcome is different fronpttier
expectation byl . Similarly, let

ZT (&) ={y"13(vi,y=i) | T (iy=ily") —E[f (vi,y=ily") ¥ ]| > T&}

denote the set of' in which the occurrence of some outcome is different frony@ia
i's posterior expectation by¢. Note that the law of large numbers implies that for any
¢ > 0, conditional on anyiT, it is extremely unlikely thay™ e ZiT (¢) whenT is large.

Lemma 1 (Posteriors Determine Prior)n the Prisoners’ Dilemma example, when4
0, for any¢ > 0, there existg > 0 such that

ZT (&) CZ{(6)uZ3(c). (9)

Lemma 1 says that, whem= 0, if the distribution of signals in somg is different
from the prior, it must be different from the posterior exiagion of some player.
y') /T, as a probability distri-
bution, then the posterior distribution conditionalynis f (yi,y—ily") /f (yily"). By

Note that if we take the realized frequencié-
(6), (7) and (8), for anyf (yily") > 0, f (yi,y_ily") is equal to playei’s posterior ex-
pectation if and only if

f(yi,y-ily")
f(yilyT)

and f (yi,y,i |yT) is equal to the prior expectation if and only if

= prob(yi,y-i|(C,C),¥i),

f(yi,y=ily")

T = prob(y;,y-i|(C,C)).

Hence, Lemma 1 essentially says that the mapping from aéydport prior distribution
to the posterior distributions it generates is continucus@ne-to-oné. To see that the
mapping is one-to-one, note that the posterior distriloutonditional ony; = Hq, L1

pins down the relative likelihood dfy1,H>) and(y1,L2), while the posterior distribu-
tion conditional orH, pins down the relative frequency of the signal p&ig,H,) and

(L1,H2). These likelihood ratios jointly determine the prior distition. Note that this
argument applies as long as the signal distribution is cctedethat is, the probability

9The probability distribution has full support when: 0.
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of either (L1,Hy) or (Hy,Lp) is strictly positive. In Section 4, we use the concept of
self-evident event to prove a general version of Lemma 1.

We now introduce a contract that enfor¢€sC) whenp # 1. Start with the contract
W' in Case 2. The set 6f where playei’s incentives will be truncated under' is

BN (v)={9"|f(Li]y") < T(1-p-Vv)}.

If y* € B (v), then eitherf (H;,L_;|y") or f (Lj,L_i|y") must differ from the prior
expectation. It then follows from Lemma 1 that there ex¢sssich that

B (v) €21 () UZ] (<).

Starting with the truncated contragt’ in Case 2, we add a side-bet contratt=
(2,2}). Fori=1,2,

where

I ()A/T) _ { 1 ify'e ZF(C)’

0 otherwise.

Under the side-bet contract, each playacts as an “internal budget-breaker” that pays
an over-performance bonus to the other player wihen1. Recall thalR represents
the truncated incentives defined in (5). If playeeceivesR; from the side bet, then his
total incentives will be “untruncated”. Under this sidetbentract, player receivesR;
wheny' ¢ ZT(¢) and paysR_i wheny" € ZT(¢). The total payment of this side-bet
contract is always negative. By (9), when> 0, eitherl; or |_j must be equal to 1°
Hence, when playdrreceives a strictly positivi, (i.e.,l; = 0), player—i must pay for
it(i.e.,l_j=1).

We first show that whefl is large, it is optimal for player to chooseC in every
period if he expects playeri to play C in every period and report truthfully. The
Hoeffding inequality (Hoeffding, 1963) implies that if gleri playsC in every period
and reports truthfully, conditional camy y the probability that; = 1 (i.e.,y" € ZT(¢))

0ynder the current construction, the side-bet contract izam-sum, as it is possible thiaty" ) =
|_i(y") = 1. This feature is not crucial. The contract can be modifieith(extra notations) so that player
—i will pay the bonus only when playéwill receive it.

12



converges to zero exponentially Th As a result, in any perioduring the contract, a
playeri who has chose@ in all previous periods will believe that he will almost alyga
receiveR when R, > 0 but almost never paR_j whenR_; > 0 if he continues to
play C in the remaining periods. This implies thaliroughoutthe contract, player
believes that if he play€ in every period, he will receive a payment that is equal to
what he would receive under the linear contract, minus a term that converges to
zero exponentially iff . By contrast, if player deviates in any period, his payment will
be at mostequal to the payment he would receive un@ér(regardless of whether he
mis-reports his signals or not}.SinceWw' strictly enforces(C,C), playeri will still be
strictly better off playingC in every period wheff is large.

Since playei’s payment in the truncated contragt depends only on playeri’s
reports, playei’s report may affect his own payment only through;, I;, andl_;.
WhenT is large, a player who choose€ in every period and reports truthfully will
almost always receivi; whenR; > 0 and almost never need to pRy; whenR_; > 0.
Hence, the potential gain from lying is small and convergegero exponentially in
T.12 To induce truthful reporting, it is sufficient to add a thirneponent

.
g (') =¢ Zlog(prob@i (t)]% (1)) (10)
t=

to each player's payment. It is straightforward to verify that whefC,C) is chosen in
every period and playeri reports truthfully, any mis-reporting by playewill strictly
reducee .14 Because playéfs incentive to lie from the side bets is weak, the constant
& in (10) can be made very smaf.

Thus, wher is large,(C,C) can be enforced by a contract

Wy =W (V') +7 (¥7) +€ (7).

1The payment will be the same as that und@érif playeri receivesR, and does not need to p&y;.
This is the best case scenario for plaidf the deviations reduce his chance of receiviti@r increase

his chance of paying&_;, his payment will be strictly lower.
12The best playeircan achieve through lying is to increase the probabilityeskivingR; whenR; > 0
from almost one to one and reduce the probability of paRngwhenR_; > 0 from almost zero to zero.
I3Note that in the proof of Theorem 2, we start with a stage-geonéract that strictly induces truthful
reporting. Hence, this step is not needed there.
14The component' is an example of a scoring rule that induces a player to rdvsg@osterior belief.
15Sinceé is small, it will still be optimal for player to chooseC in every period.
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We have already shown that the efficiency loss of the trudczdetract is small. Since
& is very small, the efficiency loss due ¢ is very small. The efficiency loss due to
the side bets is also very small because, ex &it@ndR, are almost always equal to
zero when is large.

Observation 3. Whenp # 0, efficiency can be enhanced by players exchanging
over-performance bonuses. In a short-term contract, ngpime player pay another is
likely to perversely affect the incentives of the paying/gta Here, Lemma 1 implies
that the bonus can be assigned to be paid by a player who lslievequilibrium that
he will almost never have to pay. As a result, the distortfominimal.

Theorem 2 uses the argument in this section to show that tnecbestablished in
Theorem 1 is tight.

3 Model

3.1 Stage game

Consider a finite stage game endowed with a correlating devietN = {1,2,...,n}
denote a set of playerdy = A; x --- x A, a finite set of action profilesy € A(A)
a distribution overA, andg = (g1,.--,0n) : A — R" a profile of stage-game payoff
functions. In each period, the correlating device draws (a,...,a,) € A accord-
ing to n and privately recommends to each player. After learninga;, each player
i € N privately chooses; € A;. Playeri’s expected stage-game payoffgga), where
a=(a1,...,an). The players do not directly observe the stage-game paylofsead,
each player observes a signat. The signal profiley = (y1,...,Yn) is drawn from a
finite setY =Y; x --- x Y, according to a distributiop(-|a) € A(Y). At the end of the
stage game, each playieobservega;,y;). We will refer to the recommendation and
signal profile(a,y) as theoutcomeof the stage game.

To avoid extra notations we shall assume that all signalasseciated with distinct
posterior beliefs. All results go through without this asgtion, although some may
have to be rephrased to allow for the possibility of reduhdamals.

Assumption 1. For eachi € N, a€ A, andy;, ¥/ € Y;, p(y-ila,yi) # p(y-ilay)) for
somey_j € Y_j.

14



We impose no further restriction on the correlation streetiieyond Assumption
1. In general, the players’ signals may be correlated pfigh) may not have full
support. It is therefore possible that players observe patlkate and public signals.
For example, each playémay observe a two-dimensional signak= (y!,y?) with
yi € Y andy? € Y2. The first component is public ¥ = --- = Y, and for alla € A,
p(yla) > 0 only if y} = --- = yi. The game becomes one of public monitoring if the
second component is a null signal.

3.2 T-period contracting problem

In period O, a principal proposes a contract. After obsetire contract, the players
play the stage game fdr periods. At the end of period, the players report the private
signals observed, and the correlating device reports ttemmendations made during
theT periods. In addition to the stage-game payoffs, at the enldedf -period game,
each player receives a payment as stipulated by the cantvabile the correlating
device always reports honestly, players may lie.

For each variablg, we usex(t) to denote the periotlvalue ofx andxt = (x(1),...,X(t))
to denote the history of up to periodt. Hencea' = (a(1),...,a(T)) is the history of
recommendations. L§l = (%i(1),...,%(T)) denote thd -period signal-report of play-
eri andy" = (y],...,¥]) denote the signal-report profile. Pperiod contract consists
of nfunctionsw™ = (W], ..., W), where eachy] maps eacia’,y") € AT x YT into a
payment. The total payment must be weakly negative; i.e.,

le a,y)<o,v@,y)eA xYT.

Playeri’s total discounted payoff is

1-90 T t—1 T/a3T ol
15T (;5 gi(at)) +w @,y )>’

whered € (0,1) is a common discount factor for the players.

SinceN, A, andg are fixed in our analysis, we denote tfeperiod game by
r(n,T,5,w"). For playeri, a pure strategy consists of two components: an action
strategya;” that maps eaclfal,a 1,y 1) € UL, (A x A7t x Y1) into an action
a € A and a reporting strategy’ that maps eacka’,al.y’) € AT x AT x YT into a
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reporty’ € Y;T.1® A mixed strategyo;’ is a probability distribution over the set of pure
strategiega;’, p). Let =T denote the set of mixed strategies for plaiyer
Playeri’s expected payoff conditional oo™ = (o7 ,..., 01 ) is
1-9

1— 6T [;g 1g|( ()) iT(gT7y\T> GT]7

where the expectation is taken oy@",a’,y",y") with respect to the distribution in-

v (ohw) =

duced byo T, n, andp.

The contracting problem is to choos@ to enforce the correlated outcomehrough-
out the contract. A strategy is called obedient if it folloeeommendations in every
period and reports signals truthfully. Lef * = (a"*, p*) denote the obedient strate-
gy of playeri ando ™ = (alT*, e arT*). By the revelation principle, we can focus on
contracts that enforce the obedient strategies.

Definition 1. A contractw’ enforces for T periods ifa'* is a Nash equilibrium in
r(n,T,8,w"). Thatis, if for alli € N andg;” € 5T,

vi(a™w)) > (g, o w).

The enforcement is strict if the inequality is strict fgf that deviates from the recom-
mendations with positive probability. An outcomas (strictly) enforceable if it can be
(strictly) enforced by some'.

Because the total payment must be negative, enforcing astage-game Nash
equilibrium may come with a cost. The per-period efficiermysl of enforcing] with
whinl(n,T,5,w")is

W(r’7T767W =—- Zil 6T W| ~T7VT>|GT*]‘

Let # (n,T,d) be the set ofv" that enforces). The minimum per-period efficiency
loss to enforcey is

W*(n,T.8)= _min W(n,T,5,w").
(’7 ) WTGW(In,T,cS) (’7 W)

16As usual,a® denotes the null history 0 am denotes the set whose only elemenalis Similar
notations apply for signals.
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Our objective is to characterid®* (n, T, ) asT goes to infinity and goes to 1.
An important special case is whd@nh= 1. Write o for o' andw for w!. Let u
denote the distribution ovég, y) induced byn andp. For all(a,y) € AxY,

p@@y) = p(ylan(a).

With a slight abuse of notation, we also ysé denote the distribution @&, y) induced
by the obedient strategy profite*. Let % denote the distribution df, y) when player
i deviates tag;, while other players choos#*;. For any(a,y) € AxY,
@y = 3y oalaip) > p(yi, ¥-ilai, ai (&)) n(a).
(ai,pi) i:pi(&,0i(@).yi)=Yi
Definition 2. A deviating strategy; is undetectabléf @ = p.

The following result from Rahman (2012) provides a necgsaad sufficient con-
dition for stage-game enforceability.

Lemma 2 (Theorem 1, Rahman, 2012\n action profilen is enforceable for one
period if and only if, for all i€ N and all undetectable;,

> aiai,e) y gi(ai(@),ai)n (@< ) g@n(@.
(ai,0) acA acA

Obviously, if n cannot be enforced wheh = 1, then it cannot be enforced when
T > 1. Conversely, il can be enforced wheh = 1 byw, then it can be enforced for
anyT by applyingw period by period. Thus, Lemma 2 is also necessary and suificie
for the enforceability of) for T > 1.17

Sinced does not matter wheh = 1, we uséN(n,w) to denote the efficiency loss
of enforcingn with w, andW* (n) to denote the minimum efficiency loss of enforcing
n in a stage game. Since the principal can always choose tocenjdy means of a
series of stage-game contract,

W*(n,T,8) <W*(n).

We say that linking is valuable if the above inequality isctr
Before we proceed, a couple of comments are in order.

1’same for strict enforceability.
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(1) The assumption that the correlating device directhomemendsn is without
loss of generality. Consider a correlating device that seaath player a private message
and a contract that maps each message and signal-repoté poofiayments to the
players. If this correlating device and contract inducesaaiNequilibrium in whicy
is the equilibrium action profile, then, by the revelatiompiple, there exists in our set-
up a contractv that enforces) with the same efficiency loss as the original contf&ct.

(2) As is well known, Nash equilibrium imposes no restriotan players’ responses
off the equilibrium path. In our model, it is consistent witlash equilibrium for play-
ers who observe signals inconsistent with the equilibriwtioas to report honestly.
Theorem 1, which establishes a lower bound on efficiency, losstinues to hold if
the stronger notion of sequential equilibrium is used iadteFollowing Kandori and
Matsushima (1998), Theorem 2, which establishes the tggstiof the bound, can be
made consistent with sequential equilibrium by assumiagjttie support of the signal
distribution is invariant witha. Extending the result without invariant support would
require specifying and keeping track of the players’ divegdoeliefs (as well as their
beliefs about other players’ continuation strategiesrafine or multiple players ob-
serve inconsistent signals. We do not pursue this issuesip#per.

3.3 Self-evident events

As we saw in Section 2, the long-term efficiency of a partnerdiepends critically on
what the players know at the end of each period. Playerstsedire more complicated
in the general model. At the end of each period, each playé&servesd;,y;) and
forms beliefs about the full outcome profif@,y). Conditional onn being played in
every period, the outcom@, y) is distributed identically and independently according
to i in every period. Write sugj) for the support ofu. Let B denote playei’s
information partition of supfu). The element oP that containga,y) is denoted by
R(ay). Conditional on(@;,y;), playeri believes thata,y) belongs td?(a,y); that is,

R(@y) ={(@.,y)esuppp): (&.y)=(a.y)}.

Hence,(d,y) e R(a)y) ifand only if (&,y)) = (&, i)

18see Proposition 47.1 of Osborne and Rubinstein (1994).
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The vector(Py, ..., P,) describes the players’ knowledge structure whéschosen.
A subsetE of supf ) is called an event. What a player knows at a certain outcome
depends on what he observes at the outcome. Pildiyrows” eventE at (a,y) if

R@y cE. (11)

That playeii knowsE is itself an event that consists of &, y) where (11) is true. Thus,
we can talk about playgrknowing that player knowsE. An eventE is common belief
among the players &8.y) if every player knows, knows that everyone knows and
so on. An evenE is self-evident if it is common belief at eve(g, y) € E.

Self-evident events are closely related to (but more gérleaam) public signals.
Every realization of a public signal is self-evident coraitl onanystage-game strat-
egyl® But, a self-evident event may not be related to any publinaigand an event
may be self-evident conditional on one stage-game strdiaggot conditional on an-
other. In the following, when we say that an event is selfient, it is always with
respect to the equilibrium action profitg

A self-evident event is irreducible if none of its proper sets is self-evident. L&
denote the meet @P, ..., P) (i.e., the least common coarsening). It is well known that
any element oP is self-evident and irreducible (Chapter 5 of Osborne ankiifatein,
1994). In Section 2, we show that Lemma 1 holds if and only # 0. The crucial
difference betweep = 0 andp # 0 is thatP contains two elements;(Hy,H2)} and
{(L1,L2)} whenp =0, and only one{(H1,H>), (H1,L2), (L1,H2), (L1,L2) } whenp #
0.

4 Main Results

In Section 2 we saw a connection between long-term efficiamclyshort-term incen-
tives that vary across self-evident events. In a genergéesgame, incentives may vary
across self-evident events, as well as within self-evidgants.

Recall that the efficiency loss of enforcimgin a stage game witv is

W(n.w) =~ 3 Em(agio’]

1970 be precise, the set of outcomes consistent with a spee#ization of a public signal is self-
evident.
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Write w for a typical element oP. Let # () denote the set of stage-game contracts
that enforcen. For any stage-game contragtc #'(n), let E[w;(a,y)|0*, w] denote
playeri’s expected payment conditional ari andw, and let

n
wmax S arg max E [Wi (57 y) | 0*7 O)]
weP i
denote the element ¢ with the maximum expected total payment. We say that the
total incentives vary across and whay if

n

Z(E[Wi (A9)|0", Wma — E Wi (&, Y)|0, w]) > 0.

The total incentives that vary across self-evident eventieucontractv are defined as

L(n,w) = Zp(i(E[Wi(ﬁ,?)IU*,wmax]—E[Wi(ﬁ,?)\g*,w])>u(w)

= -iE[Wi (a,y) |07, Wnax —.iE[Wi(aﬁA/)‘o-*]'

In Section 2, whemp = 0, P has two elements{(H1,H>)} and{(L1,L2)}, andL(n,w)
is equal to the difference in total payments between thesestements. Whep # 0,
P is a singleton and, henck(n,w) is zero for allw.

It is straightforward to see that

W(n,w)=L(n,w)— iE (Wi (&,9) |07, Wmax] - (12)

In the following, we will refer toL(n,w) and—S ; E [w; (&) |0*, wmax as the self-
evident efficiency loss and non-self-evident efficiencyslobw, respectively.
Let
L*(n)= min L(n,w 13
(n) v (n,w) (13)
denote the minimum self-evident efficiency loss amang 7 (n).
Theorem 1. For any enforceable, W* (n,T,8) > L*(n) forany T> 1andd < 1.

Proof. See Appendix A. O
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Theorem 1 is a generalization of Case 1 of Section 2. It cdsribe long-term
efficiency of a partnership to the short-term self-eviddfitiency loss.

As in Case 1, the crucial observation is that for anyy’ € P, the incentives aftew
and the incentives after’ are completely separated, as players followingssign zero
probability to the first-period outcom@(1),y(1)) not belonging tow. As a conse-
quence, enforcing in the remainind T — 1) periods aftekw is equivalent to enforcing
n ina(T — 1)-period contracting game. The only complication here i$ ithéhis new
contracting game, the players observe an additional aimgldevice that recommends
(&,Y;) to each player according to the distributiop (-|w). However, as we explained
in Section 3, having an extra correlating device does notavgefficiency. Hence, the
efficiency loss for enforcing) in the continuation game aftes would be the same as
enforcingn in a(T — 1)-period contracting game. This, together with the fact trst
w' € # (n,T,8) must enforce) in the first period, implies Theorem 1.

Recall thatw*(n) is the minimum efficiency loss wheh = 1. SinceL(n,w) <
W(n,w) for everyw € #'(n),

L*(n) <W*(n). (14)

In generalL*(n) could be strictly lower thalV*(n). A special case is whem is pure
and the signal structure is public. In this case, e@y) in the support ofu is self-
evident. Letw* be a contract that minimizdgn,w) among allw € #'(n). Lety* be
the signal profile that maximizes the total paymgfit, wi (a,y). We have

lek (ay’) — ZlE “(a,y)|o"].

Define a new contraat’ by subtracting a constanf* (a,y*) from the payment of every
playeri. It is obvious thatw also enforces). Furthermore, for everya,y) in the

ZW Z wi(&y) —wi(ay)) <0

Hence, the contraet’ also belongs t&# (n). It follows that

support ofu,

ZlE (@ y)|o*] >W*(n).
This, together with (14), implies the following corollary.
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Corollary 1. When an enforceablg is pure and the signal structure is public, linking
has no value, and the minimum long-term efficiency loss catbeved by a series of
short-term contracts.

The converse of Theorem 1 holds under an additional comdifollowing Black-
well (1953), we can think of a player’s action as an experit@generate information
about the actions and signals of the other players. One iexpetis more informative
than another if the latter can be expressed as a garblingdbtimer. Letn; denote the
marginal distribution of playei's action under). Lety € A(A;) denote a mixed action
for playeri, wherey; (g) is the probability of choosing,;.

Definition 3. For anyy,y € A(A), v is more informative thary at the recommen-
dationd; esupgni) if for any (a,yi) € A x Y;, there exists a distributioly ) (+,-) €
A(A xY;) such that for all@_;,y_i) € A_j x Y_j and all(&],y) € A XY,

( )Z Aay (@Y1 (@) ply-i,vilai,a)n(@ =V (&) p(y-i,yilai,&) n(a).
ai,Yi) €A XY,
(15)

An actiony; is strictly more informative thag if y is more informative thag but not
vice versa.

Equation (15) requires that for eveay; with n(g,a_j) > 0 (assuming that the
other players are following the recommendatiopshust lead to the same distribution
of y_j thaty induces, and must be more informative thann the Blackwell sense.
Since{A@.y) ()@, Yi) € Ai x Y} can be interpreted as a mixed reporting strategy, an
equivalent definition is to say thgtis more informative thary if playeri can choose
y and mis-repory; to mimic the distribution of undery.

Definition 4. An action profilen satisfies the no-free-information condition if

;w(a) > d@ain@< 3 g9@n(@
g A ajeA; a

€A
for anyi € N, & € supp(ni), andy strictly more informative thag; at&;.

In words, n satisfies the no-free-information condition if any dewatthat gener-
ates more information for a player must strictly lower hisgg-game payoff. Under a
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non-stationary contract, players have incentives to dev@actions that generate more
information about the private information of the other @es; For example, under the
truncated contract in Case 2 of Section 2, a player will galreilearns whether the

truncation is likely to occur. The no-free-information cliiion ensures that no player
can do so undetectably without paying a cost.

Theorem 2. If n is enforceable and satisfies the no-free-information ciolj then for
any e > 0, there exists Jsuch that, for any T> Toandd > 1—-T~2, W*(n,T,8) <
L*(n)+e&.

Theorem 2 says that the bound established in Theorem 1 tstfgdnn satisfies the
no-free-information condition. Note that the conditioredaot impose a lower bound
on the cost of acquiring more information. Asbecomes large, the potential gain from
having more information can be made arbitrarily small (lattzero).

Theorem 2 implies tha can be enforced almost efficiently when(n) = 0. The
following corollary follows from the fact that*(n) = 0 whenn is pure andP is a
singleton.

Corollary 2. An enforceable pure-action profile that satisfies the ne-fréormation
condition can be enforced almost efficiently in the long téris a singleton.

In the literature of repeated games with private monitgrthg full support of the
signal distribution is often invoked as a simplifying asgfion. In fact, since full
support implies thaP is a singleton, the assumption, by itself, implies the akmos
efficient enforcement of any enforceable pure-action prdfibt satisfies the no-free-
information condition.

We prove Theorem 2 by constructing a long-term contractapptoaches the effi-
ciency bound in the limit. The details of the proof are pr@ddn Appendix C. Below
we outline the main steps of the construction. The contsaatgeneral version of the
one in Case 3 of Section 2. In Case 3 we start with a stage-ganteact that strictly
enforces the desired actiofS,C) plus a scoring rule that induces truthful reporting.
The no-free-information condition ensures that theretexsstage-game contract such
that “almost all” deviations can be strictly deterred.
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Definition 5 (Almost-strict enforceability) A contractw almost strictly enforceg if,
for any playeri and any strategy; € 2,

vi(o*w) > Vi (01,07 W)

with the inequality strict for any detectabtg. An action profile is almost-strictly en-
forceable if it can be enforced almost strictly by some

Lemma 3. An enforceable action profile that satisfies the no-freerimfation condition
is almost-strictly enforceable.

Lemma 3 follows from the theory of alternatives. A formal pfcs provided in an
online appendiX® Note that if can be enforced by botlr andw/, the latter almost
strictly, then any linear combination efandw’ also enforceg almost strictly. Hence,
the no-free-information condition implies that for aay- 0, there exists a stage-game
contractw* that enforces) almost strictly with

L(n,w") <L*(n)+e. (16)

Underw*, any deviation (in action or reporting) that is detectablgenerates more
information is strictly deterred! While there may exist non-detectable deviating ac-
tions that generate the same stage-game payoff and arecamnative as the obedient
strategy, a player will not strictly gain from choosing suhieviating action in any
period2223

The stage-game contrast can be decomposed into two components:

Wi (&) = Wia (&) +Wp(&y), 7)

20The converse of Lemma 3 is false as almost-strict enfortisathdes not rule out pure undetectable
deviations that are strictly more informative than the dbetistrategy. As a result, Theorem 2 does not
hold if the no-free-information condition is replaced wahmost-strict enforceability. We provide an

example of this in an online Appendix.
21Since strict enforceability rules out any profitable deviafrom the recommendation, it implies the

no-free-information condition. The no-free-informaticondition is weaker than strict enforceability.
22Such deviation will result in the same distribution of outws in the current period and does not

generate information that allows the player to deviate fably in future periods.
23Because of the possibility of such actions, the combinatibrenforceability and the no-free-

information condition is weaker than strict enforceafilit
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where
Wa@y) = w(ay)-wp@ay)

wWp(@y) = EW (&@.Y)|0",P@Ey)]-EW (&.Y)|0", tna -

It is straightforward to verify that
EW,@ylo’w] = EW (4.7)|0" wmax], ViEN,VweP;,  (18)
3 ElWs@glo] = Linw) (19)

Intuitively, wi, captures incentives that vary across self-evident eveitiite w;', cap-
tures incentives that vary within self-evident events.

From Theorem 1, we know that the loss associated with thees@lent component,
W', cannot be eliminated by linking. We prove Theorem 2 by shgwhat the loss
associated with the self-evident compone#gt,, can be reduced by linking. As in
Case 3 of Section 2, we replace fheperiod version of , with the combination of a
truncated contract and a set of side-bet contracts. To esefticiency loss, the truncated
contract punishes playeonly when theT -period value ofyf, falls below aT -period
performance standard. The side-bet contracts make upéddrdhcation by ensuring
that a player who consistently over-performs is also likelyeceive a bonus from the
other players.

The key to ensure that the side bets do not have a perverseaifthe incentives of
the paying players is the following general version of Lentmhat applies to all stage
games. Consider an outside observer who observes at thef eadto period which
element ofP has occurred. With a slight abuse of terminology, we will toaue to
refer to the expectation of this outside observer as thetpend the expectations of
the players conditional on their private information the@sSperiors.” For any outcome
history (a7,y") and stage-game outconi&y), let f(a,y|a™,y"), f(&,yi|a’.y"), and
f(P(ay))|a’,y") denote, respectively, the numbers of occurrenceQof), (&,y:),
andP(ay) in (a7,y"). For any(d,y), the prior expectation of(&,y|a",y") is

Eo[f(@yd.y")] =pu@yP@Ey)f(P@ya.y"),

while playeri’s posterior expectation of(a,y|a",y") is
E[f@aya',y)] =p@yay)f@yla,y).
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For anyé > 0, let
ZT(&)={(@".y") 3@y esupp): |f(@ya.y")-E[f@ya.y)]|>&T}

denote the set of histories in which the frequency of someawue is different from the
prior expectation by T. Similarly, let

ZT (&) ={@",y") 3@y esuprp): |f@ya,y")-E[f@ya y)]|>&T}

denote the set of histories in which the frequency of someame is different from
playeri’s posterior expectation b§T.

Lemma 4 (Posteriors Determine PriorJor any 1 > 0, there exists > 0 such that
forany T and anya',y") € supgp)7, if (a",y") € ZT (1), then(@,y") € ZT (¢) for
some player i.

Proof. See Appendix B. O

In words, Lemma 4 says that when the frequencies of realiggmbmes are different
from the expected frequencies conditional on informatieet is self-evident among
players, they must also be different from the expected &aqies conditional of the
private information of some playéf. As in Case 3 of Section 2, using Lemma 4, we
can construct side-bet contracts as follows.

When a playei consistently over-performs, the frequencies of realizet@mes
must be different from the “prior” expected frequencies. IBymma 4, there exists a
playerj such that they are also different frojis “posterior” expected frequencies. In
the side-bet contracts, playgis asked to pay a bonus to playef his additional bonus
makes up for the truncated incentives.

By the law of large numbers, conditional on ayjy, it is extremely unlikely that
y' € ZT (¢) whenT is large. That is, playerbelieves that he will almost never have to

24_emma 4 is closely related to a result in Samet (1998) thawshibat in an incomplete information
games, if the meet of the players’ information partitiona &@ngleton, then there is at most one common
prior that can generate the posterior beliefs. Samet (1988 this result to show that when a common
prior exists, the players’ higher-order beliefs about aarydom variable will converge to the prior expec-
tation of the random variable. Our innovation is to explbi tontinuityof the mapping from the prior
to posteriors to derive implications on the players’ pastegxpectations when they repeatedly observe
the realization of a random variable.
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pay the bonus and he will almost sure to receive a bonus wheeduds one. The side
bets, therefore, do not create a perverse effect on thetiesmof the paying players.

5 Long-Term Efficiency Loss

Theorems 1 and 2 show that the long-term efficiency of a pestiye depends on a
simple criterion; namely, whether incentives need to varpss self-evident events to
enforce the desired action in a stage game. A partnershiipavihefficient if there are
some deviations that can only be deterred by incentivesvidugt across self-evident
events; for example, a deviationbin Case 1 of Section 2.

More generally, deviations that satisfy the following twoperties can be deterred
only with incentives that vary across the self-evident ¢éseRirst, a deviating strategy
profile (o1, ...,0n) is calledunattributableif each unilateral deviatiow; leads to the
same distribution of outcomes; that is,

Mo — = 1O,

Second, a deviatiog; is non-detectable within self-evident eveifiisdoes not change

the distribution of(a,y) conditional on any member iR. The set of detectable deviat-
ing strategy profiles that are both unattributable and neteatable within self-evident
events is

Qn)={oezjn™=--=n"cco({u(|w) |weP})/{u}t}.

For anyag;, let
dio)= > aiai,p) Yy (9@, ai(@)—g(@)n @)
(ai,pi) acA
denote player's gain from the deviatiomw;. Write | (0i) = maxyep % (w) /U (w).
The following theorem characterizé$ (n) in terms of the primitives of the stage
game.

Theorem 3. For any enforceable,
max(37_,d(a1),0)
| (O’l) -1

L*(n)=  sup
(01,-..,0n)€Q(N)

if Q(n) is nonempty. Otherwise;[n) = 0.
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Proof. See Appendix D. O

Intuitively, since(o1,...,0n) € Q(n) is unattributable, every player must be pun-
ished, and the total punishment must be greater ytiand (i), the total deviating gain.
The resulting efficiency loss is equal to the total deviatyagh multiplied by a factor
that measures the difference betweghandu. For example, in Case 1 of Section 2,
d(D)=dandl (D)= (1-q)/(1—p). Hence,

52,d(D) _2(1-p)d
(D) -1 pP—q
WhenQ(n) contains multiple deviating strategy profiles, Theoremy&dhatL* (n) is

entirely determined by the member@in) that is the hardest to deter.
An immediate corollary of Theorem 3 is that(n) = 0 whenQ(n) is empty.

Corollary 3. For any enforceableg, L* (n) = 0if for any player i€ N, each deviating
strategyo; € %/ {o" } satisfies one of the following conditions:

1. There exist$a,y) such thatn“ (a,y) > 0andu (a,y) =0.
2. There existso € P such thatt® (-|w) # U (-|w).

3. There exists a playerd N such that there is no;j with % = n9.

Q(n) is empty if every deviation satisfies one of the followingetarconditions:
first, it may result in an outcome outside of the suppomtip§econd, it may change the
distribution of (a,y) conditional on somev € P; third, it is attributable. The first type
of deviation can be deterred costlessly by a contract thaispes all players severely
when an out-of-suppoifa,y) occurs. The second type can be deterred by a contract
whose total expected payment is constant across membEersTdfe third type can be
deterred by a budget-balance contract (Rahman and Obdr@).20

The literature on repeated games with private monitorirdy @mmunication can
be divided into two strands. One strand applies the linkdegito enhance efficiency.
Another strand (Fudenberg, Levine, and Maskin, 1994; Karsshal Matsushima, 1998;
Rahman and Obara, 2010) identifies conditions that ensatettt desired actions can
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be enforced by a budget-balanced contract. Theorem 3 hgeith Theorem 2, im-
plies that an outcome can be enforced almost efficientlyeridhg-term if every devi-
ating strategy can be deterreiherby a contract that is budget-balanced or whose total
expected payment is constant across self-evident evemeeréms 1 and 3 connect the
efficiency results in the repeated-game literature withitledficiency result of Abreu,
Milgrom, and Pearce (1991). They imply that the two appreadh the repeated-game
literature are, in fact, the only approaches to achieve-tenq efficiency.

5.1 Changing information structure

Theorem 3 illustrates how a mechanism designer may implavng-term efficiency
by changing the information structure. In the following, @ensider two modifications
to Case 1 of Section 2.

Example 1. Suppose, in addition to the public sigryat {H,L}, each player also
observes a private signal € {h;,li}. The distribution of the private signals has full
support conditional oty and (C,C). The meet of the players’ information partitions
(conditional on(C,C)) is therefore equal to

P: {(H,hl,hz),(H,h1,|2),(H,|1,h2),(H,|1,|2)},
{(L,hy,h2),(L,hg,12), (L, 11,h2), (L, 11,12)}.

Let p(z,2|a,y) denote the conditional probability ¢f1,z,). Theorem 3 implies that
if, for somey € {H,L},

p(-[CCY) #p(:IDC,Y) =p(:[CD)Y),

thenL*(C,C) = 0. By contrast, if for ally € {H,L},

p(:|CC,y) = p(:|DC,y) = p(-|CD,y),

thenL*(C,C) = 2(1—-p)d/(p—q). Intuitively, adding the private signals improves
efficiency only when the signals are informative about tlayeis’ actionsonditional
on the public signal.

Example 2. Instead of adding extra signals, the players may alter ttoermation
structure by changing actions. Suppose that, insted@ @), the players implement
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the correlated strategy profilgewhere
nC,C)=1-¢;n(C,D)=n(D,C) =0.5¢.

Whene is small,ij is close to the pure-strategy profil€,C). Yet, the support of the
distribution of the action-signal profiles undgis very different from the support under
(C,C). Now eachR, consists of four elements. In particular,

P, : {CCH,CDH},{CCLCDL},{DCH},{DCL}
P, : {CCH,DCH},{CCLDCL},{CDH},{CDL},

and the meet is
P: {CCH,CDH,DCH},{CCL CDL,DCL}.

It is straightforward to see thaf is enforceabl@® Let a;” denote the strategy of
choosingx whenC is recommended angwhenD is recommended. Each player has
four pure action strategiest®P, aPP, aC, andaPC. In Table 3, each row gives the
probabilities of outcomes with ad signal under a different pure strategy of player 1
(assuming that player 2 plags ).

CCH DCH CDH

asP (1-¢e)p 05eq 0.5eq
aPP (1-¢e)q 05eq 0.5er
at® (1-¢)p 05ep 0.5¢q
aP© (1-&)g 0.5ep 0.5er

Table 3: The probability for each outcome with ldrsignal.

Notice that the ratio of the relative probability GCH over DCH is strictly higher
when player 1 follows the recommendation and pIaﬁjQ. Intuitively, the recommen-
dationDC serves as a “benchmark” for player 1. Given that player 2 msngC,
player 1 choosind® minimizes the probability oH. If player 1 deviates t® when
told to chooseC, he must lower the relative probability &CH over DCH. Hence,
every deviation is detectable with respect to the self-@vigvenf CCH,CDH,DCH}.

25Action D is enforceable because it is a best responge to
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Theorem 3 implies thdt* (i) = 0. Since any unilateral deviation fromis detectable,
1 satisfies the no-free-information condition. Hence, bydrben 2,7 can be enforced
almost efficiently in the long term. The idea behind the exi@napplies generally. We
prove the following theorem in an online Appendix.

Theorem 4. For any strictly enforceablg and anye > 0, there exists an enforceable
correlated action profil@ that satisfies the no-free-information conditiomxgca |1 (2) —
n(a) <e, and () = 0.

Thus, even whem cannot be enforced efficiently in the long term, there is gkva
a correlated action profile close to it that can be enforcetbat efficiently. The only
restriction is that) can be strictly enforceéf

The idea of using correlated strategies to enhance effigcieomes from Rahman
(2014). As in our case, players in Rahman (2014) are als@tgcecommended to
deviate secretly. These deviations serve as “secret tigtsprevent each player from
learning his own punishment. By contrast, in our method dihgations from efficient
actions serve as benchmarks that ensure that each playershment is not learned
by other players. Rahman (2014)’s method requires that an outconceitionally
identifiable Our construction, by contrast, applies to all strictlyaoéable outcomes.

6 Relation to the Repeated Game Literature

In a seminal paper, Abreu, Milgrom, and Pearce (1991) detrateshe importance of
the timing of information to the efficiency of long-term paetships. They consider two
scenarios that correspond to Cases 1 and 2 in Section 2. frghecenario, players
observe a public signal at the end of each period. In thisladgag has no value. In the
second scenario, players observe signals in the preVigesiods at the end of eveily
periods. WherT becomes large, there exists an almost-efficient equiliviruwhich
incentives are linked across periods to economize on theo€aaperfect monitoring.

26Theorem 4 does not hold if merely satisfies the no-free-information condition butas strictly
enforceable. The strict enforceability pf together with the fact thaf is close tan, ensures that under
no player can deviate undetectably without strictly redgdiis stage-game payoff when recommended
to choose an action in the supportrpf
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Subsequent research applies the second result of Abregrdvtil and Pearce (1991)
to repeated games with private monitoring and communicaiighile players observe
private signals at the end of every period in a repeated gdmg,may delay the ar-
rival of information by communicating infrequently. Thelgmproblem is that players
may update their beliefs about other players’ signals oro#ses of their own. Compte
(1998) finesses this problem by assuming that signals arditcmmally independent.
Obara (2009) considers imperfectly correlated signalsidedtifies a necessary and
sufficient condition on the signal distribution that ensutke existence of a perfor-
mance measure that the players cannot learn from their qynalsi. Rahman (2014)
identifies a similar condition when correlated strategresaiowed.

This paper uses the notion of a self-evident event to garerthle insights of Abreu,
Milgrom, and Pearce (1991). Working withTaperiod contracting problem allows us to
focus on the mechanism of linking and abstract away from tbkelpm of implementing
transfers through continuation strategies. Theorem Inestéhe first result of Abreu,
Milgrom, and Pearce (1991). Theorem 2 extends the seconlt eé\breu, Milgrom,
and Pearce (1991). Taken together, the two theorems dedwib the effectiveness of
linking is limited by the information that becomes self-@smt at the end of each period.

The proof of Theorem 2, which corresponds to Case 3 in Se@jaxploits the
differential beliefs between players. Fong, Gossnerpdijrand Sannikov (2011), in a
repeated Prisoners’ Dilemma similar to the example in 8@ use the fact that each
player expects the other player to observe fewer eXcegmals than he does to support
an approximately efficient equilibrium. Our approach canieeed as a generalization
of their result. Since our approach does not depend on @ayarlearning their own
payoffs, it is more general than Compte (1998), Obara (2083) Rahman (2014)
(which correspond to Case 2 in Section 2). In our earlier vicitkn and Zhang (2016),
we consider a repeated game in which each player’s privgteakis his own stage-
game payoff and the distribution of stage-game payoffs hlhsdpport. It shows that
any strictly efficient action profile can be enforced almdftiently using bilateral side
payments. Theorem 2 clarifies the logic behind Chan and zZf20i6). It does not
impose restrictions on the monitoring structure and appiteall enforceable action
profiles that satisfy the no-free-information conditiom tWwo recent papers, Sugaya
(2017a,b) derives upper and lower bounds in equilibriumoffayin repeated games

32



with private monitoring and correlated strategies. Sufgayeethod always requires a
correlating device, while ours requires one only when thteaue is correlated.

7 Conclusion

Players in a long-term relationship can reduce incentiviscby linking incentives
across periods, but the value of linking is limited by theommfation the players obtain
during the course of the relationship. We show that the lemgr per-period efficiency
loss in enforcing an action profile is bounded from below by ithcentive cost that
becomes self-evident at the end of each period, and the bisuight when players
cannot obtain free information undetectably.

A Proof of Theorem 1

By definition,W*(n) > L*(n). Hence, Theorem 1 holds far= 1. Suppose the theo-
rem holds fofT — 1. Consider thd -period case.

Leta%T andy%" denote, respectively, the value@f andy’ from period 2 through
T. Fixw' € #(n,T,d). For each and each{@(1),y(1)) € AxY, let

T
wi(a(1),9(1)) = wi (a(1),87,9(1),5°") rLu(ﬁ(t%Wt))
(@1 y2T) t=
denote the expected valuewf conditional on(a(1),¥(1)) (assuming that players fol-
low the equilibrium strategy). Sinoa™ enforcesn for T periods,w = (wx,..., W)

must enforce) in the first period. Henceay € #'(n).
For each, each(a?T,§>T) and eachw € P, let

w @TLPENY = S W @9 pEl), i) w)
@).yd)ew
denote the value off as a function of(&T,§>T), conditional on(a(1),¥(1)) € w
(assuming that players follow the equilibrium strategy)nc8 w is self-evident, the
continuation game followingu can be treated as(@ — 1)-period game with an extra

T

randomization devicg (-|w), and the contradi—*w' ~1® must enforcey in this game.
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By the revelation principle, ifj can be enforced by a contract and some correlating
device, it can be enforced with the same efficiency loss byreelating device that
directly recommendsg. Hence, having an extra randomization device does not eéehan
efficiency. By the supposition that Theorem 1 holds(fbr 1), the expected efficiency
loss of the contracd w1 which is equal to

~57 3 W(ED) ) (3D 5] ).

5T,
must be greater thaty®—L*(n)). Let

n

Wmax € argmaxy E [wi (a(1),¥(1)) |0

*

7w]
It follows that
DL CICRUTIS D SRC AR EOCEINED

>L*(n) - > wi(a(1),¥(1)H(aL), ¥(1)| wmax)
(1) () € max

The first inequality follows from the fact thate 7/ (n).

B Proof of Lemma 4

We will prove the contrapositive: for any> 0, there existg > 0 such that for all
@,y") esupdp)T, if (@',y") ¢ Z' (¢) for each playet, then(@",y") ¢ Z7(1).
Fix a',y" ande > 0. Suppose that for each playeand eacha,y),

[f(@yla’,y") —u@yla,y)f@,ya,y")| <eT. (20)

Since the game is finite, there is some conskasuch that any@,y') esupdu)
is reachable from anya”,y”’) € P(d,y) in less thanK steps. That is, there exists
a sequencéal,yl), (82,y?), ..., (a,y¥) and a sequench,io,...,ix_1 such that (i)
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@, yh) = (@,y) and(a, y¥) = (@",y"), (i) k< K, (iii) (a85,y®%) € P(@,y) for eachs<k
and (iv) for anys=1,... k— 1 (&,y%),(a8,yt1) € P (8%y°) (see, e.g., Aumann,
1976; Geanakoplos, 19935.

Let co = Min(zy) csuppp) H(& YIP(8,y)). Substituting@®, y°) for (&,y) andis for i in
(20) and dividing both sides hy(a%,y®|P (&% y®)), we have

f(as,ys‘aT,yT) . f(éSIS7y|ss|aT7yT) < eT <£
pEeyeP(@,y°)  u(ELYEIP(8Y%) |~ n(@yP(@,y)) ~ co

Then, by (21) and property (iv), for aryy< k— 1,

f(a,y%a’,y") f@Ehyar,yh
@ P @) u(as+1,ys+1|P<as+1,ys+1>>‘
f@ylayh)  fERay)

(@, y|P(a%y%))  u(&, Y|P (@ y9))
f@+tyta’,y") fEhyta,yn
RE P L) Ly @y )

- Co
Applying (22) repeatedly, we have

(21)

;

K (22)

EYES) _ tEE ) | T
HEYPEY) @ YPEY)|T @

If follows that

aLy'ay’) > f(P@E.y)@.y)u@.yP@.y)), (23)

f<€7y‘aT7yT) = ZKET
a5 5 - ( (a y’) | a T) :
H@.yP@.y)) o
Note that (23) would apply to al&’,y") € P(a,y’). But this is impossible as

f@y'@.y’) = f(P@Ey)a.y")

@yeP@.y)
= 3 u@Y'P@Ey)I(P@EY)EY).
@.yfeP@.y)

2Recall that(@,y)) = (&,yi) forall (&,y) € R (ay).
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Thus, if (20) holds for all and(a,y), then for all(&,y')

f(@,y[a .y — f (P(E.Y) &y u@,yIP(a,y)) < RETHEYIP@E.Y))

Co
2KeT
< :
Co
(24)
By similar logic,
(@18~ f (P(E.Y) @Y ) E.YIP@E.Y)) < 2L, (25)

Combining (24) and (25), we have that for a@/f ,y" ), if (20) holds for alli and (3, y),
then for all(a,y)

(@I (P (E.Y)&75T) HE Y IP(E.Y))] < T

The contrapositive of the lemma can be obtained by setting cy/2K.

C Proof of Theorem 2

We prove Theorem 2 in two steps. In Step 1, we constrdcperiod contractv™ **. In
Step 2, we show that™** enforces) and achieves the efficiency boubt{n) + &.

C.1 Step 1. Constructing theT -period contract w'**.

Recall tha(w; ,, W) is the decomposition of; in (17). Letw;, w5, andw* denote

the T-period versions ofv/,, Wi, andw;, respectively. That is, for alle N and all
@.y",

W@ T — iat—lwiia@a),y%t»
t=
:

W@,y = Zlét‘lwiib(é(t),ﬂw)
t=

WHEST) =S 8 (80).9(0)).

t=
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The actionn can be enforced by a contract that pa\xfg +WI5‘ to each player. To
prove Theorem 2, we show thwi.fg can be replaced by a truncated contract similar to
the one in Case 3 of Section 2. Fix some smalt 0. Define

R*@.y",k) = max(O,w3(@.y") —EW@".y")|c"]—kT);
R (@.y",k) = min(0,w T*( a'.y") —Em;@",y") o] - kT).

Intuitively, E[wz(&",§"")|0T*] + kT can be taken as a long-term performance stan-
dard, andR" andR~ measure, respectively, the extent of over- and under-pesoce
with respect to the standard.

Let

B (k)={(@",y") e AT xYTIR"(@",y",k) >0}
denote the set o(é’T,VT) where playel over-performs. By (18), the expected value
of WI; is constant acrosB. Hence, for player to over-perform, the distribution of
outcomes must deviate from the distribution of outcomeslitmmal on the distribution

of w € P. It then follows from Lemma 4 that anfg",y" ) € B (k) must deviate from
the posterior expectation of some player. Formally, thergt® > 0 such that

BI (k) € UjenZ] (§). (26)

(Recall thatz" (€), defined in Section 4, is the set (d',y") that deviates from the
posterior expectation of playeby T.)
Define a new contraat™ **. For all (a",y"), set

w (@97, k) =R (@9 ,k)+w (@ ,9")

+|RF@ .Y,k (1-1@ ¥ ,K)) ;Fﬁ gL L@y LK) |, (27)
where

0 otherwise.

<>{ g

Underw'**, playeri receives the self-evident componwiTg in full, and pays an under-
performance penaltyX") whenwzg falls below the performance standard. In addition,
he receives an over-performance bonus m@ is above the performance standard
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andl; = 0, and pays an over-performance bonus to each pljayeenWT* is above the
performance standard ahd= 1.
The total payment is negative for 4&,y" ). By definition, for all(aT,y"),
3, (R 04w (6757 <0
i=
The sum of the third component inside the square bracke#inigalso negative, as, by
(26), for any player and any(a",y") € B (k), I; (a",y",k) = 1 for some playej.
Rearranging the terms on the right-hand side of (27), we aéte w

w @,y k) =wr@,y ) —Ew @’ y")o" —kT- @@,y k), (28)

where
CURUNY ZR+ YL K@, K)

measures the distortion in mcentlves.

C.2 Step 2. Showing thawv™** enforcesn and achieves the efficien-
cy boundL*(n) +¢.

We say that a pure-action strategyis equally informative taa;* if for eachg; that
may be recommended with strictly positive probability ungethere is a one-to-one
mappingxs - Yi — Y such that for anya_j,y_j) € A_j x Y_j,

P(yi,y-ilai (&),a) = p(xa (),y-ild).

We say that a pure stage-game strat(agiypi) is a duplicate for(a;", p") if a; is as
informative asa;” andp; (&, oi (&), -) = Xa :

Note that if som€ai, pj) is not a duplicate ofa;*, p"), then either it is detectable
or a; is strictly more informative than;". The number of pure stage-game strategies is
finite. Sincew;" is almost strict and satisfies the no-free-information condition, there
existsAg > 0 such that for all non-duplicate;, pi),

Vi(O" W) = V(07 ai, i W) > Ao. (29)

Because) is enforceable, any duplicate action strategy must gemeariawer stage-
game payoff for playerthana;". Playeri, therefore, will receive a higher payoff if he
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replaces any duplicate action strategyin some period with a;* and then, in the
reporting stage, reports the peribg@ignal truthfully. Hence, to prove Theorem 2, it
suffices to show that any deviation to a non-duplicate siyatell make a player strictly
worse off.

If g deviates fromg;"*, there must be a first time a deviation occurs. There are two
types of first-time non-duplicate deviations. First, a plagnay choose an action that is
not equally informative tax;" after some history. Alternatively, the player may follow
the recommendations in all periods but lie about the signal of a particular period at
the end.

We first consider the first type of deviations. Lt&t* denote the set of histories that
playeri may observe during th&-period contract undes'*. Supposes; first pre-
scribes a non-equally-informative action in pertoafterh; € H"*. Letv (o7;w] ,hy)
denote player’s expected discounted payoff conditiormall andh;. Recall thaw ** is
the truncated contract with side bets in (27) awd is theT-period version ofv'.

By (28), we can write

vi (a7, ol wl e ) =
1-9

= (Vi(aTsh) — EWZ @57 010 ™ — kT —El@(@ .57, 0|0, o )

where
Ts T
O-—i*7 0| 7hi:|

Vi(aT;h) = [Zaslg. )) -+ (3(9),9(9))

denotes playerrs discounted payoff conditional dm underwiT*. It follows that

vl (a™5w ) = (a1, o s wi e hy)
1-5 . ) y *
=15t (M(a ") —Mi(g':h) —E[@@,y",k)[0"" ] +E[@(@".¥", k)|, o ,hi])
1-5 . )
>t (Vo h) —Vi(a:h) —E[@(@ .y k)|o ™" hi]).

The last inequality follows from the fact thatis always positive.

Sincedj' first prescribes a non-equally-informative action in petipit will lower
playeri’s payoff (including the stage-game paymentWayin that period. This, together
with the fact that undaNiT* the stage-game payoff plus payment is maximizedrﬁ/
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in each period # t, implies that

Vi (675 h) = Vi (7 hi)

>3t (Efgi(a(t)) +w (&), yt)) o™, hi] — E[gi(a(t)) +wi'(at),¥(t))| o}, o hi])
25t71A0.

The following claim shows that the expected valuegg&' , ", k) conditional on
any private information player may learn during the game on the equilibrium path
diminishes uniformly and exponentially with.

Recall thaté is the constant defined in (26) and it depends onlkon

Claim 1. There existst£> Osuch thatforallie N, T>1,and h € HiT*,

2
E[@@.y K)o’ h] <ciT exp(_%T) :

A proof of Claim 1 is provided in an online appendix. Grantddi@ 1, we can
choos€Ty large enough such that for &l > T andd > 1 — T2 (which ensures that
(1—-5"7)/(1—0) is on the order of asd tends to 1),

E[@@,y",k)|o"™ h] < 8" A,

This proves that anyriT that prescribes a non-equally-informative action is ndi-op
mal. The argument for following the recommendations buteperting the signals is
similar.

Finally, by (28), the per-period efficiency loss is

T** T*
- 5TZE o]

= ZE @.y") —Emz@".y")o" ] —kT —@@ .y .k)o"]

15T

L)+ g 3 (Ela@ .5 w0l0™) +kT).

By Claim 1, whenT is sufficiently large, we can choogesmall enough such that

1-6 2
—— > (E[@@,§",K)|0™]+KT) < &,
1_5T |;( )
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for somegy < L*(n) + € —L(n,w*). (Note that(1—5)/(1— ") is of order ¥T.)
Hence,

(nT6 T**

_ T**
= Z E

<L (nm)+

D Proof of Theorem 3

Any w that enforce$) must satisfy the constraint that for eddnd eacho € Q(n),

(H(@EY) —n*(@y)w(@y) =d(a). (30)

(ay)eAxY

Sinceo € Q(n), for all w € P,
Ewi(a9) | w =Ew(@y)n”, . (31)

Substituting (31) into (30), and summing ovewe have

n

ZW@WJﬂW»ZHM@WM@Z d(ai). (32)

I%E

Hence,

n

LW = 5 (o) (—_;E[wi<a,y>|u,w]+ggg__§f[wi<a,v>\u,w’]>

(@) _ n n
> w;u(@l‘z(;’l)ﬁ (—;E[Wa (é“,?)lu,w]Jrgggi;E[Wa (é“,?)|u,w’]>
_ H(w) — 1% (w) x
- wzp |<Ul)—1 iZiE[WI (aSD‘“?w]
Si.d(a)
|(G]_)—l’

where the first inequality follows from the definition tfo;), and the last inequality
follows from (32). Since the argument applies to ewsrthat enforces),

) YiL.d(0)
L*(n) > l(allﬁ,
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To show the other direction of the theorem, let

L [ SUReom TERTL i QU £0;
0, otherwise.

It remains to show that
L*(n) <L. (33)

By definition, a contractv enforcesy with L(n,w) < L if and only if

[P (@y) —u@Eywi@y) < —da,p) Y(a,pi); (34)
(ay)eAxY

Zl Yy [Fu@Ey)+u@EYw)w(@y) < L YweP (35)
i=1(ay)eAxY

By the theorem of alternatives (see, e.g., Propositior2®mflBertsekas, 2009), (34) and
(35) does not have a solutionwmif and only if there exis{ Ai(ai,pi) > 0] (ai,pi,i)}
and{v(w) > 0| w € P} such that

S AP [P () = ()] + 5 viw fu(-lw)] = 0V (36)

(ai,oi)

Z > Ai(ai,pi)d(ai, pi) — ZP"(“’>E > 0. (37)

(ai,pi)

Suppose that (36) and (37) hold. From (3¥)= maxcn > (ai,pn Ai(ai; pi) > 0. We can,
therefore, define a mixed strategyfor each player such that, for alla;, p;, i),

)\i(aivpi) H : _ * k)
Ui(ai,Pi)E{ A if (ai, ) 7 (a7, p7);

1= 3 ()@ o) AldLP) - otherwise.

A

Using the definition ots;, we can rewrite (36) and (37) as

Al () — u(-)+ ZPV(w>[—u(-)+u(-|w)] — Oforeaci  (38)

Zl/\do. zp wl > 0. (39)

Fix a contractw. Multiplying each (38) byw; (), then summing over all and all
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(ay) € Ax Y, and adding (39), we have

Zii\ ( m7(&y) — u@y)w (5,V)+d(0i)>
EAxY
+ZP"(“’>< > [Fu@EY)+u@EYw)w(Ey) - >>0
we ay)eAxY

This means that ify cannot be enforced by amy with L(n,w) < L, then there must
existo such that, for anyv with L(n,w) <L,

vi(gi, 07 w) > vi(o™;wy) for some player.

We prove (33) by showing that for alf € Z, there exists a contraet such that
vi(gi,0%;w) —vi(o*;wi) < 0 for alli andL(n,w) < L. By Theorem 4(i) of Rahman
and Obara (2010), itr is either unprofitable or attributable, then it can be detérr
by a contract with total transfer summing to zero. It remamsonsiderg such that
n% =...=n% andy[,d(oi) > 0. Sincen is enforceablenr” # .

Case 1. If there exist&,y) such thatn®(ay) > 0 andu(a,y) = 0, theno can
be deterred by a contraatthat punishes every player severely whené@ey) occurs.
Clearly,L(n,w) =0.

Case 2. Suppose tha (-|w) # u(-|w) for somew € P. Thenn’ (4 y|w) >
U (&, y|w) for some(a,y) € w. We define a contraet by letting, for each,

—C, if (&,y)=(ay);
wi(@,yY)=1 —c-u@yw), if (@,y)¢ w;
0, otherwise.

ThenE[wi(a,¥)|o*, ] = —c- u(a y|w) for all & € P. Hence,L(n,w) = 0. More-
over,

vi(Gi, 0% wh) —vi(0" W) = —c- (%@, ) — p (& Ylw)) 1% (w) +d(0i) <

whenc is large enough.
Case 3. Suppose thatc Q(n). Let w solve maxycp (( )) We define a contract
w by letting, for each,

— o) it (39) € w;
W@y =, @@ ,y). :
0, otherwise.
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ThenL(n,w) = =290 (¢ — w and

= (@) —n(@) ICAR
(01,0 ) (o) = SO (19(@) () + ) O
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