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Abstract

We study aT-period contracting game between a group of players without

access to external financing. We show that the long-term efficiency loss is bound-

ed from below by the short-term efficiency loss that becomes self-evident at the

end of a period. WhenT is large, the efficiency bound can be approached by

a contract that involves side payments between players. Ourresults apply to all

monitoring structures and strategy profiles. They encompass the inefficiency re-

sult in Abreu, Milgrom, and Pearce (1991), as well as the approximate-efficiency

results in Compte (1998), Obara (2009), and Chan and Zhang (2016).

1 Introduction

In a team moral-hazard problem where it is impossible to determine which player has

shirked (Holmstrom, 1982; Radner, Myerson, and Maskin, 1986), each player can free-

ride on the efforts of the other players. As a result, the Nashequilibrium outcome is

typically inefficient. The inefficiency persists even when the players can write a binding

incentive contract among themselves so long as no budget deficit is allowed. For if one
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player’s punishment is transferred to another player as a reward, then the latter may

deliberately choose an action to get the first player punished. Hence, motivating every

player may call for all players to be punished simultaneously. For example, a cartel may

have to resort to costly price wars to sustain collusion. Efficiency can be restored if the

players can contract with a third party who can provide external finances to break the

no-budget-deficit constraint. Thus, in his seminal paper, Holmstrom (1982) notes that

“The fact that capitalistic firms feature separation of ownership and labor implies that

the free-rider problem is less pronounced in such firms than in closed organizations like

partnerships.”

In this paper, we argue that the incentive problem of having side-payments between

players is greatly reduced when players interact repeatedly and, as a consequence, ac-

cess to external finances may not be as important as it seems inlong-term partnerships.

We formalize our idea in aT-period contracting game between a group of players. In

each period each player chooses a private action and then observes a private signal about

the chosen actions. At the end of periodT, the players report their signals publicly. A

contract maps the players’ reports into a payment to each player. Because there is no

external financing, the total payment must be non-positive and any strictly negative total

payment must be destroyed.

We characterize the minimum efficiency loss in enforcing a certain stage-game ac-

tion profile throughout the contract. A central concept in our analysis is the notion

of self-evidentevents, which was introduced by Aumann (1976) to analyze beliefs in

incomplete-information games. We apply the concept to describe information that be-

comes common knowledge after the players observe their private signals at the end of

a period. For example, if a signal is public, then its realization is self-evident because

every player observes the signal and knows that every playerobserves the signal and

so on. Using the notion of self-evident events, we first establish an upper bound on the

long-term efficiency of a partnership. We then show that whenthe length of the contract

is sufficiently long, the efficiency bound can be approached by a simple contract where-

by each player is penalized or rewarded depending on whetherhis average performance

is below or above a performance standard.

Since there is no external financing, one player’s over-performance bonus has to be

paid by another player. In a short-term partnership, this may interfere with the incen-
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tives of the paying player. In a long-term relationship, linking incentives across periods

makes this incentive problem much less severe. This is because in equilibrium a non-

deviating player is exceedingly unlikely to over-perform consistently. Unless a player’s

performance is self-evident (e.g., when it is public), there will always be some play-

er who would believe that the chance of consistent over-performance by the receiving

player is so small that having to pay the bonus would cause only a negligible effect on

his incentives. Real-life cartels have often relied on sidepayments to enforce collusion

(Harrington and Skrzypacz, 2011). Our results show that, under fairly weak conditions,

such payments could be made incentive compatible.

Whether long-term partnerships can be efficiently run is a long-standing question in

the theory of repeated games. In a seminal paper, Abreu, Milgrom, and Pearce (1991)

show that in a repeated Prisoners’ Dilemma, if the players observe a noisy public signal

immediately at the end of each period, then the equilibrium outcome must be ineffi-

cient. However, if the signals are observed with a lag, then the players can reduce the

efficiency loss by linking incentives across periods. Subsequent research has applied the

insights of Abreu, Milgrom, and Pearce (1991) to repeated games with private monitor-

ing. Following Abreu, Milgrom, and Pearce (1991), the literature has mainly focused

on two polar cases: imperfect public monitoring where linking incentives has no value

(Abreu, Milgrom, and Pearce, 1991; Sannikov and Skrzypacz,2007) and conditional-

ly independent monitoring where linking improves efficiency (Compte, 1998; Obara,

2009; Chan and Zhang, 2016). Using the notion of self-evident events, we generalize

the results of Abreu, Milgrom, and Pearce (1991) to general stage games. Our results

provide a unifying framework that applies not only to the twopolar cases but also to the

in-between cases where players observe correlated privatesignals.

In the setting of one-shot interaction, Rahman (2012) and Rahman and Obara (2010)

characterize the action profiles that can be enforced without efficiency loss. They show

that an action profile can be enforced without efficiency lossif every deviating strategy

is attributable. We extend this characterization to theT-period contracting game. We

show that in order for efficiency to be attainable in long-term relationships, every deviat-

ing strategy must beeitherattributableor detectable within a self-evident event. When

efficiency loss is inevitable, we provide a similar characterization for the efficiency loss.

The rest of the paper is organized as follows. The next section uses a repeated Pris-
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oners’ Dilemma example to bring out the main ideas of this paper. Section 3 introduces

the general model. Our main results are introduced in Sections 4 and 5. Section 6

discusses the related literature in details. Section 7 concludes.

2 Example

In this section we illustrate how side-payments between players can improve efficiency

through aT-period two-person noisy Prisoners’ Dilemma game. In each period t = 1,

. . . , T, each playeri = 1,2 independently choosesC or D. The expected stage-game

payoff is given in Table 1. If both players chooseC, then each player obtains a payoff

of 1. If one player choosesC and the other choosesD, then the player who playsD

receives(1+d), while the player who playsC receives−h, whered, h> 0. The unique

stage-game Nash equilibrium is(D,D).

C D

C 1,1 −h,1+d

D 1+d,−h 0,0

Table 1: Payoff matrix.

At the end of each period, each playeri observes a private signalyi ∈ {H,L}. Table

2 describes the signal distributions conditional on the action profiles(C,C), (C,D), and

(D,C). If both players playC, thenyi = H with probability p. If one player choosesC

and the other choosesD, thenyi = H with probabilityq< p. The correlation between

the players’ signals depends on the parameterρ ∈ [0,ρ ] for someρ > 1.1 Whenρ = 0,

the signals are perfectly correlated. In this case, the players are effectively observing

a public signal. Whenρ = 1, the signals are conditionally independent and a player

cannot learn about the other player’s signal from his own. When ρ 6= 0,1, the signals

are imperfectly correlated. The correlation is positive when ρ ∈ (0,1) and negative

whenρ ∈ (1,ρ).
The players hire a principal to design a contract to enforce(C,C) in every period. At

the end of periodT, the principal asks the players to report their signals. Theprincipal

1Assume thatρ is not too large such that the signal distributions are well defined.
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H L

H p−ρ p(1− p) ρ p(1− p)

L ρ p(1− p) (1− p)(1−ρ p)

Signal distribution under(C,C)

H L

H q−ρq(1−q) ρq(1−q)

L ρq(1−q) (1−q)(1−ρq)

Signal distribution under(C,D) or (D,C)

Table 2: Signal distributions.

can neither pay the players with outside resources nor extract resources from them. He

can, however, commit to destroying resources. AT-period contractwT =
(
wT

1 ,w
T
2

)
is,

therefore, a function that maps the players’ reports to a payment to each player, subject

to the constraint that the total payment be non-positive.2 To simplify exposition, we

assume in this section that the players’ discount factor is one so that the utility of a

player is equal to the total stage-game payoffs plus the contract payment.

Since the total payment must be negative, providing incentives is costly. Consider

the one-period case. Letw= (w1,w2) denote a stage-game contract. With a slight abuse

of notation, letwi(H) andwi(L) denote playeri’s payment when player−i reports that

his signal isH andL, respectively.3 It is straightforward to see that it is optimal for

playeri to chooseC if and only if

(p−q)(wi(H)−wi(L))≥ d.4

Since a player’s payment depends only on the report of the other player, the players

have no incentive to lie about their reports. Given the constraint wi(H),wi(L) ≤ 0, the

most efficient way to enforce(C,C) is to set

wi(H) = 0

wi(L) = −
d

p−q
.

2The restriction to negative total transfer arises naturally in different contexts. For example, if bonus

contracts are not legally enforceable, then the principal may have to commit to “burn” the difference

between a lump sum and the actual bonus (MacLeod, 2003; Fuchs, 2007). In repeated games, players

can enforce cooperation only by switching to inefficient continuation paths.
3Player−i is the player who is noti.
4In the single-period case, there is no efficiency gain by makingwi a function of playeri’s own report,

and the optimal contract does not depend onρ .
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The per-player efficiency loss is thus(1− p)d/(p− q); see Figure 1. The example

L

− d
p−q

H

0

− (1−p)d
p−q

Figure 1: The one-period contract and efficiency loss.

captures a fundamental issue in team moral-hazard problems: since both(C,D) and

(D,C) lead to the same signal distribution, it is not possible to tell which player has

deviated. As a result, there is no budget-balanced contractthat can enforce(C,C). In

the terminology of Rahman and Obara (2010), the deviation toD is non-attributable.

The negative paymentd/(p− q) must be destroyed and cannot be transferred to the

other player. If player 1 simply pays player 2d/(p−q) when player 2’s report isL,

player 2 will always reportL.

When the contract lasts for multiple periods, the principalcan still use the one-

period contract(wi(H),wi(L)) = (0,−d/(p− q)) to enforce(C,C) period by period.

The question is whether the principal can do better by using anon-linear contract. The

existing literature has largely focused on two polar cases:ρ = 0 andρ = 1. Our con-

tribution is to extend the analysis toρ 6= 0,1. Before proceeding to our results, we first

briefly recount the two polar cases.

2.1 Case 1:ρ = 0.

We will use the two-period case to illustrate the result of Abreu, Milgrom, and Pearce

(1991) that linking has no value when the signal is public or perfectly correlated. We

derive a lower bound on the efficiency loss of a relaxed contracting problem in which

the players must report their signals truthfully. Since anycontract that enforces(C,C)

in the original contracting problem must also enforce(C,C) in the relaxed problem, the

lower bound applies to the original contracting problem as well.

Assume that the players must report truthfully. To induce(C,C) in both periods,

three incentive-compatibility constraints must be satisfied; namely, the first period, the
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second period after the players observeH, and the second period after the players ob-

serveL.5 See Figure 2.

LH

−2(1−p)d
p−q

L

− d
p−q

H

0

− (1−p)d
p−q

L

−2 d
p−q

H

− d
p−q

− (1−p)d
p−q − d

p−q

Figure 2: The two-period case.

Supposew2 is a two-period contract that enforces(C,C) in both periods. Let

E
[
w2

i |y(1),CC
]

denote the expected payment to playeri conditional on the first-period

signaly(1) and the second-period action profile(C,C). Since both players observeH,

the values ofwi (L(1),H(2)) andwi (L(1),L(2)) do not affect the players’ incentives in

the second period afterH.6 As a result, enforcing(C,C) in the second period afterH is

the same as enforcing(C,C) in a single-period game. Hence,

E
[
w2

i |H,CC
]
≤−(1− p)

d
p−q

. (1)

The incentive-compatibility constraint in period 1 requires that

(p−q)
(
E
[
w2

i |H,CC
]
−E

[
w2

i |L,CC
])

≥ d. (2)

Combining (1) and (2), we have

E
[
w2

i |L,CC
]
≤−(2− p)

d
p−q

,

and

pE
[
w2

i |H,CC
]
+(1− p)E

[
w2

i |L,CC
]
≤−2(1− p)

d
p−q

.

Thus, the two-period per-player efficiency loss must be greater than twice the one-

period efficiency loss. In this case, the players cannot do better than enforcing(C,C)

5Since the signals are perfectly correlated, we just mentionthe common signal.
6Likewise, the values ofwi (H(1),H(2)) andwi (H(1),L(2)) have no effect on the players’ incentives

in the second period afterL.

7



period by period with two stage-game contracts. The argument can be extended to

T > 2 by induction. The following observation is the key lesson of this example.

Observation 1. Incentives following different realizations of a public signal must

be separately provided. As a result, the difference betweenthe total payments following

two different realizations of a public signal in a short-term contract imposes a lower

bound on the long-term efficiency loss.

In Section 4, we apply this insight to derive a lower bound on the long-term effi-

ciency loss for general stage games (Theorem 1). We then prove that the bound is tight

under a fairly weak condition (Theorem 2). It follows that Case 1 is representative of

all inefficient long-term partnerships (Theorem 3).

2.2 Case 2:ρ = 1.

Since the players may observe different signals, let us useHi andLi to denote theH and

L signals observed by playeri. Let yT
i = (yi (1) , . . . ,yi (T)) denote theT-period profile

of playeri’s signal. WriteyT for
(
yT

1 ,y
T
2

)
. For anyyT , denote the number ofL signals

that player−i observes inyT by f
(
L−i |yT

)
.

Consider a “linear” contract̃wT that enforces(C,C) period by period. Fori = 1,2

w̃T
i

(
ŷT)=−

(
f
(
L−i |ŷ

T)−T (1− p−ν)
)
(d/(p−q)+ ε) , (3)

whereŷT =
(
ŷT

1 , ŷ
T
2

)
denotes the players’ reports, andε andν are small positive con-

stants. The contract punishes playeri by (d/(p−q)+ ε) for everyL signal that player

−i reports. Since playeri’s payment does not depend on his own reports, it is optimal to

report truthfully. Sinceε > 0, the contract strictly enforces(C,C). However, it violates

the constraint that the total payment be non-positive. Whenboth players observe fewer

thanT (1− p−ν) L signals, each player will receive a strictly positive payment.

To satisfy the non-positive-payment constraint, we truncate w̃T
i at zero to obtain a

“truncated” contract̂wT , where

ŵT
i

(
ŷT)=−max

(
f
(
L−i |ŷ

T)−T (1− p−ν) ,0
)
(d/(p−q)+ ε) . (4)

UnderŵT
i , playeri pays a penalty of(d/(p−q)+ ε) for everyL signal that player−i

reports that is in excess ofT (1− p−ν). Note thatŵT
i is no longer linear inf

(
L−i |ŷT

)
.
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Whether playeri will be punished for anL signal that player−i observes in a certain pe-

riod now depends on how many otherL signals player−i observes during the contract.

Playeri’s incentives are thuslinkedacross periods.

Compared to the linear contractw̃T
i , the truncated contract̂wT

i does not “reward” the

players when the number ofL signals is below the threshold. The truncated incentive is

Ri
(
ŷT)=−min

(
f
(
L−i |ŷ

T)−T (1− p−ν) ,0
)
(d/(p−q)+ ε) . (5)

The distortionary effect of the truncation is very small when T is large. If playeri

choosesC in every period (assuming that player−i also choosesC), the average number

of L signals that player−i should observe isT (1− p). In equilibrium playeri expects

player−i to report truthfully. By the law of large numbers, the probability that player

−i reports observing less thanT (1− p−ν) L signals is exceedingly small.7 Since the

signals are conditionally independent whenρ = 1, playeri cannot learn aboutyT
−i from

his own signals. As a result, the distortionary effect remains very small throughout the

contract and is compensated by the small extra punishmentε. Hence, it is optimal for

each player to chooseC in every period.

The expected per-player per-period efficiency loss caused by ŵT
i is approximately

ν (d/(p−q)+ ε) .

As T becomes large,ν andε can be chosen so that the per-player per-period efficiency

loss goes to zero.

Observation 2. When T is large, it is “normal” for a player i to observe(1− p)T

L signals during the contract. Instead of punishing player−i for every Li , it suffices to

punish player−i when his long-term performance is worse than the mean.

2.3 Case 3:ρ 6= 0,1.

Case 2 is essentially the argument of Abreu, Milgrom, and Pearce (1991). Our approach

here follows more closely the review strategies of Rubinstein (1979), Rubinstein and

Yaari (1983), and Fong, Gossner, Hörner, and Sannikov (2011). Note that the truncated

contractŵT does not enforce(C,C) when ρ 6= 1. For example, whenρ ∈ (0,1), a

7If player i choosesD in some periods, the probability will be even lower.
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player i who has observed very fewL signals in the early periods will infer from his

own signals that the probability thatf
(
L−i |yT

)
is less than(1− p−ν)T is non-trivial

and, hence, may deviate in the remaining periods. This inference problem becomes

more severe as the correlation between the two players’ signals increases. One may

therefore expect that linking would be less effective asρ gets close to 0. It turns out

thatρ = 0 is a special case. As long asρ 6= 0, we can enforce(C,C) almost efficiently

by supplementinĝwT with a nexus of side payments between players.

So what is special aboutρ = 0? When signal is public, any realization, no matter

how unlikely ex ante, becomes common knowledge among the players.8 For example, it

may be extremely unlikely that the public signal isH in every period. But if it happens,

it will still be common knowledge. This property holds only whenρ = 0. Whenρ = 1,

each playeri can learn nothing about player−i’s signal from his own. As a result, when

T is large, each playeri believes that it is extremely unlikely for the realized signals of

player−i to be different from the prior expectation. Whenρ 6= 0,1, it is no longer

true that playeri cannot learn about player−i’s signal. Yet, it remains the case that

whenT is large,anyrealized signal distribution that is different significantly from prior

expectation must be regarded as extremely unlikely bysomeplayer conditional on that

player’s private signals.

We formally state this result as a lemma. For any signal profileyT , let f
(
yi ,y−i |yT

)

and f
(
yi |yT

)
denote the numbers of times(yi ,y−i) andyi occur inyT , respectively. The

prior expectations off
(
yi ,y−i |yT

)
and f

(
yi |yT

)
, conditional on(C,C) being chosen in

every period, are

E
[

f
(
yi ,y−i |y

T)] = prob(yi ,y−i |(C,C))T; (6)

E
[

f
(
yi |y

T)] = prob(yi |(C,C))T. (7)

At the end of the contract, playeri observesf
(
Hi |yT

)
and f

(
Li |yT

)
. His posterior

expectation aboutf
(
yi ,y−i |yT

)
conditional onyT

i is

E
[

f
(
yi ,y−i |y

T) |yT
i

]
= prob(yi ,y−i |(C,C),yi) f

(
yi |y

T) . (8)

Let

ZT (ξ ) =
{

yT |∃(yi ,y−i)
∣∣ f
(
yi ,y−i|y

T)−E
[

f
(
yi ,y−i |y

T)]∣∣> Tξ
}

8For our purpose, the difference between common knowledge and common belief is unimportant.
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denote the set ofyT in which the occurrence of some outcome is different from theprior

expectation byTξ . Similarly, let

ZT
i (ξ ) =

{
yT |∃(yi ,y−i)

∣∣ f
(
yi ,y−i |y

T)−E
[

f
(
yi ,y−i |y

T) |yT
i

]∣∣> Tξ
}

denote the set ofyT in which the occurrence of some outcome is different from player

i’s posterior expectation byTξ . Note that the law of large numbers implies that for any

ξ > 0, conditional on anyyT
i , it is extremely unlikely thatyT ∈ ZT

i (ξ ) whenT is large.

Lemma 1 (Posteriors Determine Prior). In the Prisoners’ Dilemma example, whenρ 6=

0, for anyξ > 0, there existsς > 0 such that

ZT (ξ )⊆ ZT
1 (ς)∪ZT

2 (ς). (9)

Lemma 1 says that, whenρ 6= 0, if the distribution of signals in someyT is different

from the prior, it must be different from the posterior expectation of some player.

Note that if we take the realized frequencies,f
(
· |yT

)
/T, as a probability distri-

bution, then the posterior distribution conditional onyT
i is f

(
yi ,y−i |yT

)
/ f
(
yi |yT

)
. By

(6), (7) and (8), for anyf
(
yi |yT

)
> 0, f

(
yi ,y−i |yT

)
is equal to playeri’s posterior ex-

pectation if and only if

f
(
yi ,y−i|yT

)

f (yi |yT)
= prob(yi ,y−i |(C,C),yi) ,

and f
(
yi ,y−i |yT

)
is equal to the prior expectation if and only if

f
(
yi ,y−i|yT

)

T
= prob(yi ,y−i |(C,C)) .

Hence, Lemma 1 essentially says that the mapping from a full-support prior distribution

to the posterior distributions it generates is continuous and one-to-one.9 To see that the

mapping is one-to-one, note that the posterior distribution conditional ony1 = H1,L1

pins down the relative likelihood of(y1,H2) and(y1,L2), while the posterior distribu-

tion conditional onH2 pins down the relative frequency of the signal pair(H1,H2) and

(L1,H2). These likelihood ratios jointly determine the prior distribution. Note that this

argument applies as long as the signal distribution is connected; that is, the probability

9The probability distribution has full support whenρ 6= 0.
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of either(L1,H2) or (H1,L2) is strictly positive. In Section 4, we use the concept of

self-evident event to prove a general version of Lemma 1.

We now introduce a contract that enforces(C,C)whenρ 6= 1. Start with the contract

ŵT
i in Case 2. The set of̂yT where playeri’s incentives will be truncated under̂wT

i is

BT
i (ν) =

{
ŷT | f

(
L−i |ŷ

T)< T (1− p−ν)
}
.

If ŷT ∈ BT
i (ν), then eitherf

(
Hi ,L−i |ŷT

)
or f

(
Li ,L−i |ŷT

)
must differ from the prior

expectation. It then follows from Lemma 1 that there existsς such that

BT
i (ν)⊆ ZT

1 (ς)∪ZT
2 (ς).

Starting with the truncated contract̂wT in Case 2, we add a side-bet contractzT =
(
zT
1 ,z

T
2

)
. For i = 1,2,

zT
i

(
ŷT)= Ri

(
ŷT)(1− Ii

(
ŷT))−R−i

(
ŷT) Ii

(
ŷT) ,

where

Ii
(
ŷT)=

{
1 if ŷT ∈ ZT

i (ς),
0 otherwise.

Under the side-bet contract, each playeri acts as an “internal budget-breaker” that pays

an over-performance bonus to the other player whenIi = 1. Recall thatRi represents

the truncated incentives defined in (5). If playeri receivesRi from the side bet, then his

total incentives will be “untruncated”. Under this side-bet contract, playeri receivesRi

when ŷT /∈ ZT
i (ς) and paysR−i when ŷT ∈ ZT

i (ς). The total payment of this side-bet

contract is always negative. By (9), whenRi > 0, eitherIi or I−i must be equal to 1.10

Hence, when playeri receives a strictly positiveRi (i.e., Ii = 0), player−i must pay for

it (i.e., I−i = 1).

We first show that whenT is large, it is optimal for playeri to chooseC in every

period if he expects player−i to play C in every period and report truthfully. The

Hoeffding inequality (Hoeffding, 1963) implies that if player i playsC in every period

and reports truthfully, conditional onany yTi the probability thatIi = 1 (i.e.,ŷT ∈ ZT
i (ς))

10Under the current construction, the side-bet contract is not zero-sum, as it is possible thatIi(ŷT) =

I−i(ŷT) = 1. This feature is not crucial. The contract can be modified (with extra notations) so that player

−i will pay the bonus only when playeri will receive it.
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converges to zero exponentially inT. As a result, in any periodduring the contract, a

playeri who has chosenC in all previous periods will believe that he will almost always

receiveRi when Ri > 0 but almost never payR−i when R−i > 0 if he continues to

play C in the remaining periods. This implies that,throughoutthe contract, playeri

believes that if he playsC in every period, he will receive a payment that is equal to

what he would receive under the linear contract,w̃T , minus a term that converges to

zero exponentially inT. By contrast, if playeri deviates in any period, his payment will

beat mostequal to the payment he would receive underw̃T (regardless of whether he

mis-reports his signals or not).11 Sincew̃T strictly enforces(C,C), playeri will still be

strictly better off playingC in every period whenT is large.

Since playeri’s payment in the truncated contractŵT
i depends only on player−i’s

reports, playeri’s report may affect his own payment only throughR−i , Ii , and I−i .

WhenT is large, a playeri who choosesC in every period and reports truthfully will

almost always receiveRi whenRi > 0 and almost never need to payR−i whenR−i > 0.

Hence, the potential gain from lying is small and converges to zero exponentially in

T.12 To induce truthful reporting, it is sufficient to add a third component

eT
i

(
ŷT)= ξ

T

∑
t=1

log(prob(ŷ−i (t) |ŷi (t))) (10)

to each playeri’s payment.13 It is straightforward to verify that when(C,C) is chosen in

every period and player−i reports truthfully, any mis-reporting by playeri will strictly

reduceeT
i .14 Because playeri’s incentive to lie from the side bets is weak, the constant

ξ in (10) can be made very small.15

Thus, whenT is large,(C,C) can be enforced by a contract

wT∗
i

(
ŷT)= ŵT

i

(
ŷT)+zT

i

(
ŷT)+eT

i

(
ŷT) .

11The payment will be the same as that underw̃T if player i receivesRi and does not need to payR−i .

This is the best case scenario for playeri. If the deviations reduce his chance of receivingRi or increase

his chance of payingR−i, his payment will be strictly lower.
12The best playeri can achieve through lying is to increase the probability of receivingRi whenRi > 0

from almost one to one and reduce the probability of payingR−i whenR−i > 0 from almost zero to zero.
13Note that in the proof of Theorem 2, we start with a stage-gamecontract that strictly induces truthful

reporting. Hence, this step is not needed there.
14The componenteT

i is an example of a scoring rule that induces a player to revealhis posterior belief.
15Sinceξ is small, it will still be optimal for playeri to chooseC in every period.
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We have already shown that the efficiency loss of the truncated contract is small. Since

ξ is very small, the efficiency loss due toeT
i is very small. The efficiency loss due to

the side bets is also very small because, ex ante,R1 andR2 are almost always equal to

zero whenT is large.

Observation 3. Whenρ 6= 0, efficiency can be enhanced by players exchanging

over-performance bonuses. In a short-term contract, making one player pay another is

likely to perversely affect the incentives of the paying player. Here, Lemma 1 implies

that the bonus can be assigned to be paid by a player who believes in equilibrium that

he will almost never have to pay. As a result, the distortion is minimal.

Theorem 2 uses the argument in this section to show that the bound established in

Theorem 1 is tight.

3 Model

3.1 Stage game

Consider a finite stage game endowed with a correlating device. LetN = {1,2, . . . ,n}

denote a set of players,A = A1 × ·· · × An a finite set of action profiles,η ∈ ∆(A)
a distribution overA, and g = (g1, . . . ,gn) : A → Rn a profile of stage-game payoff

functions. In each period, the correlating device drawsã = (ã1, . . . , ãn) ∈ A accord-

ing to η and privately recommends̃ai to each playeri. After learningãi , each player

i ∈ N privately choosesai ∈ Ai . Playeri’s expected stage-game payoff isgi(a), where

a= (a1, . . . ,an). The players do not directly observe the stage-game payoffs. Instead,

each playeri observes a signalyi . The signal profiley = (y1, . . . ,yn) is drawn from a

finite setY = Y1×·· ·×Yn according to a distributionp(·|a) ∈ ∆(Y). At the end of the

stage game, each playeri observes(ãi ,yi). We will refer to the recommendation and

signal profile(ã,y) as theoutcomeof the stage game.

To avoid extra notations we shall assume that all signals areassociated with distinct

posterior beliefs. All results go through without this assumption, although some may

have to be rephrased to allow for the possibility of redundant signals.

Assumption 1. For eachi ∈ N, a ∈ A, andyi , y′i ∈ Yi , p(y−i |a,yi) 6= p(y−i |a,y′i) for

somey−i ∈Y−i .

14



We impose no further restriction on the correlation structure beyond Assumption

1. In general, the players’ signals may be correlated andp(· |a) may not have full

support. It is therefore possible that players observe bothprivate and public signals.

For example, each playeri may observe a two-dimensional signalyi =
(
y1

i ,y
2
i

)
with

y1
i ∈Y1

i andy2
i ∈Y2

i . The first component is public ifY1
1 = · · · = Y1

n and for alla∈ A,

p(y|a) > 0 only if y1
1 = · · · = y1

n. The game becomes one of public monitoring if the

second component is a null signal.

3.2 T-period contracting problem

In period 0, a principal proposes a contract. After observing the contract, the players

play the stage game forT periods. At the end of periodT, the players report the private

signals observed, and the correlating device reports the recommendations made during

theT periods. In addition to the stage-game payoffs, at the end oftheT-period game,

each player receives a payment as stipulated by the contract. While the correlating

device always reports honestly, players may lie.

For each variablex, we usex(t) to denote the period-t value ofx andxt =(x(1), . . . ,x(t))

to denote the history ofx up to periodt. Hence,̃aT = (ã(1), . . . , ã(T)) is the history of

recommendations. Let̂yT
i = (ŷi(1), . . . , ŷi(T)) denote theT-period signal-report of play-

er i andŷT = (ŷT
1 , . . . , ŷ

T
n ) denote the signal-report profile. AT-period contract consists

of n functionswT = (wT
1 , . . . ,w

T
n ), where eachwT

i maps each(ãT , ŷT) ∈ AT ×YT into a

payment. The total payment must be weakly negative; i.e.,

n

∑
i=1

wT
i (ã

T , ŷT)≤ 0, ∀(ãT , ŷT) ∈ AT ×YT .

Playeri’s total discounted payoff is

1−δ
1−δ T

(
T

∑
t=1

δ t−1gi(a(t))+wT
i (ã

T , ŷT)

)
,

whereδ ∈ (0,1) is a common discount factor for the players.

Since N, A, and g are fixed in our analysis, we denote theT-period game by

Γ(η,T,δ ,wT). For playeri, a pure strategy consists of two components: an action

strategyαT
i that maps each

(
ãt

i ,a
t−1
i ,yt−1

i

)
∈
⋃T

s=1

(
As

i ×As−1
i ×Ys−1

i

)
into an action

ai ∈ Ai and a reporting strategyρT
i that maps each

(
ãT

i ,a
T
i ,y

T
i

)
∈ AT

i ×AT
i ×YT

i into a

15



reportŷT
i ∈YT

i .16 A mixed strategyσT
i is a probability distribution over the set of pure

strategies(αT
i ,ρT

i ). Let ΣT
i denote the set of mixed strategies for playeri.

Playeri’s expected payoff conditional onσT =
(
σT

1 , . . . ,σ
T
n

)
is

vT
i

(
σT ;wT

i

)
≡

1−δ
1−δ T E

[
T

∑
t=1

δ t−1gi(a(t))+wT
i (ã

T , ŷT)

∣∣∣∣∣σ
T

]
,

where the expectation is taken over
(
ãT ,aT ,yT , ŷT

)
with respect to the distribution in-

duced byσT , η, andp.

The contracting problem is to choosewT to enforce the correlated outcomeη through-

out the contract. A strategy is called obedient if it followsrecommendations in every

period and reports signals truthfully. LetσT∗
i =

(
αT∗

i ,ρT∗
i

)
denote the obedient strate-

gy of playeri andσT∗ =
(
σT∗

1 , . . . ,σT∗
n

)
. By the revelation principle, we can focus on

contracts that enforce the obedient strategies.

Definition 1. A contractwT enforcesη for T periods ifσT∗ is a Nash equilibrium in

Γ(η,T,δ ,wT). That is, if for all i ∈ N andσT
i ∈ ΣT

i ,

vT
i

(
σT∗;wT

i

)
≥ vT

i

(
σT

i ,σ
T∗
−i ;wT

i

)
.

The enforcement is strict if the inequality is strict forσT
i that deviates from the recom-

mendations with positive probability. An outcomeη is (strictly) enforceable if it can be

(strictly) enforced by somewT .

Because the total payment must be negative, enforcing a non-stage-game Nash

equilibrium may come with a cost. The per-period efficiency loss of enforcingη with

wT in Γ(η,T,δ ,wT) is

W
(
η,T,δ ,wT)≡−

n

∑
i=1

1−δ
1−δ T E

[
wi(ã

T , ŷT)|σT∗] .

Let W (η,T,δ ) be the set ofwT that enforcesη. The minimum per-period efficiency

loss to enforceη is

W∗ (η,T,δ ) = min
wT∈W (η,T,δ )

W
(
η,T,δ ,wT) .

16As usual,a0 denotes the null history /0 andA0 denotes the set whose only element isa0. Similar

notations apply for signals.
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Our objective is to characterizeW∗ (η,T,δ ) asT goes to infinity andδ goes to 1.

An important special case is whenT = 1. Write σ for σ1 andw for w1. Let µ
denote the distribution over(ã,y) induced byη andp. For all(ã,y) ∈ A×Y,

µ(ã,y) = p(y|ã)η(ã).

With a slight abuse of notation, we also useµ to denote the distribution of(ã, ŷ) induced

by the obedient strategy profileσ∗. Let πσi denote the distribution of(ã, ŷ) when player

i deviates toσi , while other players chooseσ∗
−i . For any(ã, ŷ) ∈ A×Y,

πσi(ã, ŷ) = ∑
(αi ,ρi)

σi(αi ,ρi) ∑
yi :ρi(ãi ,αi(ãi),yi)=ŷi

p(yi , ŷ−i |ã−i,αi (ãi))η(ã).

Definition 2. A deviating strategyσi is undetectableif πσi = µ.

The following result from Rahman (2012) provides a necessary and sufficient con-

dition for stage-game enforceability.

Lemma 2 (Theorem 1, Rahman, 2012). An action profileη is enforceable for one

period if and only if, for all i∈ N and all undetectableσi ,

∑
(αi ,ρi)

σi(αi,ρi) ∑̃
a∈A

gi (αi(ãi), ã−i)η (ã)≤ ∑̃
a∈A

gi(ã)η(ã).

Obviously, if η cannot be enforced whenT = 1, then it cannot be enforced when

T > 1. Conversely, ifη can be enforced whenT = 1 by w, then it can be enforced for

anyT by applyingw period by period. Thus, Lemma 2 is also necessary and sufficient

for the enforceability ofη for T > 1.17

Sinceδ does not matter whenT = 1, we useW(η,w) to denote the efficiency loss

of enforcingη with w, andW∗ (η) to denote the minimum efficiency loss of enforcing

η in a stage game. Since the principal can always choose to enforceη by means of a

series of stage-game contract,

W∗ (η,T,δ )≤W∗ (η) .

We say that linking is valuable if the above inequality is strict.

Before we proceed, a couple of comments are in order.

17Same for strict enforceability.
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(1) The assumption that the correlating device directly recommendsη is without

loss of generality. Consider a correlating device that sends each player a private message

and a contract that maps each message and signal-report profile to payments to the

players. If this correlating device and contract induces a Nash equilibrium in whichη
is the equilibrium action profile, then, by the revelation principle, there exists in our set-

up a contractw that enforcesη with the same efficiency loss as the original contract.18

(2) As is well known, Nash equilibrium imposes no restriction on players’ responses

off the equilibrium path. In our model, it is consistent withNash equilibrium for play-

ers who observe signals inconsistent with the equilibrium actions to report honestly.

Theorem 1, which establishes a lower bound on efficiency loss, continues to hold if

the stronger notion of sequential equilibrium is used instead. Following Kandori and

Matsushima (1998), Theorem 2, which establishes the tightness of the bound, can be

made consistent with sequential equilibrium by assuming that the support of the signal

distribution is invariant witha. Extending the result without invariant support would

require specifying and keeping track of the players’ diverging beliefs (as well as their

beliefs about other players’ continuation strategies) after one or multiple players ob-

serve inconsistent signals. We do not pursue this issue in this paper.

3.3 Self-evident events

As we saw in Section 2, the long-term efficiency of a partnership depends critically on

what the players know at the end of each period. Players’ beliefs are more complicated

in the general model. At the end of each period, each playeri observes(ãi,yi) and

forms beliefs about the full outcome profile(ã,y). Conditional onη being played in

every period, the outcome(ã,y) is distributed identically and independently according

to µ in every period. Write supp(µ) for the support ofµ. Let Pi denote playeri’s

information partition of supp(µ). The element ofPi that contains(ã,y) is denoted by

Pi(ã,y). Conditional on(ãi ,yi), playeri believes that(ã,y) belongs toPi(ã,y); that is,

Pi(ã,y) =
{
(ã′,y′) ∈ supp(µ) : (ã′i ,y

′
i) = (ãi,yi)

}
.

Hence,(ã′,y′) ∈ Pi (ã,y) if and only if (ã′i,y
′
i) = (ãi ,yi).

18See Proposition 47.1 of Osborne and Rubinstein (1994).
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The vector(P1, . . . ,Pn) describes the players’ knowledge structure whenη is chosen.

A subsetE of supp(µ) is called an event. What a player knows at a certain outcome

depends on what he observes at the outcome. Playeri “knows” eventE at (ã,y) if

Pi(ã,y)⊆ E. (11)

That playeri knowsE is itself an event that consists of all(ã,y)where (11) is true. Thus,

we can talk about playerj knowing that playeri knowsE. An eventE is common belief

among the players at(ã,y) if every player knowsE, knows that everyone knowsE, and

so on. An eventE is self-evident if it is common belief at every(ã,y) ∈ E.

Self-evident events are closely related to (but more general than) public signals.

Every realization of a public signal is self-evident conditional onanystage-game strat-

egy.19 But, a self-evident event may not be related to any public signal, and an event

may be self-evident conditional on one stage-game strategybut not conditional on an-

other. In the following, when we say that an event is self-evident, it is always with

respect to the equilibrium action profileη.

A self-evident event is irreducible if none of its proper subsets is self-evident. LetP

denote the meet of(P1, . . . ,Pn) (i.e., the least common coarsening). It is well known that

any element ofP is self-evident and irreducible (Chapter 5 of Osborne and Rubinstein,

1994). In Section 2, we show that Lemma 1 holds if and only ifρ 6= 0. The crucial

difference betweenρ = 0 andρ 6= 0 is thatP contains two elements:{(H1,H2)} and

{(L1,L2)} whenρ = 0, and only one:{(H1,H2),(H1,L2),(L1,H2),(L1,L2)} whenρ 6=

0.

4 Main Results

In Section 2 we saw a connection between long-term efficiencyand short-term incen-

tives that vary across self-evident events. In a general stage game, incentives may vary

across self-evident events, as well as within self-evidentevents.

Recall that the efficiency loss of enforcingη in a stage game withw is

W(η,w) =−
n

∑
i=1

E [wi(ã, ŷ)|σ∗] .

19To be precise, the set of outcomes consistent with a specific realization of a public signal is self-

evident.
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Write ω for a typical element ofP. Let W (η) denote the set of stage-game contracts

that enforceη. For any stage-game contractw ∈ W (η), let E [wi(ã, ŷ)|σ∗,ω] denote

playeri’s expected payment conditional onσ∗ andω, and let

ωmax∈ argmax
ω∈P

n

∑
i=1

E [wi(ã, ŷ)|σ∗,ω]

denote the element ofP with the maximum expected total payment. We say that the

total incentives vary acrossω andωmax if

n

∑
i=1

(E [wi (ã, ŷ) |σ∗,ωmax]−E [wi(ã, ŷ)|σ∗,ω])> 0.

The total incentives that vary across self-evident events under contractw are defined as

L(η,w) = ∑
ω∈P

(
n

∑
i=1

(E [wi (ã, ŷ) |σ∗,ωmax]−E [wi(ã, ŷ)|σ∗,ω])

)
µ(ω)

=
n

∑
i=1

E [wi (ã, ŷ) |σ∗,ωmax]−
n

∑
i=1

E [wi(ã, ŷ)|σ∗] .

In Section 2, whenρ = 0, P has two elements:{(H1,H2)} and{(L1,L2)}, andL(η,w)
is equal to the difference in total payments between these two elements. Whenρ 6= 0,

P is a singleton and, hence,L(η,w) is zero for allw.

It is straightforward to see that

W(η,w) = L(η,w)−
n

∑
i=1

E [wi (ã, ŷ) |σ∗,ωmax] . (12)

In the following, we will refer toL(η,w) and−∑n
i=1E [wi (ã, ŷ) |σ∗,ωmax] as the self-

evident efficiency loss and non-self-evident efficiency loss ofw, respectively.

Let

L∗(η)≡ min
w∈W (η)

L(η,w) (13)

denote the minimum self-evident efficiency loss amongw∈ W (η).

Theorem 1. For any enforceableη, W∗ (η,T,δ )≥ L∗(η) for any T≥ 1 andδ ≤ 1.

Proof. See Appendix A.
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Theorem 1 is a generalization of Case 1 of Section 2. It connects the long-term

efficiency of a partnership to the short-term self-evident efficiency loss.

As in Case 1, the crucial observation is that for anyω,ω ′ ∈ P, the incentives afterω
and the incentives afterω ′ are completely separated, as players followingω assign zero

probability to the first-period outcome(ã(1) ,y(1)) not belonging toω. As a conse-

quence, enforcingη in the remaining(T −1) periods afterω is equivalent to enforcing

η in a (T −1)-period contracting game. The only complication here is that in this new

contracting game, the players observe an additional correlating device that recommends

(ãi,yi) to each playeri according to the distributionµ (·|ω). However, as we explained

in Section 3, having an extra correlating device does not improve efficiency. Hence, the

efficiency loss for enforcingη in the continuation game afterω would be the same as

enforcingη in a (T −1)-period contracting game. This, together with the fact thatany

wT ∈ W (η,T,δ ) must enforceη in the first period, implies Theorem 1.

Recall thatW∗(η) is the minimum efficiency loss whenT = 1. SinceL(η,w) ≤
W(η,w) for everyw∈ W (η),

L∗(η)≤W∗(η). (14)

In general,L∗(η) could be strictly lower thanW∗(η). A special case is whenη is pure

and the signal structure is public. In this case, every(ã,y) in the support ofµ is self-

evident. Letw∗ be a contract that minimizesL(η,w) among allw∈ W (η). Let y∗ be

the signal profile that maximizes the total payment∑n
i=1w∗

i (ã,y). We have

L∗(η) =
n

∑
i=1

w∗
i (ã,y

∗)−
n

∑
i=1

E [w∗
i (ã, ŷ)|σ∗] .

Define a new contractw′ by subtracting a constantw∗
i (ã,y

∗) from the payment of every

player i. It is obvious thatw′ also enforcesη. Furthermore, for every(ã, ŷ) in the

support ofµ,
n

∑
i=1

w′(ã, ŷ) =
n

∑
i=1

(w∗
i (ã, ŷ)−w∗

i (ã,y
∗))≤ 0.

Hence, the contractw′ also belongs toW (η). It follows that

L∗(η) =−
n

∑
i=1

E
[
w′

i(ã, ŷ)|σ
∗
]
≥W∗(η).

This, together with (14), implies the following corollary.
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Corollary 1. When an enforceableη is pure and the signal structure is public, linking

has no value, and the minimum long-term efficiency loss can beachieved by a series of

short-term contracts.

The converse of Theorem 1 holds under an additional condition. Following Black-

well (1953), we can think of a player’s action as an experiment to generate information

about the actions and signals of the other players. One experiment is more informative

than another if the latter can be expressed as a garbling of the former. Letηi denote the

marginal distribution of playeri’s action underη. Let γi ∈ ∆(Ai) denote a mixed action

for playeri, whereγi (ai) is the probability of choosingai .

Definition 3. For anyγi ,γ ′i ∈ ∆(Ai), γi is more informative thanγ ′i at the recommen-

dationãi ∈supp(ηi) if for any (ai,yi) ∈ Ai ×Yi , there exists a distributionλ(ai ,yi) (·, ·) ∈

∆(Ai ×Yi) such that for all(ã−i,y−i) ∈ A−i ×Y−i and all(a′i,y
′
i) ∈ Ai ×Yi ,

∑
(ai ,yi)∈Ai×Yi

λ(ai ,yi)

(
a′i ,y

′
i

)
γ (ai) p(y−i ,yi |ã−i,ai)η(ã) = γ ′

(
a′i
)

p
(
y−i ,y

′
i |ã−i,a

′
i

)
η(ã).

(15)

An actionγi is strictly more informative thanγ ′i if γi is more informative thanγ ′i but not

vice versa.

Equation (15) requires that for everỹa−i with η(ãi , ã−i) > 0 (assuming that the

other players are following the recommendations)γi must lead to the same distribution

of y−i that γ ′i induces, and must be more informative thanγ ′i in the Blackwell sense.

Since{λ(ai ,yi)(·)|(ai,yi) ∈ Ai ×Yi} can be interpreted as a mixed reporting strategy, an

equivalent definition is to say thatγi is more informative thanγ ′i if player i can choose

γi and mis-reportyi to mimic the distribution ofy underγ ′i .

Definition 4. An action profileη satisfies the no-free-information condition if

∑
ai∈Ai

γi (ai) ∑
ã−i∈A−i

g(ai, ã−i)η(ã)< ∑
ã−i∈A−i

g(ã)η(ã)

for any i ∈ N, ãi ∈ supp(ηi), andγi strictly more informative thañai at ãi .

In words,η satisfies the no-free-information condition if any deviation that gener-

ates more information for a player must strictly lower his stage-game payoff. Under a

22



non-stationary contract, players have incentives to deviate to actions that generate more

information about the private information of the other players. For example, under the

truncated contract in Case 2 of Section 2, a player will gain if he learns whether the

truncation is likely to occur. The no-free-information condition ensures that no player

can do so undetectably without paying a cost.

Theorem 2. If η is enforceable and satisfies the no-free-information condition, then for

anyε > 0, there exists T0 such that, for any T≥ T0 andδ ≥ 1−T−2, W∗ (η,T,δ ) ≤
L∗(η)+ ε.

Theorem 2 says that the bound established in Theorem 1 is tight whenη satisfies the

no-free-information condition. Note that the condition does not impose a lower bound

on the cost of acquiring more information. AsT becomes large, the potential gain from

having more information can be made arbitrarily small (but not zero).

Theorem 2 implies thatη can be enforced almost efficiently whenL∗(η) = 0. The

following corollary follows from the fact thatL∗(η) = 0 whenη is pure andP is a

singleton.

Corollary 2. An enforceable pure-action profile that satisfies the no-free-information

condition can be enforced almost efficiently in the long termif P is a singleton.

In the literature of repeated games with private monitoring, the full support of the

signal distribution is often invoked as a simplifying assumption. In fact, since full

support implies thatP is a singleton, the assumption, by itself, implies the almost-

efficient enforcement of any enforceable pure-action profile that satisfies the no-free-

information condition.

We prove Theorem 2 by constructing a long-term contract thatapproaches the effi-

ciency bound in the limit. The details of the proof are provided in Appendix C. Below

we outline the main steps of the construction. The contract is a general version of the

one in Case 3 of Section 2. In Case 3 we start with a stage-game contract that strictly

enforces the desired actions(C,C) plus a scoring rule that induces truthful reporting.

The no-free-information condition ensures that there exists a stage-game contract such

that “almost all” deviations can be strictly deterred.
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Definition 5 (Almost-strict enforceability). A contractw almost strictly enforcesη if,

for any playeri and any strategyσi ∈ Σi ,

vi(σ∗;wi)≥ vi
(
σi ,σ∗

−i ;wi
)
,

with the inequality strict for any detectableσi . An action profile is almost-strictly en-

forceable if it can be enforced almost strictly by somew.

Lemma 3. An enforceable action profile that satisfies the no-free-information condition

is almost-strictly enforceable.

Lemma 3 follows from the theory of alternatives. A formal proof is provided in an

online appendix.20 Note that ifη can be enforced by bothw andw′, the latter almost

strictly, then any linear combination ofw andw′ also enforcesη almost strictly. Hence,

the no-free-information condition implies that for anyε > 0, there exists a stage-game

contractw∗ that enforcesη almost strictly with

L(η,w∗)< L∗(η)+ ε. (16)

Underw∗, any deviation (in action or reporting) that is detectable or generates more

information is strictly deterred.21 While there may exist non-detectable deviating ac-

tions that generate the same stage-game payoff and are as informative as the obedient

strategy, a player will not strictly gain from choosing sucha deviating action in any

period.2223

The stage-game contractw∗
i can be decomposed into two components:

w∗
i (ã, ŷ) = w∗

i,a(ã, ŷ)+w∗
i,b(ã, ŷ), (17)

20The converse of Lemma 3 is false as almost-strict enforceability does not rule out pure undetectable

deviations that are strictly more informative than the obedient strategy. As a result, Theorem 2 does not

hold if the no-free-information condition is replaced withalmost-strict enforceability. We provide an

example of this in an online Appendix.
21Since strict enforceability rules out any profitable deviation from the recommendation, it implies the

no-free-information condition. The no-free-informationcondition is weaker than strict enforceability.
22Such deviation will result in the same distribution of outcomes in the current period and does not

generate information that allows the player to deviate profitably in future periods.
23Because of the possibility of such actions, the combinationof enforceability and the no-free-

information condition is weaker than strict enforceability.
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where

w∗
i,a(ã, ŷ) ≡ w∗

i (ã, ŷ)−w∗
i,b(ã, ŷ)

w∗
i,b(ã, ŷ) ≡ E

[
w∗

i

(
ã′, ŷ′

)
|σ∗,P(ã, ŷ)

]
−E

[
w∗

i

(
ã′, ŷ′

)
|σ∗,ωmax

]
.

It is straightforward to verify that

E
[
w∗

i,a(ã, ŷ)|σ
∗,ω
]

= E
[
w∗

i

(
ã′, ŷ′

)
|σ∗,ωmax

]
, ∀i ∈ N, ∀ω ∈ P; (18)

n

∑
i=1

E
[
w∗

i,b(ã, ŷ)|σ
∗
]

= L(η,w∗). (19)

Intuitively, w∗
i,b captures incentives that vary across self-evident events,while w∗

i,a cap-

tures incentives that vary within self-evident events.

From Theorem 1, we know that the loss associated with the self-evident component,

w∗
i,b, cannot be eliminated by linking. We prove Theorem 2 by showing that the loss

associated with the self-evident component,w∗
i,a, can be reduced by linking. As in

Case 3 of Section 2, we replace theT-period version ofw∗
i,a with the combination of a

truncated contract and a set of side-bet contracts. To reduce efficiency loss, the truncated

contract punishes playeri only when theT-period value ofw∗
i,a falls below aT-period

performance standard. The side-bet contracts make up for the truncation by ensuring

that a player who consistently over-performs is also likelyto receive a bonus from the

other players.

The key to ensure that the side bets do not have a perverse effect on the incentives of

the paying players is the following general version of Lemma1 that applies to all stage

games. Consider an outside observer who observes at the end of each period which

element ofP has occurred. With a slight abuse of terminology, we will continue to

refer to the expectation of this outside observer as the “prior” and the expectations of

the players conditional on their private information the “posteriors.” For any outcome

history
(
ãT ,yT

)
and stage-game outcome(ã, ŷ), let f (ã,y|ãT ,yT), f (ãi ,yi |ãT ,yT), and

f (P(ã,y))|ãT ,yT) denote, respectively, the numbers of occurrences of(ã,y), (ãi,yi),

andP(ã,y) in (ãT ,yT). For any(ã,y), the prior expectation off (ã,y|ãT ,yT) is

E0
[

f (ã,y|ãT ,yT)
]
= µ(ã,y|P(ã,y)) f (P(ã,y) |ãT ,yT),

while playeri’s posterior expectation off (ã,y|ãT ,yT) is

Ei
[

f (ã,y|ãT ,yT)
]
= µ(ã,y|ãi,yi) f (ãi,yi |ã

T ,yT).
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For anyξ > 0, let

ZT (ξ ) =
{(

ãT ,yT) |∃(ã,y) ∈ supp(µ) :
∣∣ f (ã,y|ãT ,yT)−E0

[
f (ã,y|ãT ,yT)

]∣∣> ξT
}

denote the set of histories in which the frequency of some outcome is different from the

prior expectation byξT. Similarly, let

ZT
i (ξ ) =

{(
ãT ,yT) |∃(ã,y) ∈ supp(µ) :

∣∣ f (ã,y|ãT ,yT)−Ei
[

f (ã,y|ãT ,yT)
]∣∣> ξT

}

denote the set of histories in which the frequency of some outcome is different from

playeri’s posterior expectation byξT.

Lemma 4 (Posteriors Determine Prior). For any ι > 0, there existsε > 0 such that

for any T and any(ãT ,yT) ∈ supp(µ)T , if (ãT ,yT) ∈ ZT (ι), then(ãT ,yT) ∈ ZT
i (ε) for

some player i.

Proof. See Appendix B.

In words, Lemma 4 says that when the frequencies of realized outcomes are different

from the expected frequencies conditional on information that is self-evident among

players, they must also be different from the expected frequencies conditional of the

private information of some player.24 As in Case 3 of Section 2, using Lemma 4, we

can construct side-bet contracts as follows.

When a playeri consistently over-performs, the frequencies of realized outcomes

must be different from the “prior” expected frequencies. ByLemma 4, there exists a

player j such that they are also different fromj ’s “posterior” expected frequencies. In

the side-bet contracts, playerj is asked to pay a bonus to playeri. This additional bonus

makes up for the truncated incentives.

By the law of large numbers, conditional on anyyT
i , it is extremely unlikely that

yT ∈ ZT
i (ε) whenT is large. That is, playeri believes that he will almost never have to

24Lemma 4 is closely related to a result in Samet (1998) that shows that in an incomplete information

games, if the meet of the players’ information partitions isa singleton, then there is at most one common

prior that can generate the posterior beliefs. Samet (1998)uses this result to show that when a common

prior exists, the players’ higher-order beliefs about any random variable will converge to the prior expec-

tation of the random variable. Our innovation is to exploit thecontinuityof the mapping from the prior

to posteriors to derive implications on the players’ posterior expectations when they repeatedly observe

the realization of a random variable.
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pay the bonus and he will almost sure to receive a bonus when heneeds one. The side

bets, therefore, do not create a perverse effect on the incentives of the paying players.

5 Long-Term Efficiency Loss

Theorems 1 and 2 show that the long-term efficiency of a partnership depends on a

simple criterion; namely, whether incentives need to vary across self-evident events to

enforce the desired action in a stage game. A partnership will be inefficient if there are

some deviations that can only be deterred by incentives thatvary across self-evident

events; for example, a deviation toD in Case 1 of Section 2.

More generally, deviations that satisfy the following two properties can be deterred

only with incentives that vary across the self-evident events. First, a deviating strategy

profile (σ1, . . . ,σn) is calledunattributableif each unilateral deviationσi leads to the

same distribution of outcomes; that is,

πσ1 = · · ·= πσn.

Second, a deviationσi is non-detectable within self-evident eventsif it does not change

the distribution of(ã, ŷ) conditional on any member inP. The set of detectable deviat-

ing strategy profiles that are both unattributable and non-detectable within self-evident

events is

Q(η)≡ {σ ∈ Σ|πσ1 = · · ·= πσn ∈ co({µ(·|ω) | ω ∈ P})/{µ}} .

For anyσi , let

d(σi)≡ ∑
(αi ,ρi)

σi(αi ,ρi) ∑̃
a∈A

(gi (ã−i,αi(ãi))−gi(ã))η (ã)

denote playeri’s gain from the deviationσi . Write l(σi)≡ maxω∈Pπσi(ω)/µ(ω).

The following theorem characterizesL∗ (η) in terms of the primitives of the stage

game.

Theorem 3. For any enforceableη,

L∗(η) = sup
(σ1,...,σn)∈Q(η)

max(∑n
i=1d(σi) ,0)

l (σ1)−1

if Q(η) is nonempty. Otherwise, L∗(η) = 0.
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Proof. See Appendix D.

Intuitively, since(σ1, . . . ,σn) ∈ Q(η) is unattributable, every player must be pun-

ished, and the total punishment must be greater than∑n
i=1d(σi), the total deviating gain.

The resulting efficiency loss is equal to the total deviatinggain multiplied by a factor

that measures the difference betweenπσi andµ. For example, in Case 1 of Section 2,

d(D) = d andl (D) = (1−q)/(1− p). Hence,

∑2
i=1d(D)

l (D)−1
=

2(1− p)d
p−q

.

WhenQ(η) contains multiple deviating strategy profiles, Theorem 3 says thatL∗ (η) is

entirely determined by the member inQ(η) that is the hardest to deter.

An immediate corollary of Theorem 3 is thatL∗(η) = 0 whenQ(η) is empty.

Corollary 3. For any enforceableη, L∗ (η) = 0 if for any player i∈ N, each deviating

strategyσi ∈ Σi/{σ∗
i } satisfies one of the following conditions:

1. There exists(ã, ŷ) such thatπσi (ã, ŷ)> 0 andµ (ã, ŷ) = 0.

2. There existsω ∈ P such thatπσi (·|ω) 6= µ (·|ω) .

3. There exists a player j∈ N such that there is noσ j with πσ j = πσi .

Q(η) is empty if every deviation satisfies one of the following three conditions:

first, it may result in an outcome outside of the support ofµ; second, it may change the

distribution of(ã, ŷ) conditional on someω ∈ P; third, it is attributable. The first type

of deviation can be deterred costlessly by a contract that punishes all players severely

when an out-of-support(ã, ŷ) occurs. The second type can be deterred by a contract

whose total expected payment is constant across members ofP. The third type can be

deterred by a budget-balance contract (Rahman and Obara, 2010).

The literature on repeated games with private monitoring and communication can

be divided into two strands. One strand applies the linking idea to enhance efficiency.

Another strand (Fudenberg, Levine, and Maskin, 1994; Kandori and Matsushima, 1998;

Rahman and Obara, 2010) identifies conditions that ensure that the desired actions can
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be enforced by a budget-balanced contract. Theorem 3, together with Theorem 2, im-

plies that an outcome can be enforced almost efficiently in the long-term if every devi-

ating strategy can be deterredeitherby a contract that is budget-balanced or whose total

expected payment is constant across self-evident events. Theorems 1 and 3 connect the

efficiency results in the repeated-game literature with theinefficiency result of Abreu,

Milgrom, and Pearce (1991). They imply that the two approaches in the repeated-game

literature are, in fact, the only approaches to achieve long-term efficiency.

5.1 Changing information structure

Theorem 3 illustrates how a mechanism designer may improve the long-term efficiency

by changing the information structure. In the following, weconsider two modifications

to Case 1 of Section 2.

Example 1.Suppose, in addition to the public signaly∈ {H,L}, each playeri also

observes a private signalzi ∈ {hi, l i}. The distribution of the private signals has full

support conditional ony and (C,C). The meet of the players’ information partitions

(conditional on(C,C)) is therefore equal to

P : {(H,h1,h2) ,(H,h1, l2) ,(H, l1,h2) ,(H, l1, l2)} ,

{(L,h1,h2) ,(L,h1, l2) ,(L, l1,h2) ,(L, l1, l2)} .

Let p(z1,z2|a,y) denote the conditional probability of(z1,z2). Theorem 3 implies that

if, for somey′ ∈ {H,L},

p
(
·|CC,y′

)
6= p

(
·|DC,y′

)
= p

(
·|CD,y′

)
,

thenL∗(C,C) = 0. By contrast, if for ally∈ {H,L},

p(·|CC,y) = p(·|DC,y) = p(·|CD,y) ,

then L∗(C,C) = 2(1− p)d/(p−q). Intuitively, adding the private signals improves

efficiency only when the signals are informative about the players’ actionsconditional

on the public signal.

Example 2. Instead of adding extra signals, the players may alter the information

structure by changing actions. Suppose that, instead of(C,C), the players implement
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the correlated strategy profileη where

η(C,C) = 1− ε;η(C,D) = η(D,C) = 0.5ε.

Whenε is small,η is close to the pure-strategy profile(C,C). Yet, the support of the

distribution of the action-signal profiles underη is very different from the support under

(C,C). Now eachPi consists of four elements. In particular,

P1 : {CCH,CDH} ,{CCL,CDL} ,{DCH} ,{DCL}

P2 : {CCH,DCH} ,{CCL,DCL} ,{CDH} ,{CDL} ,

and the meet is

P : {CCH,CDH,DCH},{CCL,CDL,DCL} .

It is straightforward to see thatη is enforceable.25 Let αxy
i denote the strategy of

choosingx whenC is recommended andy whenD is recommended. Each player has

four pure action strategies:αCD
i , αDD

i , αCC
i , andαDC

i . In Table 3, each row gives the

probabilities of outcomes with anH signal under a different pure strategy of player 1

(assuming that player 2 playsαCD
2 ).

CCH DCH CDH

αCD
1 (1− ε) p 0.5εq 0.5εq

αDD
1 (1− ε)q 0.5εq 0.5εr

αCC
1 (1− ε) p 0.5ε p 0.5εq

αDC
1 (1− ε)q 0.5ε p 0.5εr

Table 3: The probability for each outcome with anH signal.

Notice that the ratio of the relative probability ofCCH overDCH is strictly higher

when player 1 follows the recommendation and playsαCD
1 . Intuitively, the recommen-

dationDC serves as a “benchmark” for player 1. Given that player 2 is choosingC,

player 1 choosingD minimizes the probability ofH. If player 1 deviates toD when

told to chooseC, he must lower the relative probability ofCCH over DCH. Hence,

every deviation is detectable with respect to the self-evident event{CCH,CDH,DCH}.

25Action D is enforceable because it is a best response toC.
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Theorem 3 implies thatL∗ (η) = 0. Since any unilateral deviation fromη is detectable,

η satisfies the no-free-information condition. Hence, by Theorem 2,η can be enforced

almost efficiently in the long term. The idea behind the example applies generally. We

prove the following theorem in an online Appendix.

Theorem 4. For any strictly enforceableη and anyε > 0, there exists an enforceable

correlated action profileη that satisfies the no-free-information condition,max̃a∈A |η(ã)−
η(ã)| ≤ ε, and L∗(η) = 0.

Thus, even whenη cannot be enforced efficiently in the long term, there is always

a correlated action profile close to it that can be enforced almost efficiently. The only

restriction is thatη can be strictly enforced.26

The idea of using correlated strategies to enhance efficiency comes from Rahman

(2014). As in our case, players in Rahman (2014) are also secretly recommended to

deviate secretly. These deviations serve as “secret tests”that prevent each player from

learning his own punishment. By contrast, in our method, thedeviations from efficient

actions serve as benchmarks that ensure that each player’s punishment is not learned

by other players. Rahman (2014)’s method requires that an outcome beconditionally

identifiable. Our construction, by contrast, applies to all strictly enforceable outcomes.

6 Relation to the Repeated Game Literature

In a seminal paper, Abreu, Milgrom, and Pearce (1991) demonstrate the importance of

the timing of information to the efficiency of long-term partnerships. They consider two

scenarios that correspond to Cases 1 and 2 in Section 2. In thefirst scenario, players

observe a public signal at the end of each period. In this caselinking has no value. In the

second scenario, players observe signals in the previousT periods at the end of everyT

periods. WhenT becomes large, there exists an almost-efficient equilibrium in which

incentives are linked across periods to economize on the cost of imperfect monitoring.

26Theorem 4 does not hold ifη merely satisfies the no-free-information condition but is not strictly

enforceable. The strict enforceability ofη , together with the fact thatη is close toη , ensures that underη
no player can deviate undetectably without strictly reducing his stage-game payoff when recommended

to choose an action in the support ofη .
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Subsequent research applies the second result of Abreu, Milgrom, and Pearce (1991)

to repeated games with private monitoring and communication. While players observe

private signals at the end of every period in a repeated game,they may delay the ar-

rival of information by communicating infrequently. The only problem is that players

may update their beliefs about other players’ signals on thebasis of their own. Compte

(1998) finesses this problem by assuming that signals are conditionally independent.

Obara (2009) considers imperfectly correlated signals andidentifies a necessary and

sufficient condition on the signal distribution that ensures the existence of a perfor-

mance measure that the players cannot learn from their own signals. Rahman (2014)

identifies a similar condition when correlated strategies are allowed.

This paper uses the notion of a self-evident event to generalize the insights of Abreu,

Milgrom, and Pearce (1991). Working with aT-period contracting problem allows us to

focus on the mechanism of linking and abstract away from the problem of implementing

transfers through continuation strategies. Theorem 1 extends the first result of Abreu,

Milgrom, and Pearce (1991). Theorem 2 extends the second result of Abreu, Milgrom,

and Pearce (1991). Taken together, the two theorems describe how the effectiveness of

linking is limited by the information that becomes self-evident at the end of each period.

The proof of Theorem 2, which corresponds to Case 3 in Section2, exploits the

differential beliefs between players. Fong, Gossner, Hörner, and Sannikov (2011), in a

repeated Prisoners’ Dilemma similar to the example in Section 2, use the fact that each

player expects the other player to observe fewer excessL signals than he does to support

an approximately efficient equilibrium. Our approach can beviewed as a generalization

of their result. Since our approach does not depend on players not learning their own

payoffs, it is more general than Compte (1998), Obara (2009), and Rahman (2014)

(which correspond to Case 2 in Section 2). In our earlier workChan and Zhang (2016),

we consider a repeated game in which each player’s private signal is his own stage-

game payoff and the distribution of stage-game payoffs has full support. It shows that

any strictly efficient action profile can be enforced almost efficiently using bilateral side

payments. Theorem 2 clarifies the logic behind Chan and Zhang(2016). It does not

impose restrictions on the monitoring structure and applies to all enforceable action

profiles that satisfy the no-free-information condition. In two recent papers, Sugaya

(2017a,b) derives upper and lower bounds in equilibrium payoffs in repeated games
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with private monitoring and correlated strategies. Sugaya’s method always requires a

correlating device, while ours requires one only when the outcome is correlated.

7 Conclusion

Players in a long-term relationship can reduce incentive costs by linking incentives

across periods, but the value of linking is limited by the information the players obtain

during the course of the relationship. We show that the long-term per-period efficiency

loss in enforcing an action profile is bounded from below by the incentive cost that

becomes self-evident at the end of each period, and the boundis tight when players

cannot obtain free information undetectably.

A Proof of Theorem 1

By definition,W∗(η) ≥ L∗(η). Hence, Theorem 1 holds forT = 1. Suppose the theo-

rem holds forT −1. Consider theT-period case.

Let ã2,T andŷ2,T denote, respectively, the value ofãT andŷT from period 2 through

T. Fix wT ∈ W (η,T,δ ). For eachi and each(ã(1), ŷ(1)) ∈ A×Y, let

wi(ã(1), ŷ(1))≡ ∑
(ã2,T ,ŷ2,T)

wT
i (ã(1), ã

2,T , ŷ(1), ŷ2,T)
T

∏
t=2

µ(ã(t), ŷ(t))

denote the expected value ofwT
i conditional on(ã(1), ŷ(1)) (assuming that players fol-

low the equilibrium strategy). SincewT enforcesη for T periods,w = (w1, . . . ,wn)

must enforceη in the first period. Hence,w∈ W (η).
For eachi, each

(
ã2,T , ŷ2,T

)
and eachω ∈ P, let

wT−1,ω
i

(
ã2,T , ŷ2,T)≡ ∑

(ã(1),ŷ(1))∈ω
wT

i

(
ãT , ŷT)µ ( ã(1), ŷ(1)|ω)

denote the value ofwT
i as a function of

(
ã2,T , ŷ2,T

)
, conditional on(ã(1), ŷ(1)) ∈ ω

(assuming that players follow the equilibrium strategy). Since ω is self-evident, the

continuation game followingω can be treated as a(T −1)-period game with an extra

randomization deviceµ (·|ω), and the contractδ−1wT−1,ω must enforceη in this game.
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By the revelation principle, ifη can be enforced by a contract and some correlating

device, it can be enforced with the same efficiency loss by a correlating device that

directly recommendsη. Hence, having an extra randomization device does not enhance

efficiency. By the supposition that Theorem 1 holds for(T−1), the expected efficiency

loss of the contractδ−1wT−1,ω , which is equal to

−δ−1
n

∑
i=1

wi(ã(1), ŷ(1))µ ( ã(1), ŷ(1)|ω) ,

must be greater than1−δ T−1

1−δ L∗(η). Let

ωmax∈ argmax
ω∈P

n

∑
i=1

E [wi (ã(1), ŷ(1)) |σ∗,ω] .

It follows that

−
n

∑
i=1

E[wT
i (ã

T , ŷT)|σT∗] =− ∑
i,(ã(1), ŷ(1))

wi(ã(1), ŷ(1))µ(ã(1), ŷ(1))

≥L∗(η)− ∑
i,(ã(1),ŷ(1))∈ωmax

wi(ã(1), ŷ(1))µ(ã(1), ŷ(1)|ωmax)

≥L∗(η)+δ
1−δ T−1

1−δ
L∗(η)

=
1−δ T

1−δ
L∗(η).

The first inequality follows from the fact thatw∈ W (η).

B Proof of Lemma 4

We will prove the contrapositive: for anyι > 0, there existsε > 0 such that for all

(ãT ,yT) ∈ supp(µ)T , if (ãT ,yT) /∈ ZT
i (ε) for each playeri, then(ãT ,yT) /∈ ZT(ι).

Fix ãT ,yT andε > 0. Suppose that for each playeri and each(ã,y),

∣∣ f (ã,y|ãT ,yT)−µ(ã,y|ãi ,yi) f (ãi ,yi |ã
T ,yT)

∣∣≤ εT. (20)

Since the game is finite, there is some constantK such that any(ã′,y′) ∈supp(µ)
is reachable from any(ã′′,y′′) ∈ P(ã′,y′) in less thanK steps. That is, there exists

a sequence(ã1,y1), (ã2,y2), . . . , (ãk,yk) and a sequencei1, i2, . . . , ik−1 such that (i)
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(ã1,y1) = (ã′,y′) and(ãk,yk) = (ã′′,y′′), (ii) k≤K, (iii) (ãs,ys)∈P(ã′,y′) for eachs≤ k

and (iv) for anys= 1, . . . ,k− 1, (ãs,ys),(ãs+1,ys+1) ∈ Pis(ã
s,ys) (see, e.g., Aumann,

1976; Geanakoplos, 1994).27

Let c0 ≡ min(ã,y)∈supp(µ) µ(ã,y|P(ã,y)). Substituting(ãs,ys) for (ã,y) andis for i in

(20) and dividing both sides byµ(ãs,ys|P(ãs,ys)), we have
∣∣∣∣∣

f (ãs,ys|ãT ,yT)

µ(ãs,ys|P(ãs,ys))
−

f (ãs
is,y

s
is|ã

T ,yT)

µ(ãs
is,y

s
is|P(ãs,ys))

∣∣∣∣∣≤
εT

µ(ãs,ys|P(ãs,ys))
≤

εT
c0

. (21)

Then, by (21) and property (iv), for anys≤ k−1,
∣∣∣∣

f (ãs,ys|ãT ,yT)

µ(ãs,ys|P(ãs,ys))
−

f (ãs+1,ys+1|ãT ,yT)

µ(ãs+1,ys+1|P(ãs+1,ys+1))

∣∣∣∣

≤

∣∣∣∣∣
f (ãs,ys|ãT ,yT)

µ(ãs,ys|P(ãs,ys))
−

f (ãs
is,y

s
is|ã

T ,yT)

µ(ãs
is
,ys

is
|P(ãs,ys))

∣∣∣∣∣

+

∣∣∣∣∣
f (ãs+1,ys+1|ãT ,yT)

µ(ãs+1,ys+1|P(ãs+1,ys+1))
−

f (ãs+1
is ,ys+1

is |ãT ,yT)

µ(ãs+1
is

,ys+1
is

|P(ãs+1,ys+1))

∣∣∣∣∣

≤
2εT
c0

.

(22)

Applying (22) repeatedly, we have
∣∣∣∣

f (ã′,y′|ãT ,yT)

µ(ã′,y′|P(ã′,y′))
−

f (ã′′,y′′|ãT ,yT)

µ(ã′′,y′′|P(ã′,y′))

∣∣∣∣≤
2KεT

c0
.

If follows that

f (ã′′,y′′|ãT ,yT)> f
(
P
(
ã′,y′

)
|ãT ,yT)µ(ã′′,y′′|P

(
ã′,y′

)
), (23)

if
f (ã′,y′|ãT ,yT)

µ(ã′,y′|P(ã′,y′))
− f

(
P
(
ã′,y′

)
|ãT ,yT)> 2KεT

c0
.

Note that (23) would apply to all(ã′′,y′′) ∈ P(ã′,y′). But this is impossible as

∑
(ã′′,y′′)∈P(ã′,y′)

f (ã′′,y′′|ãT ,yT) = f
(
P
(
ã′,y′

)
|ãT ,yT)

= ∑
(ã′′,y′′)∈P(ã′,y′)

µ(ã′′,y′′|P
(
ã′,y′

)
) f
(
P
(
ã′,y′

)
|ãT ,yT) .

27Recall that(ã′i ,y
′
i) = (ãi,yi) for all (ã′,y′) ∈ Pi (ã,y).
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Thus, if (20) holds for alli and(ã,y), then for all(ã′,y′)

f (ã′,y′|ãT ,yT)− f
(
P
(
ã′,y′

)
|ãT ,yT)µ(ã′,y′|P

(
ã′,y′

)
)≤

2KεTµ(ã′,y′|P(ã′,y′))
c0

≤
2KεT

c0
.

(24)

By similar logic,

−
(

f (ã′,y′|ãT ,yT)− f
(
P
(
ã′,y′

)
|ãT ,yT)µ(ã′,y′|P

(
ã′,y′

)
)
)
≤

2KεT
c0

. (25)

Combining (24) and (25), we have that for any(ãT ,yT), if (20) holds for alli and(ã,y),

then for all(ã′,y′)

∣∣ f (ã′,y′|ãT ,yT)− f
(
P
(
ã′,y′

)
|ãT ,yT)µ(ã′,y′|P

(
ã′,y′

)
)
∣∣≤ 2KεT

c0
.

The contrapositive of the lemma can be obtained by settingε = ιc0/2K.

C Proof of Theorem 2

We prove Theorem 2 in two steps. In Step 1, we construct aT-period contractwT∗∗. In

Step 2, we show thatwT∗∗ enforcesη and achieves the efficiency boundL∗(η)+ ε.

C.1 Step 1. Constructing theT-period contract wT∗∗.

Recall that(w∗
i,a,w

∗
i,b) is the decomposition ofw∗

i in (17). LetwT∗
i,a , wT∗

i,b , andwT∗
i denote

the T-period versions ofw∗
i,a, w∗

i,b, andwi , respectively. That is, for alli ∈ N and all

(ãT , ŷT),

wT∗
i,a(ã

T , ŷT) =
T

∑
t=1

δ t−1w∗
i,a(ã(t), ŷ(t))

wT∗
i,b(ã

T , ŷT) =
T

∑
t=1

δ t−1w∗
i,b(ã(t), ŷ(t))

wT∗
i (ãT , ŷT) =

T

∑
t=1

δ t−1w∗
i (ã(t), ŷ(t)) .
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The actionη can be enforced by a contract that payswT∗
i,a +wT∗

i,b to each playeri. To

prove Theorem 2, we show thatwT∗
i,a can be replaced by a truncated contract similar to

the one in Case 3 of Section 2. Fix some smallκ > 0. Define

R+
i (ã

T , ŷT ,κ) = max
(
0,wT∗

i,a(ã
T , ŷT)−E[wT∗

i,a(ã
T′, ŷT′)|σT∗]−κT

)
;

R−
i (ã

T , ŷT ,κ) = min
(
0,wT∗

i,a(ã
T , ŷT)−E[wT∗

i,a(ã
T′, ŷT′)|σT∗]−κT

)
.

Intuitively, E[wT∗
i,a(ã

T′, ŷT′)|σT∗] +κT can be taken as a long-term performance stan-

dard, andR+
i andR−

i measure, respectively, the extent of over- and under-performance

with respect to the standard.

Let

BT
i (κ) =

{(
ãT , ŷT) ∈ AT ×YT |R+

i (ã
T , ŷT ,κ)> 0

}

denote the set of
(
ãT , ŷT

)
where playeri over-performs. By (18), the expected value

of wT∗
i,a is constant acrossP. Hence, for playeri to over-perform, the distribution of

outcomes must deviate from the distribution of outcomes conditional on the distribution

of ω ∈ P. It then follows from Lemma 4 that any
(
ãT , ŷT

)
∈ BT

i (κ) must deviate from

the posterior expectation of some player. Formally, there existsξ > 0 such that

BT
i (κ)⊆ ∪ j∈NZT

j (ξ ) . (26)

(Recall thatZT
i (ξ ), defined in Section 4, is the set of

(
ãT , ŷT

)
that deviates from the

posterior expectation of playeri by ξT.)

Define a new contractwT∗∗. For all(ãT , ŷT), set

wT∗∗
i (ãT , ŷT ,κ) = R−

i (ã
T , ŷT ,κ)+wT∗

i,b

(
ãT , ŷT)

+

[
R+

i (ã
T , ŷT ,κ)

(
1− Ii(ã

T , ŷT ,κ)
)
−∑

j 6=i

R+
j (ã

T , ŷT ,κ)Ii(ãT , ŷT ,κ)

]
, (27)

where

Ii
(
ãT , ŷT ,κ

)
=

{
1 if

(
ãT , ŷT

)
∈ ZT

i (ξ ),
0 otherwise.

UnderwT∗∗, playeri receives the self-evident componentwT∗
i,b in full, and pays an under-

performance penalty (R−
i ) whenwT∗

i,a falls below the performance standard. In addition,

he receives an over-performance bonus whenwT∗
i,a is above the performance standard
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andIi = 0, and pays an over-performance bonus to each playerj whenwT∗
j ,a is above the

performance standard andIi = 1.

The total payment is negative for all
(
ãT , ŷT

)
. By definition, for all

(
ãT , ŷT

)
,

n

∑
i=1

(
R−

i (ã
T , ŷT ,κ)+wT∗

i,b

(
ãT , ŷT))≤ 0.

The sum of the third component inside the square bracket in (27) is also negative, as, by

(26), for any playeri and any
(
ãT , ŷT

)
∈ BT

i (κ), I j
(
ãT , ŷT ,κ

)
= 1 for some playerj.

Rearranging the terms on the right-hand side of (27), we can write

wT∗∗
i (ãT , ŷT ,κ) = wT∗

i (ãT , ŷT)−E[wT∗
i,a(ã

T′, ŷT′)|σT∗]−κT −φi(ã
T , ŷT ,κ), (28)

where

φi(ã
T , ŷT ,κ) =

n

∑
j=1

R+
j (ã

T , ŷT ,κ)Ii(ãT , ŷT ,κ)

measures the distortion in incentives.

C.2 Step 2. Showing thatwT∗∗ enforcesη and achieves the efficien-

cy bound L∗(η)+ ε.

We say that a pure-action strategyαi is equally informative toα∗
i if for each ãi that

may be recommended with strictly positive probability under η, there is a one-to-one

mappingχãi
: Yi →Yi such that for any(ã−i ,y−i) ∈ A−i ×Y−i ,

p(yi ,y−i |αi (ãi) , ã−i) = p
(
χãi (yi) ,y−i |ã

)
.

We say that a pure stage-game strategy(αi,ρi) is a duplicate for(α∗
i ,ρ∗

i ) if αi is as

informative asα∗
i andρi (ãi ,αi(ãi), ·) = χ−1

ãi
.

Note that if some(αi ,ρi) is not a duplicate of(α∗
i ,ρ∗

i ), then either it is detectable

or αi is strictly more informative thanα∗
i . The number of pure stage-game strategies is

finite. Sincew∗
i is almost strict andη satisfies the no-free-information condition, there

exists∆0 > 0 such that for all non-duplicate(αi ,ρi),

vi(σ∗;w∗
i )−vi(σ∗

−i ,αi ,ρi;w
∗
i )> ∆0. (29)

Becauseη is enforceable, any duplicate action strategy must generate a lower stage-

game payoff for playeri thanα∗
i . Playeri, therefore, will receive a higher payoff if he

38



replaces any duplicate action strategyαi in some periodt with α∗
i and then, in the

reporting stage, reports the period-t signal truthfully. Hence, to prove Theorem 2, it

suffices to show that any deviation to a non-duplicate strategy will make a player strictly

worse off.

If σT
i deviates fromσT∗

i , there must be a first time a deviation occurs. There are two

types of first-time non-duplicate deviations. First, a player may choose an action that is

not equally informative toα∗
i after some history. Alternatively, the player may follow

the recommendations in allT periods but lie about the signal of a particular period at

the end.

We first consider the first type of deviations. LetHT∗
i denote the set of histories that

player i may observe during theT-period contract underσT∗. SupposeσT
i first pre-

scribes a non-equally-informative action in periodt afterhi ∈ HT∗
i . Let vT

i

(
σT ;wT

i ,hi
)

denote playeri’s expected discounted payoff conditionalσT andhi. Recall thatwT∗∗
i is

the truncated contract with side bets in (27) andwT∗
i is theT-period version ofw∗

i .

By (28), we can write

vT
i (σT

i ,σT∗
−i ;wT∗∗

i ,hi) =

1−δ
1−δ T

(
Vi(σT

i ;hi)−E[wT∗
i,a(ã

T′, ŷT′,κ)|σT∗]−κT −E[φi(ã
T , ŷT ,κ)|σT∗

−i ,σ
T
i ,hi ]

)
,

where

Vi(σT
i ;hi)≡ E

[ T

∑
s=1

δ s−1(gi(a(s))+w∗
i (ã(s), ŷ(s)))

∣∣∣∣σ
T∗
−i ,σ

T
i ,hi

]

denotes playeri’s discounted payoff conditional onhi underwT∗
i . It follows that

vT
i (σ

T∗;wT∗∗
i ,hi)−vT

i

(
σT∗
−i ,σ

T
i ;wT∗∗

i ,hi
)

=
1−δ

1−δ T

(
Vi(σT∗

i ;hi)−Vi(σT
i ;hi)−E[φi(ã

T , ŷT ,κ)|σT∗,hi]+E[φi(ã
T , ŷT ,κ)|σT∗

−i ,σT
i ,hi ]

)

≥
1−δ

1−δ T

(
Vi(σT∗

i ;hi)−Vi(σT
i ;hi)−E[φi(ã

T , ŷT ,κ)|σT∗,hi]
)
.

The last inequality follows from the fact thatφi is always positive.

SinceσT
i first prescribes a non-equally-informative action in period t, it will lower

playeri’s payoff (including the stage-game payment) by∆0 in that period. This, together

with the fact that underwT∗
i the stage-game payoff plus payment is maximized byσT∗

i
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in each periods 6= t, implies that

Vi
(
σT∗

i ;hi
)
−Vi

(
σT

i ;hi
)

≥δ t−1(E[gi(a(t))+w∗
i (ã(t), ŷ(t))|σ

T∗,hi ]−E[gi(a(t))+w∗
i (ã(t), ŷ(t))|σ

T∗
−i ,σ

T
i ,hi ]

)

≥δ t−1∆0.

The following claim shows that the expected value ofφi(ãT , ŷT ,κ) conditional on

any private information playeri may learn during the game on the equilibrium path

diminishes uniformly and exponentially withT.

Recall thatξ is the constant defined in (26) and it depends only onκ .

Claim 1. There exists c1 > 0 such that for all i∈ N, T ≥ 1, and hi ∈ HT∗
i ,

E
[
φi(ã

T , ŷT ,κ)|σT∗,hi
]
< c1T exp

(
−

ξ 2

2
T

)
.

A proof of Claim 1 is provided in an online appendix. Granted Claim 1, we can

chooseT0 large enough such that for allT ≥ T0 andδ ≥ 1−T−2 (which ensures that

(1−δ T)/(1−δ ) is on the order ofT asδ tends to 1),

E[φi(ã
T , ŷT ,κ)|σT∗,hi]< δ T−1∆0.

This proves that anyσT
i that prescribes a non-equally-informative action is not opti-

mal. The argument for following the recommendations but misreporting the signals is

similar.

Finally, by (28), the per-period efficiency loss is

1−δ
1−δ T

n

∑
i=1

−E
[
wT∗∗

i |σT∗]

=−
1−δ

1−δ T

n

∑
i=1

E
[
wT∗

i

(
ãT , ŷT)−E[wT∗

i,a(ã
T′, ŷT′)|σT∗]−κT −φi(ã

T , ŷT ,κ)|σT∗]

=L(η,w∗)+
1−δ

1−δ T

n

∑
i=1

(
E[φi(ã

T , ŷT ,κ)|σT∗]+κT
)
.

By Claim 1, whenT is sufficiently large, we can chooseκ small enough such that

1−δ
1−δ T

n

∑
i=1

(
E[φi(ã

T , ŷT ,κ)|σT∗]+κT
)
≤ ε0,
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for someε0 ≤ L∗(η) + ε − L(η,w∗). (Note that(1− δ )/(1− δ T) is of order 1/T.)

Hence,

W
(
η,T,δ ,wT∗∗

)
=

1−δ
1−δ T

n

∑
i=1

−E
[
wT∗∗

i |σT∗]

≤L∗(η)+ ε.

D Proof of Theorem 3

Any w that enforcesη must satisfy the constraint that for eachi and eachσ ∈ Q(η),

∑
(ã,ŷ)∈A×Y

(µ (ã, ŷ)−πσi (ã, ŷ))wi (ã, ŷ)≥ d(σi) . (30)

Sinceσ ∈ Q(η), for all ω ∈ P,

E [wi (ã, ŷ) |µ,ω] = E [wi (ã, ŷ) |πσi ,ω] . (31)

Substituting (31) into (30), and summing overi, we have

∑
ω∈P

(µ (ω)−πσi (ω))
n

∑
i=1

E [wi (ã, ŷ) |µ,ω]≥
n

∑
i=1

d(σi) . (32)

Hence,

L(η,w) = ∑
ω∈P

µ (ω)

(
−

n

∑
i=1

E [wi (ã, ŷ) |µ,ω]+max
ω ′∈P

n

∑
i=1

E
[
wi (ã, ŷ) |µ,ω ′

]
)

≥ ∑
ω∈P

µ (ω)

πσi (ω)
µ(ω) −1

l (σ1)−1

(
−

n

∑
i=1

E [wi (ã, ŷ) |µ,ω]+max
ω ′∈P

n

∑
i=1

E
[
wi (ã, ŷ) |µ,ω ′

]
)

= ∑
ω∈P

µ (ω)−πσi (ω)

l (σ1)−1

n

∑
i=1

E [wi (ã, ŷ) |µ,ω]

≥
∑n

i=1d(σi)

l (σ1)−1
,

where the first inequality follows from the definition ofl(σi), and the last inequality

follows from (32). Since the argument applies to everyw that enforcesη,

L∗ (η) ≥ ∑n
i=1d(σi)

l (σ1)−1
, ∀σ ∈ Q(η).
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To show the other direction of the theorem, let

L ≡

{
supσ∈Q(η)

∑n
i=1 d(σi)

l(σ1)−1 , if Q(η) 6= /0;

0, otherwise.

It remains to show that

L∗(η)≤ L. (33)

By definition, a contractw enforcesη with L(η,w) ≤ L if and only if

∑
(ã,ŷ)∈A×Y

[παi ,ρi(ã, ŷ)−µ(ã, ŷ)]wi(ã, ŷ) ≤ −d(αi ,ρi) ∀(αi ,ρi, i); (34)

n

∑
i=1

∑
(ã,ŷ)∈A×Y

[−µ(ã, ŷ)+µ(ã, ŷ|ω)]wi(ã, ŷ) ≤ L ∀ω ∈ P. (35)

By the theorem of alternatives (see, e.g., Proposition 5.1.2 of Bertsekas, 2009), (34) and

(35) does not have a solution inw if and only if there exist{λi(αi ,ρi) ≥ 0 | (αi ,ρi, i)}

and{ν(ω)≥ 0 | ω ∈ P} such that

∑
(αi ,ρi)

λi(αi ,ρi) [παi ,ρi( ·)−µ( ·)]+ ∑
ω∈P

ν(ω) [−µ( ·)+µ( · |ω)] = 0 ∀i (36)

n

∑
i=1

∑
(αi ,ρi)

λi(αi,ρi)d(αi,ρi)− ∑
ω∈P

ν(ω)L > 0. (37)

Suppose that (36) and (37) hold. From (37),λ ≡ maxi∈N ∑(αi ,ρi)λi(αi,ρi)> 0. We can,

therefore, define a mixed strategyσi for each playeri such that, for all(αi ,ρi, i),

σi(αi,ρi)≡

{ λi(αi ,ρi)

λ
, if (αi ,ρi) 6= (α∗

i ,ρ∗
i );

1−∑(αi ,ρi) 6=(α∗
i ,ρ∗

i )
λi(αi ,ρi)

λ
, otherwise.

Using the definition ofσi , we can rewrite (36) and (37) as

λ [πσi( ·)−µ( ·)]+ ∑
ω∈P

ν(ω) [−µ( ·)+µ( · |ω)] = 0 for eachi (38)

n

∑
i=1

λd(σi)− ∑
ω∈P

ν(ω)L > 0. (39)

Fix a contractw. Multiplying each (38) bywi (·), then summing over alli and all
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(ã, ŷ) ∈ A×Y, and adding (39), we have

n

∑
i=1

λ

(

∑
(ã,ŷ)∈A×Y

[πσi(ã, ŷ)−µ(ã, ŷ)]wi (ã, ŷ)+d(σi)

)

+ ∑
ω∈P

ν(ω)

(

∑
(ã,ŷ)∈A×Y

[−µ(ã, ŷ)+µ(ã, ŷ|ω)]wi (ã, ŷ)−L

)
> 0.

This means that ifη cannot be enforced by anyw with L(η,w) ≤ L, then there must

existσ such that, for anyw with L(η,w) ≤ L,

vi(σi,σ∗
−i ;wi)> vi(σ∗;wi) for some playeri.

We prove (33) by showing that for allσ ∈ Σ, there exists a contractw such that

vi(σi ,σ∗
−i ;wi)−vi(σ∗;wi) ≤ 0 for all i andL(η,w) ≤ L. By Theorem 4(i) of Rahman

and Obara (2010), ifσ is either unprofitable or attributable, then it can be deterred

by a contract with total transfer summing to zero. It remainsto considerσ such that

πσ1 = · · ·= πσn and∑n
i=1d(σi)> 0. Sinceη is enforceable,πσi 6= µ.

Case 1. If there exists(ã, ŷ) such thatπσi (ã, ŷ) > 0 andµ(ã, ŷ) = 0, thenσ can

be deterred by a contractw that punishes every player severely whenever(ã, ŷ) occurs.

Clearly,L(η,w) = 0.

Case 2. Suppose thatπσi (·|ω) 6= µ (·|ω) for someω ∈ P. Then πσi(ã, ŷ|ω) >

µ (ã, ŷ|ω) for some(ã, ŷ) ∈ ω. We define a contractw by letting, for eachi,

wi(ã
′, ŷ′) =





−c, if (ã′, ŷ′) = (ã, ŷ);

−c·µ (ã, ŷ|ω) , if (ã′, ŷ′) /∈ ω;

0, otherwise.

ThenE[wi(ã′, ŷ′)|σ∗,ω ′] = −c · µ (ã, ŷ|ω) for all ω ′ ∈ P. Hence,L(η,w) = 0. More-

over,

vi(σi ,σ∗
−i ;wi)−vi(σ∗;wi) =−c· (πσi(ã, ŷ|ω)−µ (ã, ŷ|ω))πσi(ω)+d(σi)≤ 0,

whenc is large enough.

Case 3. Suppose thatσ ∈ Q(η). Let ω solve maxω ′∈P
πσi (ω ′)
µ(ω ′) . We define a contract

w by letting, for eachi,

wi(ã, ŷ) =

{
−

d(σi)
πσi (ω)−µ(ω) , if (ã, ŷ) ∈ ω;

0, otherwise.
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ThenL(η,w) = ∑n
i=1d(σi)

πσ1(ω)−µ(ω)µ(ω) = ∑n
i=1 d(σi)

l(σ1)−1 and

vi(σi ,σ∗
−i;wi)−vi(σ∗;wi) =−

d(σi)

πσi(ω)−µ(ω)
· (πσi(ω)−µ(ω))+d(σi) = 0.
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