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Abstract

The Agreement Theorem (Aumann, 1976) states that if two Bayesian agents start
with a common prior, then they cannot have common knowledge that they hold dif-
ferent posterior probabilities of some underlying event of interest. In short, the two
agents cannot “agree to disagree” This result applies in the classical domain where
classical probability theory applies. But in non-classical domains (such as the quan-
tum world), classical probability theory does not apply, and so we cannot assume that
the same result holds when agents observe non-classical phenomena. Inspired prin-
cipally by their use in quantum mechanics, we employ signed probability measures
(“quasi-probabilities”) to investigate the epistemics of the non-classical world and ask,
in particular: Is disagreement possible when agents use signed probabilities?

1 Introduction

In the domain of classical probability theory, Aumann (1976) proved the fundamental result
that Bayesian agents cannot agree to disagree. Two agents Alice and Bob begin with a

∗Stern School of Business, Tandon School of Engineering, NYU Shanghai, New York University, New
York, NY 10012, U.S.A., adam.brandenburger@stern.nyu.edu

†Instituto de Ciencias Matemáticas, 28049 Madrid, Spain, p.con.tejada@gmail.com
‡HHL Leipzig Graduate School of Management, 04109 Leipzig, Germany, plamura@hhl.de
§Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid,

28031, Madrid, Spain, g.scarpa@upm.es
¶DCI Solutions, Aberdeen, MD 21005, U.S.A., ksteverson@dci-solutions.com



common prior probability distribution on a state space. Next, they each receive different
private information about the true state and form their conditional (posterior) probabilities
qA and qB of an underlying event of interest. Then, if these two values qA and qB are common
knowledge between Alice and Bob, they must be equal: qA = qB. By “common knowledge”
is meant that Alice knows Bob’s probability is qB, Bob knows Alice’s probability is qA, Alice
knows Bob knows her probability is qA, Bob knows Alice knows his probability is qB, and so
on indefinitely. This is the Agreement Theorem.

The role of common knowledge in this result is crucial. To conclude that qA = qB, it is not
sufficient that Alice and Bob know each other’s probabilities. It is not even enough that they
know these probabilities, and know they know them to some high finite order. Examples in
which this condition allows qA ̸= qB are well known in the interactive epistemology literature
(Geanakoplos and Polemarchakis, 1982; Aumann and Brandenburger, 1995). The condition
of common knowledge is tight.

The Agreement Theorem is considered a basic requirement in classical epistemics. It has
been used to show that two risk-neutral agents, starting from a common prior, cannot agree
to bet with each other (Sebenius and Geanakoplos, 1983), to prove “no-trade” theorems for
efficient markets (Milgrom and Stokey, 1982), and to establish epistemic conditions for Nash
equilibrium (Aumann and Brandenburger, 1995).

In this paper we ask what is the status of the Agreement Theorem when classical probabil-
ity theory does not apply. In the physical domain, the canonical case is quantum mechanics,
where the fundamental Bell’s Theorem (Bell, 1964) says that no “local hidden-variable” the-
ory can model the results of all quantum experiments. However, it can be shown (Abramsky
and Brandenburger, 2011) that if signed probabilities on states are allowed, then there is a
phase-space representation for all no-signaling models (Popescu and Rohrlich, 1994), which
is a family of models that (strictly) includes those realizable within quantum mechanics. A
phase-space model can be thought of as a canonical hidden-variable model, where the differ-
ent states are precisely the different values the hidden variable can take. A signed probability
measure is a measure that can assign negative values to certain events, while still assigning
probability 1 to the whole space.

In fact, the use of signed probabilities in quantum mechanics goes back even earlier, to
the Wigner “quasi-probability distribution” (Wigner, 1932), which is widely used in quantum
mechanics – for example, in the field of quantum optics (Kenfack and Życzkowski, 2004).
Dirac (1942) and Feynman (1987) also promoted the use of quasi- or signed probabilities in
quantum mechanical calculations.

Bell’s Theorem applies to a two-qubit system. Signed probabilities also arise in phase-
space representations of a one-qubit system, under certain conditions. Brandenburger, La

2



Mura, and Zoble (2022) derive the qubit from an entropic uncertainty principle stated on
phase space. In their framework, there are quantum states whose only phase-space repre-
sentations that respect the uncertainty bound involve negative probabilities. Onggadinata,
Kurzyínski, and Kaszlikowski (2023) derive the qubit with its full dynamics via an entropic
invariance principle involving signed probabilities.

In probability theory, there is a finite analog to the de Finetti representation theorem
for infinite sequences of exchangeable random variables (de Finetti, 1931), if mixing is via
a signed probability measure (Dellacherie and Meyer, 1982, pp.46-47; Jaynes, 1986; Kearns
and Székely, 2006; Janson, Konstantopoulos, and Yuan, 2016). Turning again to physics,
this permits an exchangeability derivation of Fermi-Dirac statistics, paralleling an infinite ex-
changeability derivation of Bose-Einstein statistics (Bach, Blank, and Francke, 1985; Kearns
and Székely, 2006). (To apply the infinite de Finetti theorem, one supposes that infinitely
many particles are distributed over a finite-state system. The Pauli exclusion principle pre-
cludes infinitely many particles in the Fermi-Dirac case, so that only finite exchangeability
can be assumed.)

Decision theory is another area in which signed probabilities have emerged. Perea (2022)
axiomatizes expected utility theory for conditional preference relations, where such a relation
assigns to every possible probability measure on a (finite) set of states that the decision
maker might hold, a preference relation over the decision maker’s (finite) set of actions.
The motivation is game theory, where one typically specifies the game matrix, and hence
the players’ payoff or utility functions, but one thinks of a player as contemplating different
beliefs (probability measures) they might hold concerning the actions chosen by other players.
The question is when is such a conditional preference relation representable by a single utility
function, with the expectation of utility taken under the given probability measure. Perea
(2022) proposes a set of axioms that yields such a representation, but the axiomatization
requires the decision maker to entertain signed as well as ordinary probability measures on
the states.

A crucial common feature in the quantum mechanical and statistical mechanical applica-
tions of signed probabilities is that all observable events must receive probability between 0
and 1. It is less clear-cut in the decision-theoretic application that this condition must hold,
since the setting might be a one-off decision and probabilities could be subjective rather
than frequentist. This said, in the subjective case, too, it would be decidedly unorthodox to
allow negative probabilities on observable events. To be “conservative,” we shall require all
observable events in the formalism of this paper to receive probability in [0, 1].

Returning to the classical Agreement Theorem as our starting point, we establish three
results, where the second and third use the “common certainty” modality (to be defined
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later) in place of common knowledge:

1. In a non-classical domain, with signed probabilities, and as in the classical domain, it
cannot be common knowledge that two agents assign different probabilities to an event
of interest.

2. In a non-classical domain, and unlike the classical domain, it can be common certainty
that two agents assign different probabilities to an event of interest.

3. In a non-classical domain, it cannot be common certainty that two agents assign dif-
ferent probabilities to an event of interest, if communication of their common certainty
is possible – even if communication does not take place.

We formulate and prove these results in the following sections of the paper.

2 Example

Figure 1: Singular disagreement in the non-classical world

Figure 1 depicts an epistemic state space that contains a non-classical component. There
are four states, labeled ω1 through ω4. There is a common prior, and the prior probabilities
of the states are given in parentheses. Notice that the (prior) probability of state ω3 is
negative, which cannot, of course, happen in a classical setting. There are two agents, Alice
and Bob. Alice receives private information about the true state as represented by the red
sets partitioning the state space, while Bob receives private information as represented by
the blue sets. Finally, we are interested in the agents’ respective (conditional) probabilities
of the event E = {ω1, ω3, ω4} when the true state of the world is ω1.
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Letting p denote the common prior (which is a signed probability measure), we can
calculate Alice’s probability of E as

p({ω1, ω3, ω4} ∩ {ω1})
p({ω1}) = p({ω1})

p({ω1}) =
+1

4
+1

4
= 1,

and Bob’s probability of E as

p({ω1, ω3, ω4} ∩ {ω1, ω2, ω3})
p({ω1, ω2, ω3}) = p({ω1, ω3})

p({ω1, ω2, ω3}) =
+1

4 − 1
4

+1
4 + 1

2 − 1
4

= 0
+1

2
= 0.

Thus, at state ω1, Alice assigns probability 1 to E and Bob assigns probability 0 to E.
Next, we find the event, which we depict F , that Bob assigns probability 0 to E. We know
that ω1 ∈ F . Bob’s probability of E is again 0 at states ω2 or ω3. At state ω4, Bob’s
probability of E is

p({ω1, ω3, ω4} ∩ {ω4})
p({ω4}) = p({ω4})

p({ω4}) =
+1

2
+1

2
= 1,

so that F = {ω1, ω2, ω3}. At state ω1, Alice’s probability of F is

p({ω1, ω2, ω3} ∩ {ω1})
p({ω1}) = p({ω1})

p({ω1}) =
+1

4
+1

4
= 1.

Thus, at state ω1, Alice assigns probability 1 to E while at the same time she assigns
probability 1 to Bob’s assigning probability 0 to E. Say Alice is certain of an event E at a
state ωi if she assigns probability 1 to E, conditional on the information she has at state ωi.
Then the scenario we have just constructed is one where there is a state at which Alice is
certain of an event E, and Alice is certain Bob is certain of the complementary event Ec. Call
this a situation of singular disagreement (like calling two probability measures mutually
singular). Evidently, this phenomenon can arise in a non-classical environment. In the next
section, we will verify that singular disagreement cannot arise in a classical environment.

In a model with negative probabilities, events that receive probability in [0, 1] are observ-
able in the sense that they can be associated to frequencies. In the example, all partition
cells, namely {ω1} , {ω2, ω3, ω4} , {ω1, ω2, ω3}, and {ω4}, receive probability in (0, 1]. So, they
are observable and, in fact, strict positivity of these events ensures that the agents can also
condition on them. (Less central, all events in the join (coarsest common refinement) of the
two agents’ partitions, namely, {ω1} , {ω2, ω3}, and {ω4}, also receive probability in (0, 1], so
that, if the agents pooled their information, they could also observe and condition on the
resulting events.) The event E receives probability in (0, 1], which means it is observable
and non-trivial. We will consider observability further in Section 4.
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3 General Formulation

For the general case, let the state space be a finite set Ω, and let Alice and Bob have partitions
of Ω denoted by PA and PB, respectively. Let p denote the common (possibly signed) prior
probability measure on Ω. We will assume throughout that all members of the partitions
PA and PB receive non-zero probability, so that conditioning is well defined.

We begin with a remark about the classical domain.

Remark 1. Suppose that p is non-negative and fix an event E. Let F be the event that Bob
assigns probability 0 to E, i.e.,

F = {ω′ ∈ Ω : p(E | PB(ω′)) = 0} .

Then there is no state ω at which Alice assigns probability 1 to E ∩ F .

Proof. Suppose there is such a state ω. Then p(E | PA(ω)) = 1 and p(F | PA(ω)) = 1. Note
that we can write F = ⋃

i∈I πi where each πi ∈ PB and I is a (finite) index set. In particular,
there is a πi ∈ PB such that p(E | πi) = 0 and p(πi | PA(ω)) > 0.

We now have three events A (= PA(ω)), B (= E), and C (= πi) such that p(B | A) = 1,
p(B | C) = 0, and p(C | A) > 0. From p(B | A) = 1 we get p(A ∩ (C\B)) = 0. From
p(B | C) = 0 we get p(A ∩ (B ∩ C)) = 0. It follows that p(A ∩ C) = 0, contradicting
p(C | A) > 0.

Remark 1 says that singular disagreement is impossible in the classical domain, verifying
that this phenomenon is non-classical. The example of the previous section makes use of the
fact that signed probability measures do not satisfy monotonicity. Specifically, in the proof
just given, the step p(A ∩ (B ∩ C)) = 0 because p(B | C) = 0 fails with signed probabilities.

Next, we provide formal definitions of knowledge, common knowledge, certainty, and
common certainty.

Definition 1. Alice knows an event E at state ω if PA(ω) ⊆ E.

At state ω, Alice’s information is that the true state lies in PA(ω). It follows that the true
state therefore lies in any superset of PA(ω), i.e., that Alice knows all such events obtain.
This is the standard definition of knowledge in the interactive epistemology literature. Some
notation: The meet (finest common coarsening) of Alice’s and Bob’s partitions is written
PA ∧ PB. The member of the meet that contains state ω is written (PA ∧ PB)(ω).

Definition 2. An event E is common knowledge between Alice and Bob at a state ω if
(PA ∧ PB)(ω) ⊆ E.
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This definition of common knowledge is easily shown to be equivalent to the recursive
definition (Alice knows E occurs, Bob knows E occurs, Alice knows Bob knows E occurs,
etc.). Aumann (1976) proves this fact.

Definition 3. Alice is certain of an event E at state ω if p(E | PA(ω)) = 1.

At state ω, Alice’s information is that the true state lies in PA(ω). She is certain of
E if she assigns probability 1 to E, conditional on this information. This is the standard
epistemic definition of certainty.

Next, fix an event E and probabilities qA and qB. We define the event that it is common
certainty that Alice assigns probability qA to E and Bob assigns probability qB to E. To do
so, let

A0 = {ω ∈ Ω : p(E | PA(ω)) = qA} ,

B0 = {ω ∈ Ω : p(E | PB(ω)) = qB} ,

and, in addition, let

An+1 = An ∩ {ω ∈ Ω : p(Bn | PA(ω)) = 1} ,

Bn+1 = Bn ∩ {ω ∈ Ω : p(An | PB(ω)) = 1} ,

for n ≥ 0. The set A0 contains all the states where Alice assigns probability qA to E.
The set A1 contains all the states where the previous statement for Alice is true and, in
addition, Alice is certain “Bob assigns probability qB to E.” The set A2 contains all the
states where the previous statement for Alice is true and, in addition, Alice is certain “Bob
assigns probability qB to E and he is certain she assigns probability qA to E.” And so on.
In this way, the set An contains all the states where Alice has nth-order certainty of E.
Likewise for Bob and the sets Bn, for all n.

Definition 4. It is common certainty at a state ω∗ that Alice assigns probability qA to E

and Bob assigns probability qB to E if

ω∗ ∈
∞⋂

n=0
An ∩

∞⋂
n=0

Bn.

A special case is where qA = qB = 1. Then we can simply say that the event E is
common certainty between Alice and Bob at ω∗.

It is clear that if Alice knows an event E at state ω, then she is certain of E at ω.
It is also true that common knowledge of E implies common certainty of E. (Proof: We
just gave the first step. Next, if Alice knows Bob knows E, then she knows Bob is certain
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of E, since knowledge is monotonic. From this, Alice is certain Bob is certain of E. The
argument can be continued to all higher levels.) But certainty is a strictly weaker modality
than knowledge. (Also, common certainty is strictly weaker than common knowledge, as we
will see in Theorem 2 below.) Figure 2 demonstrates this claim in two different instances –
the first classical and the second non-classical. In both instances, Alice is certain of E but
she does not know E.

Figure 2: Classical and non-classical knowledge-certainty distinction

4 Agreement and Disagreement

We can now state and prove a knowledge-based Agreement Theorem for both the classical
and non-classical domains.

Theorem 1. Fix a common prior (which may be a signed probability measure) and an event
E. Suppose at a state ω∗ it is common knowledge that Alice’s probability of E is qA and
Bob’s probability of E is qB. Then qA = qB.

Proof. The hypothesis of the theorem is that

(PA ∧ PB)(ω∗) ⊆ A0 ∩ B0.

Now, we can write (PA ∧ PB)(ω∗) = ⋃
i∈I πi where each πi ∈ PA and I is a (finite) index

set. Since (PA ∧ PB)(ω∗) ⊆ A0, we have p(E | πi) = qA for all i ∈ I. We also have

p(E | (PA ∧ PB)(ω∗)) =
∑
j∈I

p(πj |
⋃
i∈I

πi) × p(E | πj),

so that p(E | (PA ∧ PB)(ω∗)) is an affine combination of qA’s and is therefore equal to
qA. We can run exactly the same argument with B in place of A to conclude that p(E |
(PA ∧ PB)(ω∗)) = qB. It follows that qA = qB.

It is of note that we did not need to impose any observability conditions in this theorem,
making it fully general. (If we did add the condition that members of PA and PB receive
strictly positive – as opposed to non-zero – probability, then the affine combination in the
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proof would become a convex combination and the proof would be exactly that in Aumann
[1976].)

Theorem 1 is similar to results in Leifer and Duarte (2022) on the impossibility of common
knowledge of disagreement, established in the setting of generalized probability theory or
GPT (Barrett, 2007). GPT is a multi-purpose operational framework for describing physical
theories, including quantum mechanics.

In the classical domain, with a non-negative prior, there is also an Agreement Theorem
for the certainty modality: If two agents have common certainty of each other’s probabilities
of E, then these probabilities must be equal, just as with common knowledge. We do
not give a direct proof here, since the result will be a corollary to our Theorem 3 later.
Taken together, Theorem 1 (for the classical case of a non-negative prior) and the analog
for common certainty indicate that the distinction between the knowledge and certainty
modalities is “small” – at least, for current purposes – in the classical domain. But the
distinction is very significant in the non-classical domain, because the Agreement Theorem
for certainty no longer holds there, as we are about to see.

We suggest that the certainty modality in epistemics is at least as interesting as the
knowledge modality. Certainty is subjective in that an agent can be certain of an event E,
but E need not happen. Knowledge is objective and satisfies the truth axiom: If an agent
knows E, then E must occur. The subjective modality seems more in line with the idea that
Alice and Bob are Bayesian agents forming their personalistic beliefs, beliefs about beliefs,
and so on, about some event. For Alice to know Bob’s beliefs (or knowledge) requires that
she have direct information about his epistemic state. This introduces an ex post element
to the analysis in the sense that Bob’s epistemic state would need to be observed by Alice
(via some information flow). The certainty modality allows an ex ante analysis where agents
form prospective beliefs about events, just as in Bayesian decision theory (Savage, 1954). In
any case, we think the point is made that the certainty modality is important to study and,
as we now show, it is very different from the knowledge modality in the non-classical world.

Theorem 2. There is a structure (Ω, p, PA, PB), where p is a signed prior, and there is an
event E and a state ω such that it is common certainty at ω that Alice and Bob hold different
probabilities of E.

Proof. The state space and prior are depicted in Figure 3. As in our earlier example, Alice’s
partition comprises the red sets and Bob’s partition comprises the blue sets. The event
E = {ω2, ω4, ω5, ω6} and the true state is ω5. The numbers ϵ and η are small and positive
with ϵ ̸= η. Set

A0 = {ω ∈ Ω : p(E | PA(ω)) = 1 − 2ϵ} = {ω1, ω2, ω5},
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B0 = {ω ∈ Ω : p(E | PB(ω)) = 1 − 2η} = {ω3, ω4, ω5},

so that
A1 = A0 ∩ {ω ∈ Ω : p(B0 | PA(ω)) = 1} = {ω1, ω2, ω5},

B1 = B0 ∩ {ω ∈ Ω : p(A0 | PB(ω)) = 1} = {ω3, ω4, ω5},

from which An+1 = An and Bn+1 = Bn for all n ≥ 1. It follows that ω5 ∈ ⋂∞
n=0 An ∩⋂∞

n=0 Bn.
At state ω5, it is common certainty between Alice and Bob that she assigns probability 1−2ϵ

to E while he assigns probability 1 − 2η to E, which proves the theorem.

Figure 3: Common certainty of disagreement in a non-classical world

Note that, by Theorem 1, the agents’ probabilities of E cannot be common knowledge
at ω5 (because then the probabilities must be the same). Alternatively, this can be checked
directly via the definition of common knowledge in terms of the join of PA ∧PB (which is the
whole space). So, this example also serves to establish the claim that common certainty is
strictly weaker than common knowledge. Note also that the example exhibits a high degree
of observability: All members of PA and PB get strictly positive probability (+1/2). All
members of the join PA ∨PB get non-negative probability (0 or +1/2). The event of interest
E gets probability 1 − ϵ − η > 0.

5 Communication

Common knowledge and common certainty are different from communication between agents.
If Alice announces the probability she assigns to an event of interest E, then this communi-
cates information to Bob and he can update his partition PB to incorporate this information.
Vice versa if Bob communicates to Alice, who can then announce new probabilities. This
process could continue. The communication of probabilities this way was first studied by
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Geanakoplos and Polemarchakis (1982).
Let us study heuristically what happens in the structure of Figure 3 if Alice and Bob

takes turns in announcing their (posterior) probabilities. Suppose again that the event
E = {ω2, ω4, ω5, ω6} and the true state is ω5. Then Alice announces a probability 1−2ϵ. Bob
now reasons as follows. If Alice observed {ω1, ω2, ω5}, she would have announced a probability
1 − 2ϵ, which she just did. If Alice observed {ω3, ω4, ω6}, she would have announced a
probability 1 − 2η, which she did not. Bob concludes that Alice observed {ω1, ω2, ω5} and
his updated information is that the true state lies in {ω3, ω4, ω5} ∩ {ω1, ω2, ω5} = {ω5}. So,
Bob now announces a probability of 1.

Alices now reasons as follows. If Bob (originally) observed {ω3, ω4, ω5}, he would have
processed my initial announcement to arrive at the new information {ω5} and announced
a probability of 1, which he did. If Bob (originally) observed {ω1, ω2, ω6}, he would have
reasoned as follows. If Alice observed {ω1, ω2, ω5}, she would have announced a probability of
1−2ϵ, which she did. If Alice observed {ω3, ω4, ω6}, she would have announced a probability
of 1 − 2η, which she did not. So, if Bob (originally) observed {ω1, ω2, ω6}, he would have
concluded that Alice observed {ω1, ω2, ω5} and his updated information would have been
{ω1, ω2, ω6} ∩ {ω1, ω2, ω5} = {ω1, ω2}, and he would have announced a probability −ϵ/0.
This, of course, is ill-defined.

This heuristic treatment of communication actually exposes two issues. The first issue is
the emergence of an ill-defined conditional probability as just seen. The second is that we
ignored the fact that Bob assigns probability 0 to Alice’s observing {ω3, ω4, ω6}. We implicitly
assumed that Bob updates in this case to putting probability 1 on this 0-probability event
and reasons that Alice would have announced a probability 1 − 2η. This step was key when
we said that Bob would conclude that Alice observed {ω1, ω2, ω5} and not {ω3, ω4, ω6}. The
informality here is that, in ordinary probability theory, updating on a 0-probability event is
arbitrary. (It can be checked that this same issue of updating on 0-probability events arises
in two other places in our heuristic treatment.)

In this paper, we address the first issue but not the second. The starting point for tackling
the second issue would be a conditional probability system (Rényi, 1955), which is a family of
probability measures – one measure for each event an agent might observe, including events
to which the agent assigns prior probability 0. What would be needed is an extension of this
concept to signed probabilities, which would be an exercise in pure probability theory that,
to the best of our knowledge, has not been undertaken. This said, it is important to note that
this gap does not undermine the formal treatment to come (Definitions 5-7 and Theorems
3-4). The missing concept of a conditional probability system for signed probabilities would
enable us to formalize the preceding discussion of communication between Alice and Bob.
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But here, that discussion serves only as heuristic motivation for what follows.
We do tackle the first issue. We will rule out structures in which communication yields

ill-defined conditional probabilities (such as −ϵ/0) at some point. We will do this by defining
the notion that a structure is “communication-enabled.”

For our definition, we first define a sequence of partitions for Alice, corresponding to
the sequence of announcements she could make about her probability of E, her certainty
or not of what Bob’s probability of E is, her certainty or not about Bob’s certainty, and
so on. Likewise for Bob. Note carefully that all of Alice’s potential announcements are
made relative to her (initial) partition PA; and likewise for Bob. This is different from
Geanakolpos and Polemarchakis (1982) – or the heuristic motivation above – where the
(actual) announcements are relative to partitions which are successively updated based on
previous announcements.

Formally, for all n ≥ 0, let
M(n)

A = {An, Ac
n},

M(n)
B = {Bn, Bc

n}.

Definition 5. For any π, E ⊆ Ω, say π is regular with respect to E if p(π) ≥ 0 and
p(π ∩ E) lies in [0, p(π)].

Definition 6. A structure (Ω, p, PA, PB) is communication-enabled with respect to E

if, for each n ≥ 0, all π ∈ PA ∨ M(n)
B and all π′ ∈ PB ∨ M(n)

A are regular with respect to E.

These definitions capture the idea that if an agent communicates their probabilities at
any level, the calculation the other agent then makes is meaningful. The condition does not
require that the agents actually communicate, only that they would be able to communicate
meaningfully if they decided to do so. We come back to this point again below.

Remark 2. Fix π, π′ ⊆ Ω with π ∩ π′ = ∅. Then if π and π′ are both regular with respect to
E, so is π ∪ π′.

We have assumed throughout that all members of PA and PB receive non-zero probability.
Definition 6 assumes nonnegative probabilities. So, at this point, we are assuming that all
members of PA and PB receive strictly positive probability. This implies that the agents are
able to observe and condition on their own information using the rules of ordinary probability.

Theorem 3. Fix a structure (Ω, p, PA, PB) that is communication-enabled with respect to E

and suppose that at a state ω∗ it is common certainty that Alice’s probability of E is qA and
Bob’s probability of E is qB. Then qA = qB.

12



Proof. Begin by defining An and Bn, for n ≥ 0, as before. Since Ω is finite, there is an N

(finite) such that for all n ≥ N , An+1 = An and Bn+1 = Bn. We have

AN+1 = AN ∩ {ω ∈ Ω : p(BN | PA(ω)) = 1} = AN ,

from which p(BN | PA(ω)) = 1 for all ω ∈ AN .
Now AN = ⋃

i∈I πi where each πi ∈ PA and I is a (finite) index set. We just saw that
p(BN | πi) = 1 for all such πi. But p(BN | AN) is a convex combination of the p(BN | πi)’s,
so p(BN | AN) = 1. It follows that p(AN\BN) = 0, which we will use shortly.

Observe that AN ⊆ A0 and so p(E | πi) = qA for these same πi. By a second convex
combination argument, p(E | AN) = qA.

Next, observe that {AN , Ac
N} is a coarsening of PA (by definition of the An’s). From this

and M(N)
B = {BN , Bc

N}, it follows that {AN\BN , (AN\BN)c} is a coarsening of PA ∨ M(N)
B .

By the hypothesis of the theorem and Remark 2, it follows that AN\BN is regular with respect
to E. Using p(AN\BN) = 0, it follows that p((AN\BN) ∩ E) = 0, and so p(E ∩ AN ∩ BN) =
p(E ∩ AN). Again using p(AN\BN) = 0, we get p(AN ∩ BN) = p(AN) > 0 (the set AN is a
union of members of PA). We conclude that p(E | AN ∩ BN) = p(E | AN) = qA. We can
run exactly the same argument with B in place of A to conclude that p(E | AN ∩ BN) = qB.
It follows that qA = qB.

We are not committed to Theorem 3 over Theorem 2. There is no formal or even obvious
conceptual inconsistency in the set-up of Theorem 2. Still, it is interesting to discover from
Theorem 3 that if we impose the requirement that each agent be able to process meaningfully
an announcement by the other agent of their probabilities at any level, then the non-classical
phenomenon of common certainty of disagreement disappears. We again emphasize that no
actual communication needs to take place. Rather, we can think of this requirement as
saying that it would be possible for the two agents to confirm their disagreement, not just
be certain of their disagreement (and certain they are certain, etc.), if they wanted to.

A corollary to Theorem 3 is that common certainty of disagreement is impossible in
the classical world, as we mentioned earlier. This follows because the condition of being
communication-enabled is automatically satisfied in the case of non-negative probabilities.

Consider another communication scenario: There is a third agent, Charlie, who starts
out with no information about the true state. Alice and Bob are able to communicate with
Charlie, but not with each other. (They do not necessarily undertake the communication.)
We can ask if this scenario, too, rules out common certainty of disagreement. Here is the
appropriate analog to Definition 6.

Definition 7. A structure (Ω, p, PA, PB) is third-party communication-enabled with
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respect to E if, for each n ≥ 1, each π ∈ M(n)
A ∨ M(n)

B is regular with respect to E.

The idea is that the third party, Charlie, starts with the trivial partition {Ω, ∅} and is
then able to make meaningful calculations with the information which announcements by
Alice and Bob might give him. Alice and Bob do not communicate with each other.

Theorem 4. Fix a structure (Ω, p, PA, PB) that is third-party communication-enabled with
respect to E and suppose that at a state ω∗ it is common certainty that Alice’s probability of
E is qA and Bob’s probability of E is qB. Then qA = qB.

Proof. From M(N)
A = {AN , Ac

N} and M(N)
B = {BN , Bc

N} it follows that {AN\BN , (AN\BN)c}
is a coarsening of M(N)

A ∨ M(N)
B . Using the hypothesis of the theorem and Remark 2, we

conclude that AN\BN is regular with respect to E. The rest of the proof follows exactly the
proof of Theorem 3.

6 Conclusion

We end with some comments on the realizability of common certainty of disagreement (CCD)
as in Theorem 2. In the physical domain, it can be shown that CCD is impossible when
observing quantum systems, but possible when observing superquantum (no-signaling) sys-
tems (Contreras-Tejada et al., 2021). In the language of this paper, we can say that quantum
mechanics somehow controls the “extent” of negativity in phase-space probability represen-
tations so that CCD cannot arise. This finding suggests there may be promise in proposing
the impossibility of CCD (of “agreeing to disagree”) as an axiom in the program to derive
quantum mechanics from underlying physical principles. (See Contreras-Tejada et al., 2021
for further discussion and references to the axiomatization program.)

In the setting of decision theory – more precisely, multi-person decision theory – Theorem
2 indicates that if we equip agents with signed probability measures, we can get highly non-
classical behavior, such as betting between risk-neutral agents. With this in mind, we wonder
whether it might be interesting to elevate the impossibility of CCD to an (epistemic) multi-
person decision-theoretic principle. This might offer a disciplined departure from classical
behavior and appears to be an open direction.

A preference basis for a decision theory with signed probabilities (perhaps, building on
Perea, 2022) would be of interest in its own right and might also lead to a preference basis for
certainty in a non-classical environment. There is a preference basis for certainty in classical
decision theory. An agent is certain of an event E if and only if the complementary event Ec

is Savage-null; that is, if all acts conditional on Ec are deemed indifferent. An open question
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is what would be the analogous definition in the signed case. (We are grateful to Miklós
Pintér for raising this question.)

A different non-classical examination of the Agreement Theorem is undertaken by Khren-
nikov and Basieva (2014) and Khrennikov (2015). They consider quantum-like observers of
a quantum system who employ either the knowledge or certainty modality. Their approach
does not deliver an Agreement Theorem even for quantum systems.

Summing up, our Theorem 2 establish a new kind of non-classical strangeness in the
form of the possibility of CCD. At the same time, we also prove that common knowledge of
disagreement and CCD in communication-enabled structures remain impossible (Theorems
1, 3, and 4). We believe these results open the door to further investigation of epistemics in
non-classical worlds.
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