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Abstract

This paper studies how a borrower issues long- and short-term debt in response to shocks to the

enterprise value. Our theory highlights the tradeoff between commitment and hedging. Short-

term debt protects creditors from future dilution and forces the borrower to reduce leverage after

negative shocks. Long-term debt postpones default and allows the borrower time to recover after

a downturn, thereby providing hedging in the upturn. Borrowers issue both types of debt when

they are far from default in the upturn. By contrast, distressed borrowers exclusively issue

short-term debt. Our model generates novel implications for the dynamic adjustment of debt

maturities.
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1 Introduction

The optimal management of debt obligations is a central problem faced by indebted entities,

including households, firms, and sovereign governments. In practice, debt can differ in several

aspects, and an important one is its maturity. Borrowing can be short, as in the case of trade

credit, or long as in the case of 30-year corporate bonds. How do borrowers choose the maturity

profile of their outstanding debt? How do they adjust the mix between long- and short-term

borrowing following shocks to their enterprise value?

The academic literature falls behind in providing a useful framework to study these questions,

despite their obvious importance. For example, the Leland model (Leland, 1994) and the vast

follow-up literature typically assume that (1) all debt has the same (expected) maturity and (2)

the borrower either commits to the total leverage or may only increase leverage after retiring all

existing debt and paying some exogenous issuance cost.1 Although these assumptions simplify the

analysis, they are inconsistent with the ample empirical evidence that borrowers often issue a mix

of long- and short-term debt and that adjusting the outstanding debt’s maturity profile can take

some time to accomplish.

This paper introduces a simple and tractable framework to address these questions. Our theory

highlights the tradeoff between commitment and hedging in borrowing long and short. Long-term

debt has a staggered structure: it matures in the future, and the borrower cannot commit to not

issuing more debt before the existing debt is due. Due to this lack of commitment, creditors of long-

term debt are exposed to dilution. Therefore, a borrower financed exclusively by long-term debt

never voluntarily reduces leverage following negative shocks. By contrast, short-term debt does

not suffer from dilution because it matures before the borrower gets the chance to borrow again.

Following negative shocks, short-term debt forces the borrower to reduce the leverage. Meanwhile,

long-term debt has important hedging benefits: if a downturn arrives, long-term debt postpones

default and allows the borrower some time to recover. These merits of long-term debt offer hedging

benefits to the borrower in the upturn.

More specifically, a risk-neutral borrower has assets that generate an income flow that follows

a regime-switching geometric Brownian motion (GBM) process. The expected growth rate of the

income is high in an upturn but low in a downturn. There is also a disaster shock in the downturn,

after which the borrower defaults immediately.2 A transition from the upturn to the downturn

can be interpreted as a downside risk. Creditors are competitive, risk-neutral, and have a lower

1Notable exceptions include He and Milbradt (2016) and DeMarzo and He (2021), which we discuss in the sub-
section on related literature.

2In the appendix, we show that immediate default after the disaster shock can be the borrower’s endogenous
optimal choice.
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cost of capital than the borrower. The difference in the cost of capital and the tax-shield benefits

motivate the borrower to issue debt. Two types of debt are available. The short-term debt matures

instantaneously (i.e., has zero maturity) and needs to be continuously rolled over. Long-term debt

matures exponentially with a constant amortization rate. The key innovation of our model is to

allow the borrower to have full flexibility in issuing either type of debt at any time to adjust the

maturity profile of the outstanding debt. This feature distinguishes us from the existing literature.

The flexibility to issue more debt before the current long-term one matures exposes long-term

creditors to dilution (Fama and Miller, 1972; Black and Scholes, 1973; Admati et al., 2018; DeMarzo

and He, 2021). Specifically, the borrower always has incentives to borrow more after the existing

long-term debt has been issued because the additional borrowing dilutes the existing long-term

claims. In equilibrium, creditors anticipate future dilution, and the price of long-term debt adjusts

downwards to the level at which the borrower cannot capture any benefit.

By contrast, short-term debt protects its creditors from being diluted and resolves the commit-

ment problem because short-term creditors’ debt matures before the borrower can issue it again.

As a result, short-term creditors need to be compensated only by the probability of default within

a short period but not by the cost of being diluted in the future. Following negative shocks, short-

term debt forces the borrower to reduce the leverage, even though she does not commit to doing

so. This result contrasts the literature on the leverage-ratchet effect (Admati et al., 2018), which

suggests that a borrower financed exclusively by long-term debt never voluntarily reduces leverage,

even after negative shocks.

Given the advantage of short-term debt in resolving the commitment problem, it is natural

for the borrower to issue it. Indeed, our results show that long-term debt is never issued in the

downturn when there is no additional downside risk that can be potentially hedged. Instead, the

borrower fully levers up by borrowing short. In the upturn, the potential arrival of the downturn

introduces an interesting tradeoff in issuing short-term debt. The borrower chooses between issuing

a lower amount of riskless short-term debt (i.e., fully repaid even after a downturn) and a higher

amount of risky short-term debt (i.e., immediately default once the downturn comes). We show the

borrower issues risky (riskless) short-term debt in the upturn if she is very close to (far from) the

default boundary. The reason is that when the borrower is close to the default boundary, both the

amount of riskless short-term borrowing and the cost of default – the option value of continuing to

operate in the downturn – become very low. Therefore, it is optimal to borrow risky short-term

debt, which leads to an immediate default after the downturn arrives. In this case, long-term debt

is exposed to the same downside risk as short-term debt and suffers from dilution. Therefore,

long-term debt offers no hedging benefit, and there is no reason for the borrower to issue it.

Results are different in the upturn if the borrower is far from the default boundary. In this case,
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the borrower issues riskless short-term debt, and creditors do not anticipate an immediate default

if the downturn arrives. In addition, the borrower also issues some long-term debt. There are two

reasons behind this result. First, long-term debt could postpone default after the downturn arrives.

In other words, by offering the borrower an option to default later instead of immediately after the

downturn, long-term debt provides better hedging against the downside risk and is valued in the

upturn. We show this result analytically by studying a limiting model in which the volatility of

the GBM process converges to zero. If the cash flow in the downturn declines faster than the debt

matures so that the borrower defaults deterministically, she will issue long-term debt in the upturn

to postpone default in the downturn. The second reason is related. By delaying default, long-term

debt also allows the borrower time to recover after the downturn, thereby increasing the chances

of avoiding default. This second channel is only present if the volatility of the cash flow process

is non-zero. Note that the borrower values the benefit of long-term debt in hedging the downside

risk, even though she is risk-neutral. The reason is that the cost in default introduces constraints

in the financing, which makes the borrower behave as if she were risk-averse.

By constructing a dynamic model, our model emphasizes that empirical studies of debt maturity

need to differentiate stock (outstanding debt) versus flow (newly issued debt). For example, our

results in the upturn imply that in states where the borrower has a lot of outstanding long-term debt

and is therefore very close to the default boundary, the newly issued debt is exclusively short-term.

Almeida et al. (2011) present findings during the financial crisis that if a large amount of existing

long-term debt is due very soon, this can push the borrower very close to default and reduces real

activities. By contrast, Brunnermeier (2009) and Krishnamurthy (2010) also document that during

the crisis when a borrower is close to default, the newly-issued debt was primarily short-term.

Moreover, our model implies that defaults can be classified into two types. First, they can be

driven by the gradual deterioration of the borrower’s cash flows relative to the accumulation of

long-term debt. Second, defaults can occur suddenly after a large negative shock and an excessive

amount of short-term debt borrowed prior to the shock. Furthermore, our model implies that

cross-sectionally, borrowers more exposed to large downside risks should use more long-term debt

in their capital structure. These are implications for future empirical tests.

Our model is consistent with the evidence that market leverage is counter-cyclical (Adrian

and Shin, 2014), whereas debt maturity structure is pro-cyclical (Xu, 2018; Chen et al., 2021).

Moreover, our model implies that within a regime, cash flows and debt maturity negatively comove

with each other. However, if we compare across regimes, the regime with higher expected growth

rates in cash flows has on average longer debt maturity. These implications, once again, can be

tested by future empirical studies.
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Related literature

Our paper builds on the literature of dynamic corporate finance pioneered by Leland (1994).

Most of this literature either fixes book leverage (Leland, 1998) or allows for adjustment with some

issuance costs (Goldstein et al., 2001; Dangl and Zechner, 2020; Benzoni et al., 2019).3 Important

exceptions are DeMarzo and He (2021) and Abel (2018). Whereas the former studies leverage

dynamics when the borrower has full flexibility in issuing exponentially-maturing debt, the latter

addresses the related problem when the borrower can only issue zero-maturity debt (see also Bolton

et al. (2021), who further model costly equity issuance). In these papers, the borrower can only

issue one type of debt, so the tradeoff between borrowing long and short is not explicitly studied.

He and Milbradt (2016) also study the problem of dynamic debt maturity management, where the

total leverage is fixed, and the borrower can choose between two types of exponentially-maturing

debt. Our paper differs in two aspects. First, we allow for flexibility in adjusting total leverage.

Second, we model short-term debt as debt that matures instantaneously. The different approaches

in modeling short-term debt render the mechanisms of the two papers drastically different. Whereas

we emphasize the tradeoff between commitment and hedging, their paper focuses on rollover losses

and dilution. Brunnermeier and Yogo (2009) also study debt maturity in the context of liquidity

risk, and they show long-term debt is optimal if the firm is close to default (or close to debt

restructuring as in their paper). Our results are the opposite: the borrower will issue exclusively

short if she is close to default. The difference is driven by the assumption that the borrower can issue

debt at any time without commitment in our model. By contrast, the borrower in Brunnermeier and

Yogo (2009) can only issue new debt after the current debt is repaid and effectively has commitment.

More broadly, our paper is related to the literature in corporate finance on debt maturity, start-

ing from Flannery (1986) and Diamond (1991). This literature emphasizes the role of asymmetric

information and the signaling role of short-term debt. One advantage of a fully-dynamic setup is

that it allows us to make empirical predictions regarding the stock (existing debt) and the flow

(new issuance) of debt maturity. The insight that short-term debt resolves the lack of commitment

is also present in another related literature (Calomiris and Kahn, 1991; Diamond and Rajan, 2001)

that emphasizes the runnable feature of short-term debt. In our paper, the reason that short-term

debt resolves commitment is fundamentally different: the short rate would increase drastically if

the borrower issued more debt.4 This feature resembles the leasing solution (Bulow, 1982) to the

durable-goods monopoly problem. Relatedly, Gertner and Scharfstein (1991) show that conditional

on financial distress, short-term debt has a higher market value and increases leverage, leading to

more ex-post debt overhang (also see Diamond and He (2014)).

3Malenko and Tsoy (2020) study the role of reputation.
4Also see Hu and Varas (2021) on this feature of short-term debt in the context of financial intermediaries.
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The insight that long-term debt can be diluted has been recognized by Fama and Miller (1972)

and Black and Scholes (1973) and has been more recently formalized by Admati et al. (2018).

Brunnermeier and Oehmke (2013) show equity and short-term debt can dilute long-term debt’s

recovery value in bankruptcy. Our paper rules out this mechanism by assuming zero recovery

value in the benchmark model. Instead, we focus on dilution outside the bankruptcy, which comes

exclusively from the borrower’s lack of commitment to issuance and default.

The hedging benefits of long-term debt are also related to the literature on fiscal policy and

sovereign debt. For example, Angeletos (2002) shows that the ex-post variations in the market

value of public debt hedge the government against bad fiscal conditions. Aguiar et al. (2019) show

that in the absence of hedging motives, the borrower never actively issues any long-term debt

due to the lack of commitment. By contrast, we show that with hedging, the borrower issues a

combination of long- and short-term debt (also see Niepelt (2014)). Bigio et al. (2021) study debt

maturity management under liquidity cost but without dilution. In their model, the borrower’s

choice depends on the bond demand curve, micro-founded via search (Duffie et al., 2005). The

mechanisms of the two papers are complementary.

A similar trade-off is studied by Arellano and Ramanarayanan (2012), who calibrate a quanti-

tative model of sovereign borrowing with two maturities. Our paper complements their analysis in

several dimensions. First, we develop a tractable model with a transparent characterization of the

equilibrium. Unlike Arellano and Ramanarayanan (2012), we can fully characterize the optimal

debt policy and highlight the fundamental economic forces underlying the maturity choices. Second,

our framework identifies the type of risk – downside risk – that the borrower wants to hedge using

long-term debt. Specifically, we emphasize that by offering the borrower an option to default later

instead of immediately after a downturn, long-term debt provides better hedging against downside

risk, which is valued in good times. By contrast, Arellano and Ramanarayanan (2012) emphasizes

that long-term debt offers a hedge against future fluctuations in spreads. However, because credit

spreads are endogenous, it is unclear what the underlying risks driving the fluctuations are and

hence the hedging benefit. Third, we show that long- and short-term debt offer different kinds of

flexibility following shocks. Short-term debt forces the borrower to reduce leverage in response to

negative shocks. If there are only small shocks, short-term debt is chosen such that leverage is never

excessive. When there are large shocks, the option to postpone default embedded in long-term debt

is valuable. Finally, we follow the standard corporate finance tradition by casting the model in a

risk-neutral setting. A priori, the risk-neutral borrower in our model does not have a reason to

value the merit of hedging by long-term debt. The cost of default makes the borrower behave as

if she is risk-averse, as emphasized by the finance literature on risk management (Bolton et al.,

2011; Froot et al., 1993; Rampini and Viswanathan, 2010; Panageas, 2010). To our knowledge, no
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previous work has established the link between maturity management and risk management in a

corporate finance setting.

2 The Model

2.1 Agents and the Asset

Time is continuous and goes to infinity: t ∈ [0,∞). We study a borrower, often interpreted as

a firm. The relevant parties include the borrower as an equity holder and competitive creditors.

Throughout the paper, we assume all agents are risk neutral, deep-pocketed, and protected by

limited liability. Moreover, the borrower discounts the future at a rate ρ, which exceeds r, the

discount rate of creditors. In other words, creditors have a lower cost of capital compared to the

borrower.

The borrower’s asset generates earnings before interest and taxes (EBIT) at a rate Xt, which

evolves according to:

dXt

Xt−
= µθtdt+ σdBt − 1{θt=L}dNt, (1)

where Bt is a standard Brownian motion, Nt is a Poisson process with arrival rate η, and θt ∈ {H,L}
represents the regime with θ0 = H. After an independent Poisson event with intensity λ, θt switches

to L and stays unchanged. The drift µθt differs across the two regimes with µL < µH , so that the

high state H is associated with a higher expected growth rate in the borrower’s cash flow. Below,

we refer to the high state as the upturn and the low state as the downturn. In addition, we allow

the possibility of a disaster shock in the downturn that arrives at a rate η, upon which the cash

flow Xt permanently drops to zero. In Internet Appendix B.5, we show that this disaster shock

is equivalent to a third state in which the drift falls below µL. We establish conditions such that

immediately after the third state arrives, the borrower finds it optimal to default.

2.2 Debt Maturity Structure

The borrower would like to issue debt for two reasons: creditors’ lower cost of capital and tax

shields. Throughout the paper, we allow the borrower to issue two types of debt, short and long,

to adjust the outstanding debt maturity structure. In particular, we do not restrict the borrower

to commit to a particular issuance path but instead, let the issuance decisions be made at each

instant.
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All short-term debt matures instantaneously and therefore needs to be continuously rolled over.5

We model short-term debt as one with zero maturity. Let Dt− = limdt↓0Dt−dt be the amount of

short-term debt outstanding (and due) at time t and let yt− be the associated short rate. With

tax shields, the borrower makes a total interest payment of (1− π)yt−Dt− to short-term creditors,

where π is the corporate tax rate. Long-term debt matures in a staggered manner. We follow the

literature and model long-term debt as exponentially maturing bonds with coupon rate r and a

constant amortization rate ξ > 0. Therefore, 1/ξ can be interpreted as the expected maturity. The

coupon payments of long-term debt are tax deductible, so the borrower makes coupon payments

r(1− π)Ftdt, where Ft is the aggregate face value of long-term debt outstanding at time t.

The borrower may default, in which case the bankruptcy is triggered. To isolate issues related

to debt seniority and direct dilution in bankruptcy, we assume the bankruptcy cost is 100%. In

other words, creditors cannot recover any value once the borrower defaults.

2.3 Valuation

Let τb be the endogenous time at which the borrower chooses to default. We define pt as the

price per unit of the face value, which for t < τb is

pt = Et
[∫ τξ∧τb

t
e−r(s−t)rds+ e−r(τξ−t)1{τb>τξ}

]
, (2)

where τξ is the (stochastic) maturing date. The two components in the previous expression corre-

spond to the coupon and final payments. The short rate yt− depends on the borrower’s equilibrium

default decisions:

yt− = r + lim
dt↓0

Prt−dt (τb ≤ t|τb > t− dt)
dt

, (3)

where the second term on the right-hand side is the hazard rate of default. According to (3), yt−

compensates the creditors for the probability of default occurring between t−dt and t. For example,

if in the upturn, short-term creditors expect default only upon a transition to the downturn, then

yt− = r + λ. Similarly, if in the downturn, default on short-term debt only happens upon the

disaster shock hits, then yt− = r + η.

To simplify notation, we denote after-tax rates with a hat. In particular, let r̂ = (1 − π)r,

5The fact that short-term debt matures instantaneously implies that the borrower does not have the chance to
issue new debt before the existing short-term debt matures.
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η̂ = (1− π)η, λ̂ = (1− π)λ, and ŷt− = (1− π)yt−. The net income of the borrower is

NIt ≡ Xt︸︷︷︸
EBIT

−π(Xt − rFt − yt−Dt−)︸ ︷︷ ︸
tax payment

− (rFt + yt−Dt−)︸ ︷︷ ︸
interest payments

= (1− π)Xt − r̂Ft − ŷt−Dt−. (4)

The net cash flow corresponds to the net income plus the net proceeds from debt issuance, with

the latter given by (ptdGt− ξFtdt)+dDt. Note the notations dGt and dDt allow for both atomistic

and flow issuance, and the price of long-term debt pt could also depend on the issuance amount

dGt.

Define Vt as the continuation value of the borrower, which we sometimes refer to as the equity

value at time t. The borrower chooses the endogenous time of default and the issuance of two

types of debt to maximize the equity value, taking the price of long-term debt and the short-rate

function as given. Once again, let us emphasize that all these decisions, default and issuance, are

made without commitment:

Vt = sup
τb,{Gs,Ds:s≥t}

Et
[ ∫ τb

t
e−ρ(s−t)

(
NIsds+ (psdGs − ξFsds) + dDs

)]
. (5)

To guarantee the valuation remains finite, we assume both r̂+ λ̂ > µH and r̂+ η̂ > µL hold. These

assumptions follow from the literature. Specifically, it requires in both states that the creditor’s

effective discount rate is above the expected growth rate of the cash flow.

2.4 Smooth Equilibrium

We focus on the Markov perfect equilibrium (MPE) in which the payoff-relevant state vari-

ables include the exogenous state θt, the cash-flow level Xt, and the amount of outstanding debt

{Dt−, Ft}. The equilibrium requires the following: (1) creditors break even; that is, pt follows equa-

tion (2) and yt− follows equation (3); and (2) the borrower chooses optimal default and issuance

(i.e., equation (5)), subject to the limited liability constraint Vt ≥ 0. Finally, an MPE is smooth

if no jump occurs in long-term debt issuance, in which case we write dGt = gtFtdt. In a smooth

equilibrium, the aggregate face value of long-term debt evolves according to

dFt = (gt − ξ)Ftdt. (6)

3 Equilibrium
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3.1 An Equivalent Maximization Problem

Let us define Jt as the joint (maximized) continuation value of the borrower and short-term

creditors if default does not occur at time t. The following result motivates us to work with Jt for

the remainder of this paper.

Proposition 1. The joint continuation value satisfies Jt = Jθt(Xt, Ft). Specifically,

JH(Xt, Ft) = sup
τb,gs,Ds

Et

[∫ τb

t
e−(ρ+λ)(s−t)

{
(1− π)Xs − (r̂ + ξ)Fs + psgsFs

+ (ρ+ λ− ŷs−)Ds− + λmax {JL(Xs, Fs)−Ds−, 0}
}
ds

]
(7)

JL(Xt, Ft) = sup
τb,gs,Ds

Et

[∫ τb

t
e−(ρ+η)(s−t)

{
(1− π)Xs − (r̂ + ξ)Fs + psgsFs + (ρ+ η − ŷs−)Ds−

}
ds

]
,

where the maximization is subject to the issuance constraint Ds ≤ Jθs(Xs, Fs). The equity value is

Vt = Vθt(Xt, Ft, Dt−) = max {Jθt(Xt, Ft)−Dt−, 0}.

The terms in (7) are related to those in (5). Here, (ρ+λ− ŷs)Ds− reflects the gains from issuing

short-term debt, where ρ + λ − ŷs is the difference between the borrower’s discount rate and the

required rate of return by short-term creditors. Finally, the last term in (7) stands for the event

of regime-shifting, upon which the borrower would rather default and renege on the payments if

the amount of outstanding short-term debt exceeds the maximum joint value if default does not

immediately occur; that is, if Ds− > JL(Xs, Fs). In this case, both parties receive a payoff of zero.

The terms in JL(X,F ) can be interpreted similarly.

Proposition 1 generates a very interesting economic insight: even though the borrower makes

decisions on debt issuance, these decisions are made to maximize the borrower’s and short-term

creditors’ joint value. This is because any issuance decisions will be immediately reflected in the

credit risk faced by short-term creditors, affecting the proceeds from issuing short-term debt. Note

that the payoff to existing long-term creditors is ignored in the maximization problem because their

debts have been issued in the past, and the borrower has incentives to dilute them.6 This result

relates to Aguiar et al. (2019) in the context of sovereign debt, where the equilibrium issuance

decisions can be characterized by the solution to a planner’s problem that ignores the payoff to

existing long-term creditors. Meanwhile, the max operator in (7) shows that the borrower and

short-term creditors may still have conflicts on the immediate default decisions.

6The payoff to new long-term creditors is at dt order in the smooth equilibrium.
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3.2 Value Function and Short-Term Debt Issuance

Proposition 1 implies the state variable Dt− only enters the problem by affecting whether the

borrower chooses to default immediately at time t. Following this result, we can suppress the prob-

lem’s dependence on Dt− and treat it as a decision variable. A smooth MPE is characterized by

functions Jθ (X,F ), pθ (X,F ), yθ (X,F,D), Dθ (X,F ), and gθ (X,F ). By exploiting the homogene-

ity of the problem, we can further reduce the problem’s dimension and write Jθ (X,F ) = Xjθ (f),

Dθ (X,F ) = Xdθ (f), where f = F/X. Moreover, gθ, pθ, and yθ are homogeneous of degree zero,

so gθ(X,F ) = gθ(f), pθ(X,F ) = pθ(f), and yθ (X,F,D) = yθ(f, d). For the rest of this paper, we

sometimes refer to jθ(f) as the scaled value function.

Given that the low state is absorbing, it is convenient to solve for the equilibrium starting from

there and working up to the high state.

Low state θt = L. Default driven by the Brownian shock can be anticipated by short-term

creditors. Given so, short-term debt can only default after the disaster shock. Therefore, the short

rate is yL (f, d) ≡ r + η and ŷL = (1 − π)(r + η) for d ≤ jL(f). By considering the change in the

value function in (7) over a small interval, we can derive the following equation:

(ρ+ η)JL (X,F )︸ ︷︷ ︸
required return

= max
DL∈[0,JL(X,F )], gL

(1− π)X − (r̂ + ξ)F︸ ︷︷ ︸
cash flow net long payments

+ (ρ+ η − ŷL)DL︸ ︷︷ ︸
gains from borrowing short

+ pL (X,F ) gLF︸ ︷︷ ︸
proceeds from issuing long

+
∂JL(X,F )

∂F
(gL − ξ)F︸ ︷︷ ︸

evolution of dF

+
∂JL(X,F )

∂X
XµL +

1

2

∂2JL(X,F )

∂X2
X2σ2︸ ︷︷ ︸

evolution of dX

. (8)

Note that the choice of short-term debt DL is capped by the level of value function JL, and the

choice of DL also affects JL.

The net benefits of issuing long-term debt become clear once we examine all the terms that

involve gL on the right-hand side. Whereas pL (X,F ) captures the marginal proceeds from issuing

an additional unit of long-term debt, ∂JL(X,F )
∂F is the drop in the borrower’s continuation value. If

the borrower finds it optimal to adjust long-term debt smoothly, the marginal proceeds must be

fully offset by the drop in continuation value so that the borrower is indifferent; that is,

pL(X,F ) +
∂JL(X,F )

∂F
= 0. (9)

As in DeMarzo and He (2021), Equation (9) provides an indifference condition that allows solving

the value function JL(X,F ) as if gL(f) = 0, corresponding to the case that the borrower never

issues any further long-term debt.
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Substituting Jθ (X,F ) = Xjθ (f) in equation (8) (together with the indifference condition (9))

we get the following HJB for the scaled value function jL (f):

(ρ+ η − µL) jL (f) = max
dL∈[0,jL(f)]

(1− π)− (r̂ + ξ) f + (ρ+ η − ŷL) dL

− (µL + ξ)fj′L(f) +
1

2
σ2f2j′′L(f). (10)

Given that the coefficient in front of dL satisfies ρ + η − ŷL = ρ + η − (r̂ + η̂) > 0, it is always

optimal for the borrower to issue as much short-term debt as possible, which leads to dL(f) = jL(f).

Intuitively, the borrower benefits from issuing short-term debt due to lower costs and tax shields.

The rest of the problem becomes standard. The borrower defaults if and only if f ↑ f bL, where f bL
satisfies the value matching condition jL(f bL) = 0 and the smooth pasting condition j′L(f bL) = 0.

High state θt = H. The smooth equilibrium leads to an indifference condition in long-term debt

issuance that relates to (9):

pH(X,F ) +
∂JH(X,F )

∂F
= 0. (11)

In the upturn, the borrower faces the Brownian shock and a downside risk whereby the state may

transit from high to low. Suppose default does not occur immediately upon the downturn’s arrival.

In that case, the borrower and short-term creditors receive a maximum value of jL(f), among which

dH must be repaid to short-term creditors. The borrower will default immediately upon the state

transition if and only if dH > jL(f). Expecting so, short-term creditors demand a short rate

yH (f, dH) =

r if dH ≤ jL (f)

r + λ if dH > jL(f).
(12)

Following a similar analysis to the one in the low state, we arrive at the HJB for the scaled value

function jH(f):

(ρ+ λ− µH) jH(f) = max
dH∈[0,jH(f)]

(1− π)− (r̂ + ξ) f + (ρ+ λ− ŷH) dH + λmax {jL(f)− dH , 0}

− (µH + ξ)fj′H(f) +
1

2
σ2f2j′′H(f). (13)

The optimal issuance of short-term debt follows from (13): the borrower borrows either jL(f) at

rate r or jH(f) at r+λ. The riskless short-term debt jL(f) brings a flow benefit of (ρ+λ− r̂)jL(f),

whereas the risky short-term debt brings (ρ+ πλ− r̂)jH(f). A comparison of the two shows that
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risky short-term debt is preferred if and only if

(ρ+πλ− r̂)jH(f) > (ρ+λ− r̂)jL(f)⇒ (ρ− r̂) (jH(f)− jL(f)) + πλjH(f)︸ ︷︷ ︸
benefit from additional leverage

> λjL(f)︸ ︷︷ ︸
additional bankruptcy cost

.

We conjecture, and later verify, that the optimal policy is characterized by a threshold

f† = min
{
f ≥ 0 : (ρ− r̂) (jH(f)− jL(f)) + πλjH(f) ≥ λjL(f)

}
. (14)

When f < f†, the borrower issues the maximum amount of risk-free short-term debt dH(f) = jL(f).

When f > f†, the borrower issues the maximum amount of risky short-term debt dH(f) = jH(f).

At f = f†, the borrower is indifferent between the two. As usual, the value function satisfies

the value matching and smooth pasting conditions jH(f bH) = 0 and j′H(f bH) = 0 at the default

boundary f = f bH . The next proposition provides the optimal short-term policy together with the

joint continuation value jθ(f).

Proposition 2 (Short-term debt Issuance). There is λ̄ – defined in equation (A.16) – such that

f† > 0 if and only if λ > λ̄, where f† is defined in (14).

� In state θ = L:

– The borrower issues short-term debt dL(f) = jL(f) and pays a short rate yL (f, dL(f)) =

r + η.

– The joint continuation value is

jL (f) =
1− π

r̂ + η̂ − µL
− r̂ + ξ

r̂ + η̂ + ξ
f︸ ︷︷ ︸

no default value

+
1

γ − 1

1− π
r̂ + η̂ − µL

(
f

f bL

)γ
︸ ︷︷ ︸

default option

, (15)

where γ > 1 is provided in equation (A.1), and the default boundary f bL in (A.2).

� In state θ = H:

– The borrower issues short-term debt

dH (f) =

jL(f) if f < f†

jH(f) if f ≥ f†

and pays a short rate given by (12).
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– The joint continuation value is

jH(f) =

u0(f) +
(
jH(f†)− u0(f†)

) ( f
f†

)φ
f ∈ [0, f†)

u1(f) +
(
jH(f†)− u1(f†)

)
h0(f)− u1(f bH)h1(f) f ∈

[
f†, f

b
H

]
,

(16)

where φ > 1 is provided in (A.9), and

u0(f) =
1− π

ρ+ λ− µH

(
1 +

ρ+ λ− r̂
r̂ + η̂ − µL

)
− r̂ + ξ

ρ+ λ+ ξ

(
1 +

ρ+ λ− r̂
r̂ + η̂ + ξ

)
f︸ ︷︷ ︸

no default value

(17)

+ δ
1

γ − 1

1− π
r̂ + η̂ − µL

(
f

f bL

)γ
︸ ︷︷ ︸

default option in low state

u1(f) =
1− π

r̂ + λ̂− µH
− r̂ + ξ

r̂ + λ̂+ ξ
f︸ ︷︷ ︸

no default value

. (18)

The discount factors δ, h0(·), and h1(·) are defined in equations (A.11) and (A.13). The

boundaries f† and f bH are determined using the boundary conditions jH(f bH) = j′H(f bH) =

0 and equation (14).

The condition λ ≤ λ̄ corresponds to (ρ− r̂) (jH(0)− jL(0)) + πλjH(0) ≥ λjL(0), which implies

that even for a borrower without any outstanding long-term debt, the benefit from additional

leverage exceeds the additional bankruptcy cost. Therefore, she borrows risky short-term debt. In

this case, f† = 0, and the results are very similar across the two states. For the remainder of this

paper, we focus on the more general case of f† > 0, which requires λ > λ̄. In this case, a borrower

without any outstanding long-term debt will borrow riskless short-term debt, so dH(0) = jL(0).

Meanwhile, the maximum riskless short-term borrowing decreases as f increases and eventually gets

to zero as f approaches f bL. Therefore, the borrower chooses risky short-term debt dH(f) = jH(f)

for f sufficiently high. We show in Lemma 3 of the appendix that a unique threshold f† ∈
(
0, f bL

)
exists such that (ρ− r̂) (jH(f)− jL(f)) + πλjH(f) ≥ λjL(f) if and only if f ≥ f†. Figure 1 offers

a graphical illustration. Intuitively, the additional bankruptcy cost λjL(f) associated with risky

short-term borrowing is high when f is low but becomes very low when f is high. In contrast, the

difference between the amount of risky and riskless short-term borrowing declines much slower as

f grows.
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Figure 1: Cost and benefit of riskless short-term debt

3.3 Price and Issuance Policy of Long-Term Debt

We have shown that in equilibrium, the borrower is indifferent between issuing long-term debt

and not. However, the result does not imply she never borrows long on the equilibrium path. In

this subsection, we derive the issuance policy of long-term debt.

It follows from Itô’s lemma that, before the disaster dNt = 1 in the low state, ft evolves

according to7

dft
ft

=
(
gθt(ft)− ξ − µθt + σ2

)
dt− σdBt. (19)

Let us start with the downturn θt = L, where equation (9) (or equivalently, pL(f) = −j′L(f)) is

the necessary condition for the borrower to be indifferent between issuing long-term debt and not.

The price satisfies the following HJB equation:

(r + ξ + η) pL (f) = r + ξ︸ ︷︷ ︸
coupon and principal

+
(
gL(f)− ξ − µL + σ2

)
fp′L(f) +

1

2
σ2f2p′′L(f)︸ ︷︷ ︸

expected change in bond price

. (20)

To derive the issuance function gL, we plug dL = jL(f) into (10), differentiate the resulting equation

once, and add (20) on both sides. Turning to the upturn θt = H, the equity holder’s indifference in

7We omit the disaster shock dNt when θt = L. Upon the disaster shock dNt = 1, Xt gets absorbed at 0, so ft
jumps to ∞. The borrower then defaults immediately, and the price of the long-term debt jumps to zero.
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long-term debt issuance becomes pH(f) = −j′H(f), and pH(f) satisfies the following HJB equation:

(r + ξ + λ) pH (f) = r + ξ + 1{f<f†} · λpL (f) +
(
gH(f)− ξ − µH + σ2

)
fp′H(f)

+
1

2
σ2f2p′′H(f). (21)

Compared with (20), (21) includes the additional event of state transition, upon which the price

drops to pL (f) if f ≤ f†; otherwise, the borrower defaults and the price drops to zero. The

derivation of the issuance policy gH(f) follows the same steps as the one in the low state.

Proposition 3 (Long-term debt issuance). The equilibrium price and issuance of long-term debt

follow:

1. Downturn θ = L: ∀f ∈ [0, f bL), the price of long-term debt is pL (f) = −j′L (f), and the

issuance policy is

gL(f) =
π
(
r − (r + η) pL(f)

)
−fp′L (f)

.

2. Upturn θ = H: ∀f ∈ [0, f bH), the price of long-term debt is pH (f) = −j′H (f).

� For f ∈ [0, f†)

gH(f) =
πr (1− pL(f))

−fp′H(f)
+

(ρ− r) (pH(f)− pL(f))

−fp′H(f)
.

� For f ∈ [f†, f
b
H)

gH(f) =
π
(
r − (r + λ)pH(f)

)
−fp′H(f)

.

Proposition 3 shows that both in the low state and in the high state when f ≥ f†, the borrower

issues long-term debt only to take advantage of the tax shields. By contrast, in the high state when

f < f†, the borrower has an additional reason to issue long-term debt. Note that when there is no

tax shield, that is, when π = 0, the issuance policy becomes

gθ(f) =
(ρ− r) (pH(f)− pL(f))

−fp′H(f)
1{f<f†, θ=H}, (22)

so that long-term debt is only issued in the high state when f < f†. In (22), it becomes clear that

without the tax shields, the amount of long-term debt issuance is proportional to the difference in

the long-term debt’s price in the two states.
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3.3.1 A Heuristic Derivation of the Long-Term Debt Issuance Policy

Let us provide a heuristic derivation of the equilibrium issuance policy based on a local-

perturbation approach. This derivation also helps illustrate the various economic forces at play.

Generally, the borrower would like to issue debt for two reasons: tax shields and the creditors’

cheaper cost of capital. Think about a borrower in an upturn θ = H, and the existing long-term

debt is f = f0 ∈ [0, f†). Consider an adjustment in which the borrower issues an extra amount

of long-term debt ∆ at time t and proceeds to buy it back at t + dt. Hence, this deviation in the

issuance policy lasts only for “one period.” If the borrower still wants to borrow risk-free short-

term debt, she must reduce its amount from jL(f0) to jL(f0 + ∆). Figure 2(a) illustrates how

this adjustment affects the tax-shield benefits between t and t + dt. The red line represents the

tax shields from riskless short-term debt jL(f), whereas the blue the tax shields from long-term

debt. The slope of the green line is −pL(f0) = j′L(f0). Note that while this adjustment increases

long-term debt’s tax shields by πr∆, it reduces the short-term debt’s tax shields by

πr
(
jL(f0)− jL(f0 + ∆)

)
≈ −πrj′L(f0)∆ = πrpL(f0)∆.

The net impact on tax shields is8

Net change in TS ≈ πr
(
1− pL(f)

)
∆.

Given pL(f) < 1, the borrower can increase the tax shields by replacing short-term debt with

long-term debt.

Next, we consider how this adjustment affects the market value of total leverage. Before the

adjustment, the market value is jL(f0) + pH(f0)f0, whereas post the adjustment the market value

becomes jL(f0 + ∆) +pH(f0 + ∆)(f0 + ∆). In Figure 2(b), we separate the change in the long-term

debt’s market value from that of the short-term debt. The red curve represents the amount of risk-

free short-term debt; the blue line represents a first-order approximation to the value of long-term

debt for an adjustment of ∆. The tangent green line illustrates the first-order approximation for

the associated adjustment of short-term debt. Because dH = jL(f), the slope of the green line

is given by the marginal cost of long-term debt in the low state, which in equilibrium is equal to

−pL(f0). Thus, the market value of long-term debt increases by

pH(f0 + ∆)(f0 + ∆)− pH(f0)f0 ≈ pH(f0)∆,

8If long-term debt has a coupon rate c 6= r, this expression becomes π (c− yL(f0, dH(f0))pL(f0)) ∆.
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(a) Marginal Effect on Tax Shield (b) Marginal Effect on Leverage

Figure 2: Benefit of long-term debt

whereas the value of short-term debt is reduced by

jL(f0)− jL(f0 + ∆) ≈ −j′L(f0)︸ ︷︷ ︸
pL(f0)

∆.

The net change in market leverage, illustrated by the wedge between the blue line and the green

line in Figure 2(b), corresponds to

Net change in market leverage ≈
(
pH(f0)− pL(f0)

)
∆.

The crux of the matter is that while the marginal value of long-term debt determines the effect

of the adjustment on long-term debt in the high state, the impact on short-term borrowing is

determined by the marginal value in the low state.

Given each dollar of (market value) debt generates a benefit of (ρ− r), the total benefit of the

adjustment in long-term debt is

Net benefit adjustment ≈ (ρ− r)
(
pH(f0)− pL(f0)

)︸ ︷︷ ︸
difference in discounting

∆ + πr
(
1− pL(f0)

)︸ ︷︷ ︸
tax shield

∆.

18



The cost of this adjustment depends on the price impact of such trade, which is

Cost of one period adjustment ≈ −pH(f0 + ∆)∆ + pH(f0)∆ = −p′H(f0) (∆)2 .

In equilibrium, the marginal benefit is equal to the marginal cost, so

(ρ− r)
(
pH(f0)− pL(f0)

)
+ πr

(
1− pL(f0)

)
∆ ≈ −p′H(f0) (∆)2

=⇒ ∆ =
(ρ− r)

(
pH(f0)− pL(f0)

)
−p′H(f0)

+
πr
(
1− pL(f0)

)
−p′H(f0)

.

The issuance function in other cases of Proposition 3 can be derived using similar heuristic

arguments. Note that a minor change to the tax shield is that the interest rate becomes either

r + η or r + λ instead of r – the effect coming from the benefit of additional leverage is different.

Moreover, in these cases, an increment in long-term debt’s market value is fully offset by the

reduction in short-term debt. In this case, the borrower only issues long-term debt for tax shield

benefits.

3.3.2 Repurchase of Long-Term Debt

Figure 3 illustrates the equilibrium issuance of long-term debt. Consistent with Proposition 3,

the rate of long-term debt issuance in the high state gH has a discontinuity at f†, which marks

the switch between borrowing riskless and risky short-term debt. A notable feature is that the

issuance could be negative in both states, implying that the borrower actually buys back long-

term debt. This result differs from the literature on the leverage-ratchet effect, which predicts a

borrower without commitment to debt issuance would never actively buy back the outstanding debt

(DeMarzo and He, 2021; Admati et al., 2018). There are two reasons behind this result. First, for

f close to f†, it might be that long-term debt is riskier in the upturn compared to the downturn,

so pH(f) < pL(f). Second, long- and short-term debt receives different tax shield benefits.

According to Proposition 3, for f ∈ [0, f†], the borrower buys back long-term debt if pH(f) <

pL(f) in the absence of tax shields, which could happen for f sufficiently close to (but still below)

f†. In this case, long-term debt’s default risk is higher in the high state than in the low state.

Intuitively, in the high state, a sequence of bad shocks could push f above f†, leading to default

following a regime switch. In the low state, however, default happens if there is a disaster or if f

reaches the default boundary f bL, which could be less likely. Note that this result may not hold

when the cash flows in the low state are sufficiently risky, for example, when the arrival intensity

of the disaster η is sufficiently high, as we show below.
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Figure 3: Long-term debt issuance

The baseline parameters in this figure are as follows: ρ = 0.9, r = 0.035, µH = 0.015, µL = −0.1, ξ = 0.1, λ = 0.17,

η = 0.02, σ = 0.3, π = 0.1.

Corollary 1. Without tax shields (π = 0), the borrower never repurchases its long-term debt if

η ≥ λ.

Next, let us compare the tax shields from long- and short-term debt. For long-term debt,

only the coupon payments are tax-deductible, so the tax-shield benefit is πrF . On the other

hand, the interest payments are tax-deductible for the short-term debt, so the resulting tax-shield

benefit is πyD. Therefore, whenever the short rate exceeds the coupon rate of the long-term bond,

the borrower would prefer to repurchase long-term debt for tax-shield benefits. In the low state,

this happens when r + η > r/pL(f). Similarly, this happens in the high state for f > f† when

r + λ > r/pH(f).

Remark 1 (Tax shields of long-term debt). We assume that only the coupon payments of the

long-term debt are tax-deductible. This assumption follows the standard approach in the dynamic

capital structure literature with debt rollovers (Leland and Toft, 1996; He and Xiong, 2012; De-

Marzo and He, 2021). However, this is a simplification of the tax treatment of interest expenses

in practice, where the tax shields apply to total interest expenses, including the amortization of

any discount/premium at the time of issuance. The reason the existing literature does not con-

sider the amortization of the discount/premium is that this would require keeping track of the dis-

count/premium of all bonds issued in the past, making the analysis intractable. Our normalization

of the coupon rate to the risk-free rate implies that the bond trades at a discount. Thus, the model’s

resulting tax-shield benefits of long-term debt are a lower bound of the tax benefit in practice. More
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generally, when the short-term rate is higher than the yield of long-term debt, the tax benefit of

short-term borrowing is higher, so equity holders have incentives to substitute long-term debt for

short-term debt.

3.3.3 Mechanism: Commitment and Hedging

In our model, the borrower faces a time-inconsistency problem: she does not commit to future

debt issuance policies and can dilute existing creditors. If the borrower only issues long-term

debt, she always has incentives to issue more and dilute legacy long-term creditors. Moreover, as

shown by Admati et al. (2018), the borrower financed by long-term debt never voluntarily reduces

leverage even after negative shocks to the fundamentals. By contrast, short-term debt resolves

the commitment problem because all outstanding debt must be rolled over continuously; that is,

the existing short-term debt must be retired before issuing any new debt. In addition, following

negative shocks, short-term debt forces the borrower to reduce the leverage, even though she does

not commit to doing so. As DeMarzo (2019) shows, the borrower’s problem when she only issues

long-term debt is related to the Coase conjecture on the durable-goods monopoly (Coase, 1972). In

our context, the borrower is the monopolist, and long-term debt is the durable goods. However, the

issuance of short-term debt echoes the leasing solution to the Coase conjecture, initially proposed

by Coase (1972) and later formalized by Bulow (1982). Short-term debt achieves commitment

and prevents dilution because it needs to be continuously rolled over and repriced every time it

is adjusted. In our model, if there is no regime switch, the borrower issues exclusively short-term

debt.

To better explore the mechanism behind the issuance of long-term debt, we study a limiting

model whereby the cash flow volatility converges to zero, i.e., σ → 0. In this limiting model, the

cash flows are (almost) deterministic conditional on the aggregate state. For simplicity, we also

omit tax shields by letting π = 0 and assume µH + ξ > 0 so that in the high state, ft decreases

in the absence of issuance. In the low state, there are two cases, depending on the comparison

between µL + ξ and 0. If µL + ξ < 0, the decline of cash flows exceeds the speed that the existing

long-term debt matures, and long-term debt is risky. Specifically, ft keeps increasing without any

new issuance of long-term debt, eventually leading to the borrower defaulting. The next proposition

summarizes the issuance policy, and detailed expressions for debt prices and the boundaries are

provided in the appendix.

Proposition 4 (Limiting long-term debt issuance policy). Suppose π = 0, λ > λ̄, µL + ξ < 0, and
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µH + ξ > 0. Let

γ =
r̂ + η̂ − µL
−(ξ + µL)

> 1 ψ =
r̂ + λ̂− µH
ξ + µH

> 0 δ =
ρ+ λ− r̂

ρ+ λ− r̂ + (µH − µL)(γ − 1)− η̂
∈ (0, 1).

When σ → 0, the equilibrium issuance policy converges to:

gθ(f) =
ρ− r

ρ+ λ− r

[
η(ξ + µH) + (µH − µL)(r + ξ)

r + η + ξ

+η

(
ξ + µH
ρ+ λ+ ξ

+
−(ξ + µL)

r + η + ξ

)(
f

f bL

)−(γ−1)
]
1{f<f†,θ=H}. (23)

Results are different under µL + ξ > 0. Now, if the borrower does not default right upon the

downturn arrives, she will never default in the low state because the cash flow growth rate exceeds

the speed that the existing long-term debt matures. The next proposition summarizes the issuance

policy.

Proposition 5 (Limiting long-term debt issuance policy). Suppose π = 0, λ > λ̄, µL + ξ > 0, and

µH + ξ > 0. Consider the limit when σ → 0. If η = 0 so there is no disaster risk, then the issuance

policy converges to gH(f) = gL(f) = 0.

Let us compare the results in Proposition 4 and 5. If µL + ξ < 0, the borrower will eventually

default in the low state and given so, the default option embedded in long-term debt is valuable

because it delays default by allowing the borrower to pay later. This motivation leads to the issuance

of long-term debt in the high state. By contrast, if µL+ ξ > 0, the borrower can only default in the

low state due to the disaster risk. Without the disaster, the borrower defaults immediately after

the regime shift or never defaults, so the longer maturity in the embedded default has zero value.

As a result, the borrower does not issue long-term debt in the high state.9

These results also explain the long-term debt issuance policy in Proposition 3. While short-

term debt resolves the dilution problem, it needs to be fully repaid at any instant; otherwise, the

borrower is forced to default immediately. In other words, the default option embedded in short-

term debt expires immediately. By contrast, long-term debt matures in the future, so the default

option embedded also expires later. In downturn, the borrower never defaults if it only uses short-

term debt. Therefore, there is no value associated with the default option and, thus, no need to

issue long-term debt. In the high state when f > f†, the default option is also not valued because

the borrower finds it optimal to default immediately after the transition.

9If η > 0, for any ft ∈ [0, f†), long-term debt immediately jumps such that ft+ = f†.
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Matters are different in the high state when short-term debt is riskless. In this case, default does

not occur after the regime switch, but the firm value experiences a discontinuous jump. Long-term

debt offers the borrower an option to postpone default in this situation. After the regime shift, the

default option becomes more valuable, so the price of the outstanding long-term debt goes down

because the price of the debt is equivalent to the discounted value of risk-free payments subtracting

the value of the default option. Figure 4 provides a graphical illustration of the impact of the

state transition. Note that a transition from the high to the low state reduces the equity value

by jH(f)− jL(f) and the long-term debt price by pH (f)− pL (f). However, it leaves the value of

short-term debt intact.10

State θ = H

LiabilitiesAssets

Cash flow
grows at µH

Equity: jH − d

ST debt: d

LT debt: pH · f

State θ = L

LiabilitiesAssets

Cash flow
grows at µL

Equity: jL − d

ST debt: d

LT debt: pL · f

Figure 4: Balance sheet upon the state transition without immediate default

So far we have focused on the limiting model with σ → 0. For the case of σ > 0, there is

a second related benefit associated with long-term debt. Specifically, by postponing default after

the downturn has arrived, long-term debt also increases the chances that the borrower can avoid

default. In other words, long-term debt allows the borrower time to recover after the downturn.

To summarize, the maturity choice is determined by the trade-off between commitment and

hedging. Short-term debt resolves dilution and forces the borrower to reduce leverage after negative

shocks; long-term debt offers a better hedge against the downside risk by providing an option to

default later and allowing time to recover. This insight relates to the previous work in the fiscal-

policy literature that emphasizes how long-term debt allows for more state contingency (Angeletos,

2002).

3.3.4 The Maturity of Long-term Debt

We start by considering the impact of ξ on f†, which captures the incentives to issue long-term

debt for purposes other than a tax shield. As shown in Figure 1, this threshold is determined by

10Given the presence of the disaster shock, all results in our model continue to hold under µH = µL, because the
firm value experiences a discontinuous then the disaster risk becomes more likely following the state transition.
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the trade-off between maximizing the benefits of leverage versus the bankruptcy cost. Thus, any

parameter that increases the continuation value after the regime switch (thus, increasing bankruptcy

cost) should increase f†, whereas parameters that increase debt capacity in the high state should

decrease f†. Figure 1 shows that, keeping jL(f) constant, an increase in jH(f) reduces f†. Hence,

it is immediate that f† is increasing λ and decreasing in µH . Figure 5 presents some further

comparative statics. The left panel shows that f† increases in µL. Intuitively, a higher growth

rate of cash flows in the low state increases the expected bankruptcy cost upon regime switching

and makes risky short-term debt more costly. The right panel confirms the earlier result that f†

increases in λ. A comparison across different curves in both panels shows that f† decreases in ξ or

equivalently increases in the maturity of long-term debt. Intuitively, debt with longer maturity is

more sensitive to changes in firm value. As a result, the embedded default option is more valuable

and becomes more attractive to the borrower.
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Figure 5: Comparative statics f†.

The baseline parameters in this figure are as follows: ρ = 0.1, r = 0.05, µH = 0.1, µL = 0, λ = 0.5, η = 0.1, σ = 0.5,

π = 0.

The left panel Figure 6 describes how the maturity of long-term debt affects firm value, and the

results show some interesting non-monotonic patterns. Intuitively, when the maturity of long-term

debt gets longer, the dilution problem gets more severe. Meanwhile, the embedded default option

becomes more valuable, so the overall effect can be non-monotonic. The right panel shows that in

the economy with only long-term debt (such as in DeMarzo and He (2021) and Proposition 10 in

Section 4), the firm value decreases with maturity because longer-maturity debt is subject to more

future dilution.
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Figure 6: Comparative statics firm value and debt capacity.

The baseline parameters in this figure are as follows: ρ = 0.075, r = 0.05, µH = 0.2, µL = 0.1, λ = 0.25, η = 0.1,

σ = 1, π = 0. The figures consider the relation between total debt and firm value. They are constructed by

considering the upper branch of the graph {(pH(f)f + dH(f), pH(f)f + jH(f))}. In the case of both short- and

long-term debt, we restrict attention to the interval (0, f†). On (f†, f
b
H), both total debt and firm value are

decreasing in f .

3.3.5 Initial Debt Issuance

So far, our analysis has shown that for a given level f > 0, the borrower could have incentives

to issue/repurchase some long-term debt. However, it remains a question whether an initially

unlevered borrower would issue any long-term debt. The next proposition provides sufficient and

necessary conditions for the issuance of long-term debt when f = 0.

Proposition 6. In the high state, an initially unlevered borrower will issue long-term debt, that is

lim
f→0

gH(f)f > 0, if only if η > 0 and p′H(0) > −∞. The latter condition is satisfied if and only if

the coefficients γ and φ in Proposition 2 are greater or equal than 2.

Without the disaster shock, an unlevered borrower would never issue long-term debt. Intuitively,

if there is no disaster, a marginal unit of long-term debt is riskless for the unlevered borrower in

both the upturn and the downturn. Therefore the option to default later is not needed. The

second condition on p′H(0) > −∞ is needed so that the price impact from issuing a marginal unit

of long-term debt is not too high for the unlevered borrower.
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3.4 Comparative Statics and Debt Dynamics

The analytical solutions allow us to conduct comparative statics and study debt structure

dynamics. For simplicity, we restrict attention to the model presented in section 3.3.3, under the

limit σ → 0 and no tax shields (π = 0). As shown by (22), the borrower only issues long-term debt

in the high state when f ∈ [0, f†]. In this region, several comparative static results immediately

follow.

Proposition 7. Consider the limiting model (σ → 0) without tax shields (π = 0). Under the

parametric conditions in Proposition 4, for any f ∈ (0, f†), the issuance function gH(f) is:

� Increasing in ρ, η, and µH , and decreasing in λ.

� If η > 0, there is f̃ ∈ (0, f†] such that gH(f) is increasing in µL for f < f̃ and decreasing in

µL for f > f̃ . If η = 0, gH(f) is decreasing in µL for all f ∈ [0, f†].

The results in Proposition 7 are straightforward. Higher ρ increases the benefits of leverage;

higher η and µH both increase the difference between pH(f) − pL(f) for any given f . Therefore,

the borrower issues more long-term debt. Meanwhile, when λ gets higher, pL(f) stays unchanged,

whereas pH(f) gets lower. As a result, the borrower should issue less long-term debt.

The closed-form solution for the issuance policy allows us to fully characterize the dynamics of

ft. We focus on the case µL + ξ < 0.

Proposition 8. In the limiting model (σ → 0) without tax shields (π = 0). Under the parametric

conditions in Proposition 4, the ratio of long-term debt to cash flows ft follows the piecewise-

deterministic process

dft
dt

=


−(ξ + µL)ft if θt = L

− ν
γ−1

[
1− κ

(
fbL
ft

)γ−1
]
ft if θt = H and ft ∈ (0, f†)

−(ξ + µH)ft if θt = H and ft ∈ (f†, f
b
H),

where ν · κ ≥ 0 and ν > 0 only if

ξ + µH
−(ξ + µL)

λ

ρ− r
>

r + ξ

r + η + ξ

If ν > 0, let fᵀ ≡ κ
1

γ−1 f bL be the unique solution to gH(fᵀ) = µH + ξ. In the high state:

� If ν < 0 or fᵀ > f†, ft converges to f†.
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� If ν ≥ 0 and fᵀ < f†, ft converges to fᵀ. In this case,

– The speed of adjustment ν is increasing in η, λ, µH , and µL, and it is decreasing in ρ.

It is increasing in ξ if and only if

ξ > −µL −

√
λ (µH − µL) (r + η − µL)

ρ+ λ− r
.

– The target fᵀ is increasing in ρ, η, and decreasing in λ and µH .

One can interpret fᵀ as the target ratio of long-term debt to cash flow. Figure 7 illustrates

the dynamics when fᵀ ∈ (0, f†), with the left and right panels, respectively describe the evolution

of long- and short-term debt. Starting in the high state, the path of ft converges towards the

target fᵀ until the regime switches. The convergence path for f0 < fᵀ (red path in the figure)

is straightforward. For f0 > f† (blue path in the figure), the equity holder initially borrows risky

short-term debt and retires maturing long-term debt until f† (this corresponds to time τ† in the

figure). Once this threshold is reached, the borrower reduces the amount of short-term debt and

starts to issue long-term debt. After the regime shift, which occurs at τL, the borrower stops issuing

long-term debt and only borrows short-term, and ft increases until the firm eventually defaults.

If either ν < 0 or fᵀ > f†, then ft converges towards f†, after which it stays there until the

state transition.11

3.5 Empirical Implications

Stock versus flow Static models of debt maturity tend to make the same predictions regarding

the stock (outstanding) and the flow (issuance) of debt. One merit of constructing a dynamic model

of debt maturity is to differentiate between the two. Our paper implies that the relationship between

credit risk and maturity is dramatically different depending on whether we consider outstanding

debt or new issuance as the dependent variable. For example, in the upturn, credit risk is high when

11This last case presents some technical complications because there is a difference between the limit equilibrium
when σ → 0 and the equilibrium in a model with σ = 0. At f†, we have that gH(f†−) > µH+ξ and gH(f†+) < µH+ξ.
A classical solution for the path of ft only exists if we set gH(f†) = ξ + µH – so the threshold f† is absorbing. If
σ = 0, this policy is consistent with the equilibrium price pH(f†) = j′H(f†) only if the probability of defaulting
upon a transition is positive but less than one. We can construct an equilibrium with this property by setting
dH(f†) = jL(f†) and specifying a mixed strategy of default (upon a transition to the low state) so the price of long-
term debt satisfies no-arbitrage at f†. Such construction is possible because at f† the equity holders are indifferent.
When σ > 0, the particular issuance policy at f† is not a problem because ft fluctuates around the threshold f†. If
we set gH(f†) = gH(f†−), the existence result in Nakao (1972) implies the existence of a unique strong solution to
the SDE for ft for any σ > 0. We can interpret the path of ft in the limit as an approximation for small σ > 0 where
in the high state ft mean reverts to f†.

27



Figure 7: Sample path ft and dt for different values of f0.

The parameters in this figure are as follows: ρ = 0.2, r = 0.1, µH = 0.045, µL = −0.75, ξ = 0.5, λ = 0.4, η = 0.1.

The shock arrives at τL = 5, the issuance threshold is f† = 0.78, the default threshold in the low state is fbL = 1.66,

and the target is fᵀ = 0.54. The blue corresponds to an initial value f0 = 1.57, while the red line corresponds to an

initial value f0 = 0.16.

the borrower has a significant amount of long-term debt outstanding (i.e., f is very close to f bH).

Thus, there is a positive relationship between credit risk and the maturity of outstanding long-term

debt. However, close to the default boundary, newly issued debt is exclusively short-term, so there

is a negative relation between credit risk and the maturity of the newly issued debt.12

Gradual and sudden defaults. Our model generates some novel empirical implications on debt

maturity structure and defaults. In particular, the borrower defaults in two circumstances. First,

the ratio of long-term debt to cash flow ft gets sufficiently high such that the borrower approaches

the default boundary gradually from below (ft ↑ f bL or ft ↑ f bH). In this case, default occurs

gradually after the deterioration of the fundamental cash flows relative to the outstanding long-

term debt. In the second circumstance, default occurs after a transition from the upturn to the

downturn, and the borrower has taken too much risky short-term debt before the transition. In this

case, default follows suddenly upon the state transition. Our model implies that defaults in the real

world can be classified into more gradual and more sudden ones. Moreover, gradual defaults are

driven by the accumulation of long-term debt relative to the fundamental cash flows. In contrast,

sudden defaults are triggered by a combination of a large shock to the borrower’s fundamentals

and the excessive short-term debt taken prior to the shock. These can be implications for future

12Note that the binary-state setup and the fact that the low state is absorbing imply that results in the upturn
should be interpreted more broadly.
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empirical tests.

Cross-sectional implications. We have shown that with only small shocks (diffusion risks), the

borrower borrows exclusively short-term debt. By contrast, the borrower issues a combination of

long- and short-term debt when there are large downside risks (such as the regime switch and the

jump risks introduced in subsection 5.3 below) to hedge. Cross-sectionally, one should observe that

firms more exposed to large downside shocks use more long-term debt. To some extent, one can

interpret the small shocks as diversifiable risks, whereas large negative shocks as non-diversifiable.

Under such an interpretation, our paper implies that firms with more non-diversifiable risk use

more long-term debt.

Time series implications. In the main model, we have assumed that the low state θt = L is

absorbing. If we interpret the changes in regime as business-cycles, it is natural to assume that

states are transitory. We can extend the model to consider this situation. Such a model is solved

in closed forms in Internet Appendix B.3, and we explore a few patterns as follows.

If we interpret the state transition as business-cycle shocks, our result implies that market

leverage is countercyclical, which is consistent with the evidence provided in Adrian and Shin

(2014). Our result that long-term debt is only issued in the high state θt = H immediately implies

the borrower’s debt maturity is pro-cyclical, if one interprets these two states as business-cycle

frequency boom and bust. This prediction is consistent with the findings in Chen et al. (2021).

In Figure 8, we simulate a sample path and plot the time series of the cash-flow rate and debt

maturity. Here, debt maturity is defined as the average maturity of total debt outstanding weighted

by their book value:

Maturityt :=
Ft

Ft +Dt

1

ξ
.

In the absence of a regime shift, the maturity of debt seems to move in the opposite direction to

cash flows. In other words, the borrower expands the average debt maturity following a negative

Brownian shock to Xt. Intuitively, this pattern holds because, after a negative Brownian shock

to Xt, the borrower immediately rolls over less short-term debt, whereas she only reduces long-

term debt outstanding gradually over time. Meanwhile, when the regime shifts and the downturn

arrives, the borrower exclusively borrows short-term debt and the average maturity goes down.13

Therefore, our model implies that within a regime, cash flows and debt maturity negatively comove

with each other. However, if we compare across regimes, the regime with higher cash-flow growth

13This result depends on the binary-state setup, where no additional downside risk exists in the low state. With
more than two states, the borrower may still issue long-term debt in the low state. The broader message is the
transition to a worse state, the borrower may only issue short-term debt for a while.
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rates has on average longer debt maturity.

Figure 8: Sample path of leverage and maturity

This figure simulates the sample path of one firm and plots the time series of Xt, maturity, and market leverage,

with the following parameter values: ρ = 0.1, r = 0.035, µH = 0.015, µL = −0.1, σ = 0.3, ξ = 0.1, λHL = 0.2,

λLH = 0.4, η = 0.05.

Anecdotal examples We can illustrate the predictions of our model by considering real-world

examples. Figure 9 plots debt maturity structure from 1990 onward for the Pacific Gas and Elec-

tric Company (PG&E) and General Motors (GM). PG&E entered bankruptcy twice in the last two

decades. It initially entered Chapter 11 bankruptcy on April 6, 2001, and emerged from bankruptcy

in April 2004. In 2019, it filed for bankruptcy on January 29 again and successfully exited on June

20. The left panel plots the maturity of newly issued long-term debt, weighted by the offering

amount. The red-shaded areas marked the two bankruptcies, and the gray areas are NBER reces-

sions. Consistent with our model, the newly-issued bonds have shorter maturities in the NBER

recessions and shortly before the bankruptcies.14 The right panel displays similar patterns for GM,

which filed for bankruptcy on June 8, 2009.

14The maturity of newly-issued debt was also short in 2011, which might be due to the 2010 San Bruno explosion:
PG&E was on probation after being found criminally liable in the fire. In the context of our model, the San Bruno
explosion can be thought of as a transition from a high to a low state after a Poisson shock.
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Figure 9: Time series maturity of new issuance for PG&E and GM

This figure shows the average maturity of bonds in a year (weighted by market value at issuance) and the share of

long-term debt maturing within one year for Pacific Gas & Electric (PG&E) and General Motors (GM). The

gray-shaded area indicates NBER recession, whereas the red-shaded area indicates periods over which these

companies were in bankruptcy procedures. Source: Mergent FISD.

4 Equilibrium with Only Long- or Short-Term Debt

As a comparison, we describe in this section the equilibrium when only long- or short-term debt

is allowed. The case with only short-term debt relates to Abel (2018), while the case with only

long-term debt corresponds to DeMarzo and He (2021) (adapted to our setting with regime shift

and the disaster shock).

Proposition 9 (Equilibrium with only short-term debt). If only short-term debt is allowed, the

unique equilibrium is the following. The value function is given by Jsθ (X) = Xjsθ and the amount

of short-term debt is Ds
θ(X) = Xdsθ.

1. In the low state L,

jsL =
1− π

r̂ + η̂ − µL
.

Short-term debt is dsL = jsL. The borrower only defaults upon the disaster shock, so the short

rate is yL = r + η.

2. In the high state H, the value function is

jsH = max

{
1− π

r̂ + λ̂− µH
,

1− π
ρ+ λ− µH

(
1 +

ρ+ λ− r̂
r̂ + η̂ − µL

)}
.
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Let λ̄ be the threshold in Proposition 2.

� If λ ≤ λ̄, short-term debt is dsH = jsH . The borrower defaults as soon as θ switches from

H to L, and the short rate is yH = r + λ.

� If λ > λ̄, dsH = jsL, the borrower never defaults, and yH = r.

3. The total firm value is higher than in the case where the borrower can issue both types of debt,

that is, jsθ ≥ jθ(f) + pθ(f)f, ∀θ ∈ {L,H}

If only short-term debt is allowed, the commitment problem in debt issuance no longer exists.

Instead, capital structure choice is a static problem and follows the standard trade-off theory

whereby equity holders balance cheap debt against costly bankruptcy. Interestingly, the total firm

value is higher if the borrower is prohibited from issuing long-term debt. This result may appear

paradoxical, given the earlier discussion on the hedging benefits of long-term debt. Due to the

borrower’s lack of commitment to future issuance policies, long-term debt prices drop to the level

at which the hedging benefits are completely depleted. In other words, given the pricing function

of long-term debt {pH(f), pL(f)}, the borrower always has incentives to borrow long to explore

hedging benefits. However, due to a lack of commitment, the benefits from hedging are completely

dissipated. Additionally, long-term debt leads to more defaults on the equilibrium path.

Proposition 10 (Equilibrium with only long-term debt). If only long-term debt is allowed, the

unique equilibrium is the following.

1. In state L, the value function is

v`L (f) =
1− π

ρ+ η − µL
− r̂ + ξ

ρ+ η + ξ
f +

1− π
ρ+ η − µL

1

γ` − 1

(
f

f b`L

)γ`
,

where γ` is given in (A.23) and the default boundary is given in (A.22).

2. In state H, the value function is

v`H (f) = u`0 (f)− u`0(f b`H )

(
f

f b`H

)φ
,

and

u`0 (f) =
1− π

ρ+ λ− µH

(
1 +

λ

ρ+ η − µL

)
− r̂ + ξ

ρ+ λ+ ξ

(
1 +

λ

ρ+ η + ξ

)
f

+ δ`
1

γ` − 1

1− π
ρ+ η − µL

(
f

f b`L

)γ`
,
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where

δ` =
λ

λ− η + (µH − µL)(γ` − 1)
.

The borrower defaults upon the state transition if and only if f > f b`L .

3. In both states θ ∈ {L,H}, the debt price is p`θ = −v`′θ , and the issuance function follows

g`θ =
πr + (ρ− r) p`θ
−fp`′θ

.

As in DeMarzo and He (2021), equity holders do not reap the benefits of issuing cheaper debt

without commitment to the issuance policy. In equilibrium, long-term debt is issued smoothly.

The next proposition compares the equilibrium with only long-term debt with the one in which the

borrower can issue both types of debt.

Proposition 11 (Comparison of equilibrium).

1. The total firm value is lower than the case in which the borrower can issue both types of debt,

that is, v`θ (f) + p`θ (f) f ≤ jθ (f) + pθ (f) f, ∀f .

2. The default boundary is higher in the presence of short-term debt. That is, f bθ > f b`θ .

3. In the low state, the price of debt is higher in the presence of short-term debt. That is,

p`L(f) < pL(f), ∀f ∈ [0, f b`L ]. In the high state, if ρ > r + λ, there are thresholds f ∈ [0, f†]

and f ∈ [f†, f
b`
H ] such that p`H(f) ≤ pH(f) on [0, f ] ∪ [f, f b`H ].

Figure 10 illustrates the comparison. The top panels show that the firm value is higher in

both states when the borrower can issue both types of debt. Intuitively, borrowing short mitigates

dilution and forces the borrower to reduce leverage following negative shocks. Consequently, the

default boundaries are higher. The bottom-left panel compares long-term debt’s price, which can

be either higher or lower when the borrower can issue both types of debt. On the one hand, the

availability of short-term debt increases the firm value and pushes up the default boundary. On the

other hand, in the high state, when f gets above f†, short-term debt introduces the rollover risk,

i.e., the borrower may default following the state transition from high to low. Without short-term

debt, the borrower will not default following the same transition. Therefore, for f exceeds f† but

is still far from f b`L , the price of long-term debt is lower when the borrower can issue both types of

debt. Finally, the bottom-right panel shows that in the low state, long-term debt prices are always

higher with two types of debt.
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Figure 10: Comparison of equilibrium.

The baseline parameters in this figure are as follows: ρ = 0.1, r = 0.05, µH = 0.1, µL = −0.1, λ = 0.3, η = 0.7,

σ = 1, π = 0.1, ξ = 0.5. This figure compares the equilibrium firm value (top panels) and the price of long-term

debt (bottom panels) when both types of debt are available and when only long-term debt is available.
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5 Extensions and Robustness

We consider the several extensions to further illustrate the main economic mechanisms. Through

this section, we restrict attention to the case without tax shields, i.e., π = 0. In subsection 5.1, we

explore the role of market incompleteness by allowing the borrower to issue financial instruments to

partially hedge the regime shift. In subsection 5.2, we study short-term debt renegotiation and show

that short-term debt dominates long-term debt when renegotiation is frictionless. In subsection 5.3

we show that results are similar if large shocks are instead modeled as jumps to the cash flows.

5.1 The Role of Market Incompleteness

In this subsection, we introduce derivative contracts that allow the borrower to insure against

the regime shift. Results show that these derivative contracts can partially substitute for long-term

debt.

Suppose a short-term derivative contract is written on a variable θ̂t that is correlated with θt.

In the absence of a regime switch, θ̂t remains a constant. However, if there is a regime switch,

then θ̂t switches with probability q ∈ [0, 1] and remains a constant otherwise. The case of q = 1

corresponds to perfect insurance. If so, markets are dynamically complete, and shocks to θt can be

perfectly insured.

The buyers of this derivative pay a premium ς · dt over the period [t, t + dt), in exchange of a

payment of $1 at time t + dt if there is a change in θ̂t. The expected payoff of this contract over

the period [t, t+ dt) is e−rdtq(1− e−λdt), so no arbitrage implies

ς = lim
dt→0

e−rdt(1− e−λdt)q
dt

= λq.

Let zt denote the number of contracts bought by the equity holder at time t. The analysis in

the low state is unchanged. In the high state, upon the regime shifting, the borrower receives zt

with probability q and nothing with probability 1− q. In the first case, default occurs if and only

if jL(ft−) + zt− ≤ dt−, whereas in the second case, default happens if and only if jL(ft−) ≤ dt−.

Consistent with the assumption of zero recovery, we assume that in the event of default, the payment

from the derivative contract cannot be used to pay long-term creditors. Given the position zt, the
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short rate is given by

yH (f, d, z) =


r if d ≤ jL (f)

r + λ(1− q) if jL(f) < d ≤ jL(f) + z

r + λ if d > jL(f) + z.

In the high state, the HJB equation is

(ρ+ λ− µH) jH(f) = max
d∈[0,jH(f)],z≥0

1−(r + ξ) f−qλz+(ρ+ λ− yH) d−(µH+ξ)fj′H(f)+
1

2
σ2f2j′′H(f)

+ λqmax {jL(f) + z − d, 0}+ λ(1− q) max {jL(f)− d, 0} . (24)

The following Lemma characterizes the solution to the maximization problem in equation (24)

Lemma 1. The optimal short-term debt and hedging policy dH(f), z(f) is

dH(f) =

jL(f) if jL(f) ≥ ρ−r
ρ+λ(1−q)−r jH(f)

jH(f) Otherwise.

z(f) =

0 if jL(f) ≥ ρ−r
ρ+λ(1−q)−r jH(f)

jH(f)− jL(f) Otherwise.

When dH(f) = jL(f), the firm will survive the regime switch anyway, so insurance is unneces-

sary. By contrast, when dH(f) = jH(f) so that short-term debt is risky, the equity holder buys

enough derivative contracts to insure against the regime shift. The equilibrium takes a similar

form as the one in section 3. The amount of short term debt is dH(f) = jL(f) when f < f†, and

dH(f) = jH(f) if f > f†, with the threshold f† given by the indifference condition

f† = min
{
f ≥ 0 : (ρ+ λ(1− q)− r)jL(f) ≤ (ρ− r)jH(f)

}
.

It immediately follows from this indifference condition that when q = 1, the threshold f† is equal

to zero. In other words, the borrower does not issue any long-term debt if she can perfectly insure

against the regime shift. We leave the rest of the analysis in Appendix B.1.

Proposition 12. The firm never issues long-term debt if markets are complete. That is, if q = 1,

then gθ(f) = 0 for all f . If f† > 0, then f† is decreasing in q.

The first part of this proposition shows that long-term debt is not issued if the borrower can fully

insure against the regime switch using the derivative contracts. Long-term debt is more costly due

36



to future dilution and potential bankruptcy. Therefore, derivative contracts serve as a substitute

for long-term debt. The second part of the result shows this substitution between the derivative

contracts and long-term debt is monotonic: there is more substitution as the derivative contract

offers better insurance.
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Figure 11: Debt Issuance under Derivative Contracts.

The baseline parameter values are: ρ = 0.1, r = 0.05, µH = 0.1, µL = 0.05, σ = 0.5, ξ = 0.1, λ = 0.5, η = 1, q = 0.5.

Figure 11 describes the results in this subsection. The left panel confirms that as q goes up, f†

decreases and eventually gets to zero. Comparing across lines, it is clear that when λ gets higher so

that the regime shift is more likely, f† is also higher. The middle and right panels further illustrate

the decision between issuing long-term debt and buying the derivative contracts, with the two being

substitutes.

5.2 Restructuring of Short-Term Debt

Our benchmark model has established the hedging benefits of long-term debt. Meanwhile,

bankruptcy could also be avoided if the short-term debt can be restructured when the borrower

gets distressed. In this subsection, we show that the restructuring of short-term debt reduces the

issuance of LT debt.

To model renegotiation, we distinguish between default and bankruptcy. Whenever the borrower

announces a default, and there is outstanding short-term debt, short-term debt can be restructured

with some probability. Notice that in both states θ ∈ {H,L}, when the borrower defaults at f bθ ,

the amount of short-term debt is zero. Therefore, renegotiating short-term debt is only relevant

upon a regime shift from H to L. The renegotiation game goes as follows. With probability 1−α,
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it is impossible to renegotiate, and the firm goes bankrupt. With probably α, the firm enters into a

renegotiation process. In this case, the equity holder makes the offer with probability β and short-

term creditors with probability 1 − β. If the short-term creditors make the offer, and this offer is

rejected, the firm goes bankrupt. If the equity holder makes the offer and the offer is rejected, she

can still choose between repaying the original short-term debt and bankruptcy. Figure 12 presents

the timing of events.

0,0

E

jL(f)− dST, dST 0,0

ST

jL(f)− dE, dE E

0,0 jL(f)− dH ,dH

no renegotiation
prob. 1− α

renegotiation
prob. α

ST creditor offer dST

prob. 1− β

accept reject

E offer dE

prob. β

accept reject

not repay repay

Figure 12: Renegotiation process.

The game tree illustrates the renegotiation process. If the firm defaults, renegotiation is triggered with probability

α; otherwise, there is bankruptcy. In the event of renegotiation, the equity holder gets to make an offer with

probability β, in which case she offers dE. Otherwise, the offer is made by short-term creditors, in which case they

offer dST. In the tree, E indicates nodes where the equity holder moves and ST nodes where short-term creditors

move. At the end of the tree, the first coordinate indicates the payoff to the equity holder, and the second

coordinate indicates the payoff to short-term creditors.

Following the state transition, the borrower receives jL(f) − dH if she does not default. If

there is a default, with probability 1 − α, there is no renegotiation, and she receives zero. With

probability α, there is renegotiation. In this case, if short-term creditors make an offer, they receive

jL(f) while the borrower receives 0. If the equity holder makes an offer, they offer 0 and obtain

jL(f), while the short-term creditors get 0; however, such an offer is credible only if jL(f) < dH . If

jL(f) ≥ dH , then the only credible offer is dH .15 It is easy to verify that renegotiation is triggered

15When there is indifference, we break ties in favor of the efficient outcome of continuation.
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only after the regime switch and jL(ft) < dH(ft). The firm goes bankrupt only if the restructuring

process fails, which happens with probability 1 − α. To determine the interest rate, we need to

analyze the expected recovery. If dH(f) ≤ jL(f), there is no default, and short-term creditors

are paid in full. The equity holder does not have incentives to default because no credible offer

would allow paying less than dH . If dH > jL(f), the equity holder default so the expected payoff

is (1 − αβ) × 0 + αβ × jL(f). In the event of default, each creditor gets zero with probability

1− α(1− β); that is, if either renegotiation is not possible or if it is possible, but equity holder is

the one to make the offer. With probability α(1 − β), the short-term debt recovery per dollar is

jL(f)/dH . Hence, the short rate is given by

yH(f, dH) =

r if dH ≤ jL(f)

r + λ
(

1− α(1− β) jL(f)
dH

)
if dH > jL(f).

The analysis in state L is unchanged. In state H, we try to construct a similar equilibrium. The

HJB in the high state follows

(ρ+ λ− µH) jH(f) = max
dH∈[0,jH(f)]

(1− π)− (r + ξ) f + (ρ+ λ− yH) dH

+ λ
((
jL(f)− dH

)
1dH≤jL(f) + αβjL(f)1dH>jL(f)

)
− (µH + ξ)fj′H(f) +

1

2
σ2f2j′′H(f). (25)

The optimal solution for short-term debt is

dH(f) =

jL(f) if jL(f) ≥ ρ−r
ρ+λ(1−α)−r jH(f)

jH(f) Otherwise.

Note that when α = 0, we are back to the benchmark model. Interestingly, α and β serve different

purposes: the former leads to efficiency loss, and the latter is only about how to redistribute the

surplus across the coalition. The threshold now is determined by the indifference condition

f† = min
{
f ≥ 0 : (ρ+ λ(1− α)− r)jL(f) ≤ (ρ− r)jH(f)

}
. (26)

We supplement the remaining details in Appendix B.2.

If renegotiation is perfect (that is, α = 1), there is no threshold f† ∈ (0, f bH) satisfying the

indifference condition (26), so f† = 0 and the optimal amount of short-term debt is always dH(f) =

jH(f).

Proposition 13. The firm never issues long-term debt if the short-term debt can be renegotiated
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without friction. That is, if α = 1, then gθ(f) = 0 for all f . If f† > 0, then f† is decreasing in α.

The intuition behind this result is similar to the one with derivative contracts. The main

purpose of long-term debt is its state contingency that reduces the probability of default. However,

if the short-term debt is also contingent, thanks to renegotiation, then there is no benefit of using

long-term debt.

5.3 Jump Risk

In the benchmark model, the borrower is subject to two types of risks. The Brownian motion

captures small frequent shocks to the cash flow, which has a continuous effect on the firm value.

By contrast, a transition from the high to the low state, that is, the regime shift, captures large

infrequent shocks that reduce the firm value discontinuously. In this subsection, we show the

modeling choice of a regime shift is unimportant. In particular, our mechanism continues to hold

if large infrequent shocks are modeled as downward jump risks to the cash flow. Specifically, we

assume the cash flow follows a jump-diffusion process:

dXt = µXt−dt+ σXt−dBt −
(
1− ω−1

)
Xt−dNt, (27)

where Nt is a Poisson process with intensity λ and ω ∈ (1,∞) is a constant. We can construct

an equilibrium characterized by thresholds f† and f b. The value function j(f) satisfies the HJB

equation. Thus, the scaled value function satisfies the delay differential equation

(ρ+ λ− µ) j(f) = 1− (r + ξ) f − (µ+ ξ) fj′(f) +
1

2
σ2f2j′′(f)

+ max
{

(ρ+ λ− r)j(ωf)

ω
, (ρ− r)j(f)

}
,

with value matching and smooth pasting conditions j(f b) = j′(f b) = 0. The optimal short-term

debt policy is given by

d(f) =


j(ωf)
ω if f ∈ [0, f†)

j(f) if f ∈ [f†, f
b],

where the threshold f† satisfies the condition (ρ + λ − r) j(ωf†)ω = (ρ − r)j(f†). The issuance of

long-term debt satisfies g(f) = 0, for g(f) = 0 ∀f ∈ (f†, f
b], where f b is the endogenous default

boundary. The issuance of long-term debt follows

g (f) =
(ρ− r) (p (f)− p (ωf))

−fp′ (f)
1{f<f†}. (28)
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In other words, long-term debt is issued if and only if the amount of outstanding long-term debt

is low relative to the operating cash flow. Equation (28) resembles (22): the difference in prices

p (f)− p (ωf) reflects the drop in the long-term debt’s price following the downward jump, and the

denominator captures the sensitivity of long-term debt price to issuance.

The issuance of short-term debt is also similar to that in section 3. Short-term debt is riskless

when f ≤ f† and the amount of issuance is d(f) = j(ωf)
ω . On the other hand, when f > f†,

short-term debt becomes risky and the amount of issuance becomes d(f) = j(f). The scaled-value

function j(f) satisfies a second-order delay differential equation, which cannot be solved in closed

form. The detailed analysis of the problem is available in the Internet Appendix B.4. Figure 13

illustrates the dynamics of leverage and short-term debt. Note that the ratio of long-term debt

to cash flow ft experience upward jumps following downward jumps to cash flows. The ratio of

short-term debt to cash flow dt only significantly jumps downwards if ft ≤ f† before and after the

cash-flow jump.

Figure 13: Example of a sample path with jumps

The parameter values are: ρ = 0.1, r = 0.05, µ = 0.2, σ = 0.75, ξ = 0.1, λ = 2, ω−1 = 0.4. With these parameters,

f† = 3.72 and fb = 10.76. For the simulation, we set the initial value f0 = 0.5× f†.
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6 Final Remarks

Our paper offers a theory of debt maturity based on a tradeoff between commitment and

hedging. Short-term debt mitigates the lack-of-commitment problem and forces the borrower to

reduce leverage after negative shocks. Long-term debt offers the borrower an option to postpone

default and allows some time to recover after downside risks.

We end this paper with discussions and interpretations on some key assumptions of the paper.

Risk. The Brownian motion captures continuous fluctuations in day-to-day operating cash flows,

which are meant to be small and frequent. Meanwhile, a transition across the two states affects

the expected growth in cash flow and captures large and infrequent shocks. In a model with only

Brownian Motion, a borrower would only issue short-term debt (except for tax-shield benefits).

The disaster shock offers a reason for an unlevered borrower to issue long-term debt.

Debt maturity. Our modeling choice of short- and long-term debt is motivated by the discrete-

time microfoundation. There, short-term debt would last for one period and therefore mature

simultaneously. In the continuous-time setup, this feature is captured by zero-maturity debt that

needs to be continuously rolled over. In the discrete-time setup, long-term debt would last for

multiple periods, and the flexibility in issuing it each period would lead to the staggered structure.

This feature is well captured by exponentially-maturing debt in the continuous-time setup.

Zero recovery in default. The assumption that creditors do not recover any value once the

borrower defaults is made for simplicity and does not affect our mechanism. It implies debt seniority

becomes irrelevant, ruling out the theoretical channel highlighted in Brunnermeier and Oehmke

(2013) whereby the equity holder dilutes existing creditors’ recovery value in bankruptcy through

issuing new debt.

Covenants In our paper, we do not consider covenants designed to mitigate dilutions. Introduc-

ing covenants would allow the borrower to reap more benefits from long-term debt issuance. For

example, a covenant that restricts the issuance of long-term debt to be lower than some threshold

can limit the extent of dilution. However, covenants do not eliminate the benefits from short-term

debt for two reasons. First, covenants are written on imperfect proxies of the firm’s fundamentals,

and therefore they don’t completely rule out dilution. Second, following small and frequent shocks

to cash flows, it is more costly for the borrower to adjust long-term debt. By contrast, short-term

debt is more flexible. Therefore, our main mechanism between commitment and hedging continues

to work under covenants.
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Appendix

A Proofs of Section 3

Proof of Proposition 1

Proof. We prove the result for JH , and the one for JL follows similar steps. Let θt = H and τλ ≥ t
be the time that the state switches from H to L. By the principle of dynamic programming,

Vt = sup
τb,gs,Ds

Et
[ ∫ τb∧τλ

t
e−ρ(s−t)

(
((1− π)Xs − (r̂ + ξ)Fs + psgsFs − ŷs−Ds−) ds+ dDs

)
+ e−ρτb∧τλVτλ1{τb≥τλ}

]
= sup

τb,gs,Ds

Et
[ ∫ τb

t
e−(ρ+λ)(s−t)

(
((1− π)Xs − (r̂ + ξ)Fs + psgsFs − ŷs−Ds−) ds+ dDs

)
+ e−ρτλVτλ1{τb≥τλ}

]
= sup

τb,gs,Ds

Et
[ ∫ τb

t
e−(ρ+λ)(s−t)

(
((1− π)Xs − (r̂ + ξ)Fs + psgsFs − ŷs−Ds−) ds+ dDs

)
+ e−ρτλ max {Jτλ −Dτλ−, 0}1{τb≥τλ}

]
= sup

τb,gs,Ds

Et
[ ∫ τb∧τλ

t
e−(ρ+λ)(s−t)

(
((1− π)Xs − (r̂ + ξ)Fs + psgsFs − ŷs−Ds−) ds+ dDs

+ λmax {Js −Ds−, 0}
)]
,

where we have used the definition Vτλ = max {Jτλ −Dτλ−, 0}. Using the integration by parts

formula for semi-martingales (Corollary 2 in Section 2.6 of Protter (2005)), we get

Et
[ ∫ τb

t
e−(ρ+λ)(s−t)dDs

]
= Et

[
e−(ρ+λ)(τb−t)Dτb

]
−Dt− + Et

[ ∫ τb

t
e−(ρ+λ)(s−t)(ρ+ λ)Ds−ds

]
.

At the time of default, Dτb = 0. Hence

Vt = sup
τb,gs

Et

[∫ τb

t
e−(ρ+λ)(s−t)

{
(1− π)Xs − (r̂ + ξ)Fs + psgsFs

+ (ρ+ λ− ŷs−)Ds− + λmax {JL(Xs, Fs)−Ds−, 0}
}
ds

]
−Dt−.
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A.1 Detailed Solutions

Solution to the HJB equation in the low state. Equation (10) is a second-order ODE, and

a standard solution takes the form

jL(f) = A0 −A1f +A2f
γ1 +A3f

γ2 .

Plugging into the ODE, we can get

A0 =
1− π

r̂ + η̂ − µL

A1 =
r̂ + ξ

r̂ + η̂ + ξ

γ1 =
µL + ξ + 1

2σ
2 +

√(
µL + ξ + 1

2σ
2
)2

+ 2σ2 (r̂ + η̂ − µL)

σ2
> 1

γ2 =
µL + ξ + 1

2σ
2 −

√(
µL + ξ + 1

2σ
2
)2

+ 2σ2 (r̂ + η̂ − µL)

σ2
< 0.

(A.1)

The condition limf→0 jL(f) < ∞ implies A3 = 0. We define γ ≡ γ1. Combining with value-

matkappang and smooth-pasting condition, we get the default boundary is

f bL =
γ

γ − 1

(1− π)
(
r̂ + η̂ + ξ

)(
r̂ + η̂ − µL

)
(r̂ + ξ)

(A.2)

From here, we get that the price pL(f) = −j′L(f) is given by

pL (f) =
r̂ + ξ

r̂ + η̂ + ξ

[
1−

(
f

f bL

)γ−1
]
.
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Solution to the HJB equation in the high state for f† > 0. The value function satisfies

equation (13) together with the boundary conditions

jH(f†−) = jH(f†+) (A.3)

j′H(f†−) = j′H(f†+) (A.4)

jH(f bH) = 0 (A.5)

j′H(f bH) = 0 (A.6)

lim
f→0

jH(f) <∞ (A.7)

jH (f†) =
ρ+ λ− r̂
ρ− r̂ + πλ

jL (f†) . (A.8)

First, we consider the solution for f ∈ [0, f†], in which region the value function satisfies the

equation

(ρ+ λ− µH) jH(f) = (1− π)− (r̂ + ξ) f + (ρ+ λ− r̂) jL(f)− (µH + ξ) fj′H(f) +
1

2
σ2f2j′′H (f) .

The unique solution to this ODE satisfying condition (A.7) takes the form

jH (f) = u0(f) +Bfφ,

where the coefficient φ is given by

φ =
µH + ξ + 1

2σ
2 +

√(
µH + ξ + 1

2σ
2
)2

+ 2σ2 (ρ+ λ− µH)

σ2
> 1, (A.9)

and a particular solution u0 is given by

u0(f) =
1− π

ρ+ λ− µH

(
1 +

ρ+ λ− r̂
r̂ + η̂ − µL

)
− r̂ + ξ

ρ+ λ+ ξ

(
1 +

ρ+ λ− r̂
r̂ + η̂ + ξ

)
f︸ ︷︷ ︸

no default value

+ δ
1

γ − 1

1− π
r̂ + η̂ − µL

(
f

f bL

)γ
︸ ︷︷ ︸

default option in low state

(A.10)

where the discount factor δ is

δ ≡ ρ+ λ− r̂
ρ+ λ− r̂ − η̂ + (µH − µL)(γ − 1)

∈ (0, 1). (A.11)
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From the Feynman-Kac formula, we know that the solution to the particular solution admits the

following stochastic representation:

u0(f) = E0

[∫ ∞
0

e−(ρ+λ−µH)t
(

(1− π)− (r̂ + ξ) f̃t + (ρ+ λ− r̂) jL(f̃t)
)
dt

]
where f̃t corresponds to the process

df̃t = −(µH + ξ)ftdt− σftdB̃t, f̃0 = f

for some Brownian motion B̃t. Equation (17) follows by Girsanov’s theorem after a change of

measure using the Radon-Nikodym derivative e−µH t(Xt/X0).

The coefficient B is pinned down from the value at jH (f†)

B = f−φ† (jH(f†)− u0(f†))

so that

jH(f) = u0(f) +
(
jH(f†)− u0(f†)

)( f
f†

)φ
, ∀f ∈ [0, f†],

where jH (f†) = ρ+λ−r̂
ρ−r̂+πλjL (f†). The solution on the interval

[
f†, f

b
H

]
can be obtained in a similar

way. In this interval, the value function satisfies the equation(
r̂ + λ̂− µH

)
jH(f) = (1− π)− (r̂ + ξ) f +DHjH(f).

The homogeneous equation (
r̂ + λ̂− µH

)
ϕ = DHϕ

has two solution fβ1 and fβ2 , where

β1 =

µH + ξ + 1
2σ

2 +

√(
µH + ξ + 1

2σ
2
)2

+ 2σ2
(
r̂ + λ̂− µH

)
σ2

> 1

β2 =

µH + ξ + 1
2σ

2 −
√(

µH + ξ + 1
2σ

2
)2

+ 2σ2
(
r̂ + λ̂− µH

)
σ2

< 0.

(A.12)
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Hence, the value function takes the form

jH (f) = u1(f) +D1f
β1 +D2f

β2 .

As before, the particular solution

u1(f) =
1− π

r̂ + λ̂− µH
− r̂ + ξ

r̂ + λ̂+ ξ
f

admits the representation

u1(f) = E0

[∫ ∞
0

e−(r̂+λ̂−µH)t
(

1− π − (r̂ + ξ)f̃t

)
dt

]
,

which, after an appropriate change of measure, can be written as equation (18). Finally, by com-

bining equations (A.3) and (A.5), we get

D1 =
jH(f†) + u1(f bH)

(
f†
fbH

)β2
− u1(f†)

(f bH)β1
[(

f†
fbH

)β1
−
(
f†
fbH

)β2]
D2 = (f bH)−β2

(
−u1(f bH)−D1(f bH)β1

)
.

It follows that the solution to the value function on this interval is given by

jH(f) = u1(f) +
(
jH(f†)− u1(f†)

)
h0

(
f, f†, f

b
H

)
− u1(f bH)h1

(
f, f†, f

b
H

)
,

where

h0

(
f
∣∣f†, f bH) =

(
f
fbH

)β1
−
(
f
fbH

)β2
(
f†
fbH

)β1
−
(
f†
fbH

)β2
h1

(
f
∣∣f†, f bH) =

(
f†
fbH

)β2 ( f
fbH

)β1
−
(
f†
fbH

)β1 ( f
fbH

)β2
(
f†
fbH

)β2
−
(
f†
fbH

)β1 .

(A.13)

It remains to find equations that solve
{
f†, f

b
H

}
, which come from the smooth pasting conditions
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(A.4) and (A.6). These two conditions lead to the two-variable, non-linear equation system below

u1(f bH)

 β2

(
f†
fbH

)β1
(
f†
fbH

)β1
−
(
f†
fbH

)β2 − β1

(
f†
fbH

)β2
(
f†
fbH

)β1
−
(
f†
fbH

)β2
 = u′1(f bH)f bH +

(
jH(f†)− u1(f†)

) β1 − β2(
f†
fbH

)β1
−
(
f†
fbH

)β2
(A.14)(

u′0(f†)− u′1(f†)
)
f† + φ

(
jH(f†)− u0(f†)

)
=

u1(f bH)
β1 − β2(

f†
fbH

)β1
−
(
f†
fbH

)β2
(
f†

f bH

)β1+β2

+
(
jH(f†)− u1(f†)

)β1

(
f†
fbH

)β1
− β2

(
f†
fbH

)β2
(
f†
fbH

)β1
−
(
f†
fbH

)β2 . (A.15)

From here, we get the following expressions for the price. For f ∈ [0, f†], the price is

pH(f) =
r̂ + ξ

ρ+ λ+ ξ

(
1 +

ρ+ λ− r̂
r̂ + η̂ + ξ

)
− δ r̂ + ξ

r̂ + η̂ + ξ

(
f

f bL

)γ−1

−
φ
(
jH(f†)− u0(f†)

)
f†

(
f

f†

)φ−1

,

while for f ∈ (f†, f
b
H ], the price is

pH(f) =
r̂ + ξ

r̂ + λ̂+ ξ

1−
β1

(
f†
fbH

)β2 ( f
fbH

)β1−1
− β2

(
f†
fbH

)β1 ( f
fbH

)β2−1

β1

(
f†
fbH

)β2
− β2

(
f†
fbH

)β1


+

(
jH(f†)− u1(f†)

)
β1β2

f bH

[
1−

(
f†

f bH

)β1−β2] (
f†
fbH

)β2
(
f†
fbH

)β1
−
(
f†
fbH

)β2

(
f
fbH

)β2−1
−
(
f
fbH

)β1−1

β1

(
f†
fbH

)β2
− β2

(
f†
fbH

)β1


Proof of Proposition 2

The proof includes three parts. In the first part, we show the existence and uniqueness of a

solution. In the second part, we prove a single-crossing property and therefore show that it is

optimal for the borrower to issue riskless short-term debt dH = jL (f) if f ≤ f†. Finally, we verify

that jH (f) is a convex function on
[
0, f bH

]
, so that it is indeed optimal for the borrower to issue

long-term debt smoothly. We start by establishing the uniqueness of the equilibrium.
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Existence and Uniqueness: For an arbitrary positive function j̃, we define the following oper-

ator:

Φ(j̃)(f) ≡ sup
τ≥0

E
[∫ τ

0
e−ρ̂t

(
1− π − (r̂ + ξ)zt + ν(zt, j̃(zt))

)
dt
∣∣∣z0 = f

]
subject to dzt = −(ξ + µH)ztdt− σztdBt,

where

ν(z, j̃) ≡ max
d∈[0,j̃]

(ρ+ λ− ŷH(z, dH)) dH + λmax {jL(z)− dH , 0} = max{(ρ+ λ− r̂) jL(z), (ρ− r̂ + πλ) j̃}.

It follows from the HJB equation that the value function jH is a fixed point jH(f) = Φ(jH)(f).

Hence, it is enough to show that the operator Φ is contraction to get that the solution is unique.

First, we can notice that Φ is a monotone operator: For any pair of functions j̃1 ≥ j̃0, we have

ν(f, j̃1) ≥ ν(f, j̃0); thus it follows that Φ(j̃1)(f) ≥ Φ(j̃0)(f). Next, we can verify that Φ satisfies

discounting: For a ≥ 0, we have

ν(z, j̃ + a) = max{(ρ+ λ− r̂) jL(z), (ρ− r̂ + πλ) (j̃ + a)} ≤ (ρ− r̂ + πλ)a+ ν(z, j̃),

so letting τ∗(j̃) denote the optimal stopping policy, we have

Φ(j̃ + a)(f) = E

[∫ τ∗(j̃+a)

0
e−ρ̂t

(
1− π − (r̂ + ξ)zt + ν(zt, j̃(zt) + a)

)
dt
∣∣∣z0 = f

]

≤ E

[∫ τ∗(j̃+a)

0
e−ρ̂t

(
1− π − (r̂ + ξ)zt + ν(zt, j̃(zt))

)
dt
∣∣∣z0 = f

]

+
ρ− r̂ + πλ

ρ̂
E
[
1− e−ρ̂τ∗(j̃+a)

∣∣∣z0 = f
]
a

≤ E

[∫ τ∗(j̃)

0
e−ρ̂t

(
1− π − (r̂ + ξ)zt + ν(zt, j̃(zt))

)
dt
∣∣∣z0 = f

]

+
ρ− r̂ + πλ

ρ̂
E
[
1− e−ρ̂τ∗(j̃+a)

∣∣∣z0 = f
]
a

= Φ(j̃)(f) +
ρ− r̂ + πλ

ρ̂
E
[
1− e−ρ̂τ∗(j̃+a)

∣∣∣z0 = f
]
a ≤ Φ(j̃)(f) +

ρ− r̂ + πλ

ρ+ λ− µH
a.

Thus, the operator Φ is monotone and satisfies discounting, it follows then by Blackwell’s sufficiency

conditions that Φ is a contraction, which means that there is a unique fixed point jH(f) = Φ(jH)(f).
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Optimality Short-term Debt Policy We start with the following result, which will be used

later on. First, let

λ̄ ≡ −1

2

(
ρ− πη +

πµL − µH
1− π

)
+

√(
ρ− πη

2
+
πµL − µH
2(1− π)

)2

+
(ρ− r̂) (µH − µL + η̂)

1− π
. (A.16)

Lemma 2. The condition

(ρ+ λ− r̂) jL (0) > (ρ− r̂ + πλ) jH (0) .

is satisfied if and only if λ > λ̄.

Proof. See online appendix.

Next, the following result shows that it is optimal for the borrower to issue dH = jL (f) when

f ≤ f† and dH = jH (f) otherwise.

Lemma 3 (Single-crossing). There exists a unique f† ∈
(
0, f bL

)
such that (ρ+ λ− r̂) jL (f) ≥

(ρ− r̂ + πλ) jH (f) if and only if f ≤ f†.

Proof. See online appendix.

Strict convexity of jH (f) on
[
0, f bH

]
. The proof relies on a few auxiliary lemmas.

Lemma 4.

j′H (f) ≥ −1, ∀f ∈
[
0, f bH

]
,

Proof. See online appendix.

Lemma 5.

f bH >
1− π
r̂ + ξ

and min
{
j′′H(0), j′′H(f bH)

}
> 0,

Proof. See online appendix.

Lemma 6.

j′′′H(f−† ) > j′′′H(f+
† ).

Proof. See online appendix.
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Now we are ready to verify that the solution to the HJB equation is convex. We differentiate

the HJB twice and let ũ ≡ fj′′H to get

(ρ+ λ+ ξ) ũ = (ρ+ λ− r) fj′′L −
(
µH + ξ − σ2

)
fũ′ +

1

2
σ2f2ũ′′ f ∈ (0, f†) (A.17)(

r̂ + λ̂+ ξ
)
ũ = −

(
µH + ξ − σ2

)
fũ′ +

1

2
σ2f2ũ′′ f ∈ (f†, f

b
H). (A.18)

By the maximum principle in Theorem 1, ũ cannot have an interior nonpositive local minimum

in (0, f†) ∪ (f†, f
b
H). Because ũ is differentiable on (0, f†) ∪ (f†, f

b
H), the only remaining possibility

of a nonpositive minimum is that ũ(f†) < 0. As ũ(0) and ũ(f bH) are positive, this requires that

j′′H(f†−) + f†j
′′′
H(f†−) = ũ′(f†−) < ũ′(f†+) = j′′H(f†+) + f†j

′′′
H(f†+). From the HJB equation it

follows that jH is twice continuously differentiable at f†, so such a kink would require j′′′H(f−† ) <

j′′′H(f+
† ), which is ruled out by Lemma 6. We can conclude that ũ does not have an interior

nonpositive minimum, so it follows that ũ(f) = fj′′H(f) > 0 on (0, f bH).

Solution HJB Equation when f† = 0: In the case that λ ≤ λ̄, the firm never issues long-term

debt, so the analysis reduces to the one in Case 1 for f ′ > f† in the proof of Lemma 3.

A.2 Proof of Proposition 3

Proof. First, we consider the slow state. The debt price satisfies the asset pricing equation

(r + ξ + η) pL(f) = (r + ξ) +
(
gL(f)− ξ − µL + σ2

)
fp′L (f) +

1

2
σ2f2p′′L (f) . (A.19)

The indifference condition (9) implies that the price of debt is pL(f) = −j′L(f). Substituting in

(A.19) we get

(r + ξ + η) j′L(f) = − (r + ξ) +
(
gL(f)− ξ − µL + σ2

)
fj′′L (f) +

1

2
σ2f2j′′′L (f) . (A.20)

Combining (A.19) and (A.20) we get

gL(f) =
πr − π (r + η) pL(f)

−fp′L (f)
.

In the high state, the debt price follows

(r + ξ + λ) pH(f) = (r + ξ)+λpL(f)1{dH(f)≤jL(f)}+
(
gH(f)− ξ − µH + σ2

)
fp′H (f)+

1

2
σ2f2p′′H (f) .
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First, consider the case when f ∈ (0, f†). Differentiating the HJB equation for jH(f) we obtain,

(r + λ+ ξ) j′H(f) + (r + ξ)− λj′L(f) +
(
µH + ξ − σ2

)
fj′′H(f)− 1

2
σ2f2j′′′H (f)

= (ρ− (1− π) r) j′L(f) + πr − (ρ− r) j′H(f).

Combining with the indifference condition (11) – which requires that pH (f) = −j′H (f) – we find

that

gH(f) =
(ρ− r) (pH(f)− pL(f)) + πr (1− pL(f))

−fp′H(f)
.

Finally, for f ∈ (f†, f
b
H), we differentiate the HJB equation (13) to obtain,

(r + λ+ ξ) j′H(f) + (r + ξ) +
(
µH + ξ − σ2

)
fj′′H(f)− 1

2
σ2f2j′′′H (f) = π (r + λHL) j′H(f) + πr,

which combined with the optimality condition pH (f) = −j′H (f) yields

gH(f) =
πr − π (r + λ) pH(f)

−fp′H (f)
.

Proof of Proposition 6

Proof. In the region f < f†, the issuance function is given by

gH(f)f =
(ρ− r) (j′L(f)− j′H(f)) + πr (j′L(f) + 1)

j′′H (f)
.

The different terms in the previous expression are given by

j′L(f) + 1 =
η̂

r̂ + η̂ + ξ
+

r̂ + ξ

r̂ + η̂ + ξ

(
f

f bL

)γ−1

j′H(f) = −ρ+ λ+ η̂ + ξ

r̂ + η̂ + ξ

r̂ + ξ

ρ+ λ+ ξ
+ δ

r̂ + ξ

r̂ + η̂ + ξ

(
f

f bL

)γ−1

+ φ
(
jH(f†)− u0(f†)

)( f
f†

)φ−1 1

f†

j′L(f)− j′H(f) =
η̂

ρ+ λ+ ξ

r̂ + ξ

r̂ + η̂ + ξ
+ (1− δ) r̂ + ξ

r̂ + η̂ + ξ

(
f

f bL

)γ−1

− φ
(
jH(f†)− u0(f†)

)( f
f†

)φ−1 1

f†

fj′′H(f) = (γ − 1)δ
r̂ + ξ

r̂ + η̂ + ξ

(
f

f bL

)γ−1

+ φ(φ− 1)
(
jH(f†)− u0(f†)

)( f
f†

)φ−1 1

f†
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where

γ =
µL + ξ + 1

2σ
2 +

√(
µL + ξ + 1

2σ
2
)2

+ 2σ2 (r̂ + η̂ − µL)

σ2

φ =
µH + ξ + 1

2σ
2 +

√(
µH + ξ + 1

2σ
2
)2

+ 2σ2 (ρ+ λ− µH)

σ2

As γ > 1 and φ > 1, we have that

lim
f→0

j′L(f) + 1 =
η̂

r̂ + η̂ + ξ

lim
f→0

(
j′L(f)− j′H(f)

)
=

η̂

ρ+ λ+ ξ

r̂ + ξ

r̂ + η̂ + ξ

This means that the limit of gH(f)f is positive as long as the limit of j′′H(f) is finite, which requires

that γ ≥ 2 and φ ≥ 2.

A.3 Benchmark with Only Short- and Long-term Debt

Proof of Proposition 9

Proof. In the low state, the borrower chooses short-term debt Dt = XjL and only defaults upon

the disaster shock. So the short rate is yL = r + η, which implies the value of the firm is

JsL (X) =
(1− π)X

r̂ + η̂ − µL
.

In the high state, there is a choice between borrowing risky and riskless debt. If she borrows

risky short-term debt, again, she would like to take 100% leverage, in which case

JsH (X) =
(1− π)X

r̂ + λ̂− µH
.

On the other hand, if she borrows riskless debt up to XtjL, the firm value is

JsH (X) =
(1− π)X

ρ+ λ− µH

(
1 +

ρ+ λ− r̂
r̂ + η̂ − µL

)
.
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From here we get that the value of the firm is

JsH(X) = X max

{
(1− π)

r̂ + λ̂− µH
,

(1− π)

ρ+ λ− µH

(
1 +

ρ+ λ− r̂
r̂ + η̂ − µL

)}
Finally, JsL(X) ≥ JL(X,F ) + pL (X,F )F is straightforward given the former is the first-best firm

value. In the high state, this is equivalent to proving jsH ≥ jH(f) + pH (f) f . It is easily verified

that jsH ≥ jH(0) (and the equality holds for both cases no matter the value of λ). The result follows

from
d [jH(f) + pH (f) f ]

df
= p′H(f)f < 0.

Proof of Proposition 10

Proof. Again, let ṼL = XṽL so that ∂ṼL
∂F = ṽ′L, ∂ṼL

∂X = ṽL − fṽ′L, and X ∂2ṼL
∂X2 = f2ṽ′′L. For notation

convenience, we use ṽL = v`L. The scaled HJB becomes

(ρ+ η − µL) ṽL = (1− π)− (r (1− π) + ξ) f − (µL + ξ) fṽ′L +
1

2
σ2f2ṽ′′L.

Using the conditions limf→0 ṽL (f) <∞, ṽL

(
f̃ bL

)
= 0, and ṽ′L

(
f̃ bL

)
= 0, we obtain the solution

ṽL (f) =
1− π

ρ+ η − µL
− r (1− π) + ξ

ρ+ η + ξ
f +

r (1− π) + ξ

ρ+ η + ξ

f̃ bL
γ̃

(
f

f̃ bL

)γ̃
(A.21)

f̃ bL =
1− π

ρ+ η − µL
γ̃

γ̃ − 1

ρ+ η + ξ

r (1− π) + ξ
(A.22)

where

γ̃ =
µL + ξ + 1

2σ
2 +

√(
µL + ξ + 1

2σ
2
)2

+ 2σ2 (ρ+ η − µL)

σ2
> 1. (A.23)

In a smooth equilibrium, p̃L = −ṽ′L, and p̃L satisfies

(r + ξ + η) p̃L = (r + ξ) +
(
gL − ξ − µL + σ2

)
fp̃′L +

1

2
σ2f2p̃′′L.

Differentiating once the HJB for ṽL, we get g̃L = πr+(ρ−r)p̃L
fṽ′′L

.
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In the high state , the scaled HJB becomes

(ρ− µH) ṽH = (1− π)− (r (1− π) + ξ) f − (µH + ξ) fṽ′H +
1

2
σ2f2ṽ′′H + λ (ṽL − ṽH) .

Using the conditions limf→0 ṽH (f) <∞, ṽH

(
f̃ bH

)
= 0, and ṽ′H

(
f̃ bH

)
= 0, we obtain the solution

ṽH (f) = ũ0 (f)− ũ0

(
f̃ bH

)( f

f̃ bH

)φ
,

where

ũ0 (f) =
(1− π) (ρ+ η + λ− µL)

(ρ+ η − µL) (ρ+ λ− µH)
− (r (1− π) + ξ) (ρ+ η + λ+ ξ)

(ρ+ η + ξ) (ρ+ λ+ ξ)
f +

λ r(1−π)+ξ
ρ+η+ξ

λ− η + (µH − µL)(γ̃ − 1)

f̃ bL
γ̃

(
f

f̃ bL

)γ̃
,

and

φ =
µH + ξ + 1

2σ
2 +

√(
µH + ξ + 1

2σ
2
)2

+ 2σ2 (ρ+ λ− µH)

σ2
> 1

Finally, the boundary f̃ bH is pinned down by the smooth-pasting condition

f̃ bH ũ
′
0

(
f̃ bH

)
− φũ0

(
f̃ bH

)
= 0.

In a smooth equilibrium, p̃H = −ṽ′H , and p̃H satisfies

(r + ξ) p̃H = (r + ξ) +
(
g̃H − ξ − µH + σ2

)
fp̃′H +

1

2
σ2f2p̃′′H + λ (p̃L − p̃H) .

Differentiating once the HJB for ṽH , we get g̃H = πr+(ρ−r)p̃H
fṽ′′H

.

Proof of Proposition 11

Proof. The proof follows from the following lemmas (proofs available in online appendix):

Lemma 7. jL(f) ≥ ṽL(f) and f bL ≥ f̃ bL

Lemma 8. p̃L(f) ≤ pL(f), and the inequality is strict for ∀f > 0.

Lemma 9. jH(f) ≥ ṽH(f) and f bH ≥ f̃ bH .

Lemma 10. There is 0 ≤ f ≤ f† ≤ f ≤ f̃ bH such that p̃H(f) ≤ pH(f) on [0, f ] ∪ [f, f̃ bH ]
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Internet Appendix for “Debt Maturity Management”

Yunzhi Hu Felipe Varas Chao Ying

This Internet Appendix contains additional analysis to accompany the manuscript. Section

A provides the remaining proofs for the analysis in Section 3, including all technical lemmas.

Section B provides the details for Section 5. Section C offers additional examples of how real world

corporations manage debt maturity.

A Proofs of Section 3

Maximum Principle

Our proofs use repeatedly the Maximum Principle for differential equations. Theorem 3 and 4

from Chapter 1 in Protter and Weinberger (1967) are particularly useful, and we state them below.

Theorem 1 (Theorem 3 in Protter and Weinberger (1967)). If u(x) satisfies the differential in-

equality

u′′ + g(x)u′ + h(x)u ≥ 0 (A.24)

in an interval (0, b) with h(x) ≤ 0, if g and h are bounded on every closed subinterval, and if u

assumes a nonnegative maximum value M at an interior point c, then u(x) ≡M .

Theorem 2 (Theorem 4 in Protter and Weinberger (1967)). Suppose that u is a nonconstant

solution of the differential inequality (A.24) having one-sided derivatives at a and b, that h(x) ≤ 0,

and that g and h are bounded on every closed subinterval of (a, b). If u has a nonnegative maximum

at a and if the function g(x) + (x − a)h(x) is bounded from below at x = a, then u′(a) > 0. If u

has a nonnegative maximum at b and if g(x) − (b − x)h(x) is bounded from above at x = b, then

u′(b) > 0.

Corollary 2. If u satisfies (A.24) in an interval (a, b) with h(x) ≤ 0, if u is continuous on [a, b],

and if u (a) ≤ 0, u (b) ≤ 0, then u (x) < 0 in (a, b) unless u ≡ 0.



A.1 Proofs of Auxiliary Lemmas

Proof of Lemma 2

Proof. The proof of Proposition 9 makes it clear that the condition λ > λ̄ guarantees that

(ρ+ λ− r̂) jL (0) > (ρ− r̂ + πλ) jH (0) .

This inequality is satisfied only if

ρ+ λ− r̂
ρ− r̂ + πλ

>
ρ+ λ+ η̂ − µL
ρ+ λ− µH

.

Combining terms, we can write this as the following quadratic inequality

(1− π)λ2 + [(1− π) ρ− πη̂ + πµL − µH ]λ− (ρ− r̂) (µH − µL + η̂) > 0.

The left hand side is positive if and only if λ is greater than the unique positive root of the quadratic

equation for λ̄

(1− π) λ̄2 + [(1− π) ρ− πη̂ + πµL − µH ] λ̄− (ρ− r̂) (µH − µL + η̂) = 0,

which is given by (A.16).

Proof of Lemma 3

Proof. Define a ≡ 1 + λ̂
ρ−r̂+πλ . The goal is to show ajL − jH > 0 for f < f†, and vice versa. Let us

introduce two operators: for a function u let,

L0†u ≡ 1

2
σ2f2u′′ − (µH + ξ) fu′ − (ρ+ λ− µH)u

L†bu ≡ 1

2
σ2f2u′′ − (µH + ξ) fu′ −

(
r̂ + λ̂− µH

)
u.

The HJB in state θ = H can be written as

L0†jH + 1− π − (r̂ + ξ) f + (ρ+ λ− r̂) jL = 0, f ∈ (0, f†)

L†bjH + 1− π − (r̂ + ξ) f = 0, f ∈ (f†, f
b
H).
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Similarly, the HJB in state θ = L can be written as

L0†ajL + a(µH − µL)fj′L + a (ρ+ λ− (r̂ + η̂) + µL − µH) jL + a (1− π − (r̂ + ξ) f) = 0

L†bajL + a(µH − µL)fj′L − a
(
µH − µL + η̂ − λ̂

)
jL + a (1− π − (r̂ + ξ) f) = 0.

Therefore, we have

L0† (ajL − jH) +H(f) = 0

L†b (ajL − jH) +H(f) = 0,

where the function H(f) defined as

H(f) ≡ a(µH − µL)fj′L − a
(
µH − µL + η̂ − λ̂

)
jL + (a− 1) (1− π − (r̂ + ξ) f) ,

and

H ′′(f) =
[
(µH − µL)a

fj′′′L
j′′L

+ (µH − µL)a+ a
(
λ̂− η̂

) ]
j′′L

=
[
(µH − µL)(γ − 1) + λ̂− η̂

]
aj′′L. (A.25)

We need to distinguish two cases. If λ̂ ≥ η̂ − (µH − µL)(γ − 1), H ′′(f) ≥ 0, which implies H(f)

is convex and the maximum of H (f) on [0, f bL] is attained on the boundary 0 or f bL. Evaluating

H(f) at the two boundaries and using the hypothesis λ > λ̄, we have

(ρ+ λ− µH) a− (ρ+ λ− η̂ − µL) > 0,

from Lemma 2. Then, we get

H(0) = −a
(
µH − µL + η̂ − λ̂

) 1− π
r̂ + η̂ − µL

+ (a− 1) (1− π)

=
1− π

r̂ + η̂ − µL
((ρ+ λ− µH) a− (ρ+ λ− η̂ − µL)) > 0,

H(f bL) = (a− 1)
(

1− π − (r̂ + ξ) f bL

)
< 0.

Therefore, there exists a unique f ′ such that H(f) ≥ 0 on [0, f ′] and H(f) ≤ 0 on [f ′, f bL]. On

the other hand, if λ̂ < η̂ − (µH − µL)(γ − 1), H ′′(f) < 0, which implies H(f) is concave and the

minimum of H (f) on [0, f bL] is attained on the boundary 0 or f bL. Since H(0) > 0 and H(f bL) < 0,
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Therefore, there exists a unique f ′ such that H(f) ≥ 0 on [0, f ′] and H(f) ≤ 0 on [f ′, f bL].

Depending on whether f ′ < f† or not, we need to consider two cases.

� Case 1: f ′ > f†.

– On f ∈ [0, f†], we know H (f) > 0 and L0† (ajL − jH) < 0 on [0, f†]. Using Theorem 1,

we know that ajL(f)− jH(f) cannot have a negative interior minimum on [0, f†]. Given

ajL(0)− jH(0) > 0, we know that ajL(f)− jH(f) > 0, ∀f ∈ [0, f†). Moreover, Theorem

2 and Corollary 2 imply aj′L (f†)− j′H (f†) < 0.

– On f ∈ [f ′, f bL], we know H (f) ≤ 0 and L†b (ajL − jH) ≥ 0. Using Theorem 1, we

know that ajL(f) − jH(f) cannot have a nonnegative interior maximum. Given that

ajL
(
f bL
)
− jH

(
f bL
)
< 0, ajL (f)− jH (f) ≤ 0, ∀f ∈

[
f ′, f bL

]
.

– On f ∈ [f†, f
′]. Suppose there exists a f ′′ ∈ (f†, f

′) such that ajL (f ′′) − jH (f ′′) > 0.

Given that ajL (f†) − jH (f†) = 0 and aj′L (f†) − j′H (f†) < 0, it must be that ajL (f) −
jH (f) has a nonpositive interior minimum on [f†, f

′′]. Meanwhile, from L†b(ajL (f) −
jH (f)) ≤ 0 for f ∈ (f†, f

′′), we know from Theorem 1 that ajL (f)− jH (f) cannot have

a nonpositive interior minimum on (f†, f
′′), which constitutes a contradiction.

� Case 2: f ′ ≤ f†.

– On f ∈ [f†, f
b
L], we know that H (f) < 0 and L†b (ajL − jH) ≤ 0. From Theorem 1 and

2, we know ajL (f)− jH (f) ≤ 0 and aj′L (f†)− j′H (f†) ≤ 0.

– On f ∈ [f ′, f†], L
0† (ajL − jH) ≥ 0 so that ajL (f) − jH (f) cannot have a nonnegative

interior maximum. Together with aj′L (f†)−j′H (f†) ≤ 0, this shows ajL (f)−jH (f) ≥ 0.

– On f ∈ [0, f ′], we know that H (f) > 0 and L0† (ajL − jH) < 0 on [0, f†]. Using Theorem

1, we know that ajL(f)−jH(f) cannot have a negative interior minimum on [0, f ′]. Given

ajL(0)− jH(0) > 0, we know that ajL(f)− jH(f) > 0, ∀f ∈ [0, f ′).

Proof of Lemma 4

Proof. Let û = j′H (f) + 1 and the goal is to show û (f) ≥ 0, ∀f ∈
[
0, f bH

]
. We know from (16) that

û (0) = 0 and (A.6) that û
(
f bH
)

= 1. Moreover, û satisfies

1

2
σ2f2û′′ −

(
µH + ξ − σ2

)
fû′ − (ρ+ λ+ ξ) û = − (ρ+ λ− r̂) (j′L + 1) < 0, f ∈ [0, f†]

1

2
σ2f2û′′ −

(
µH + ξ − σ2

)
fû′ − (r + λ+ ξ) û = −λ̂ < 0 f ∈ [f†, f

b
H ].
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By Theorem 1, we know û (f) cannot admit a nonpositive interior minimum on
[
0, f bH

]
, which rules

out the possibility that û (f) < 0.

Proof of Lemma 5

Proof. For any f ≤ 1−π
r̂+ξ , there is a naive policy that the equity holder does not issue any long-term

debt, in which case the scaled net cash flow rate becomes 1 − π − (r̂ + ξ) f + (ρ+ λ− y) d > 0.

In other words, the naive policy generates positive cash flow to the borrower, so that it is never

optimal to default. Therefore, it must be that f bH > 1−π
r̂+ξ . Plugging (A.5) and (A.6) into the HJB

equation for jH(f), we get j′′H
(
f bH
)

whenever f bH > 1−π
r̂+ξ .

Next, let us turn to prove that j′′H (0) ≥ 0. Let us define u ≡ j′H and differentiate the HJB

equation once

1

2
σ2f2u′′ −

(
µH + ξ − σ2

)
fu′ − (ρ+ λ+ ξ)u = (r̂ + ξ)− (ρ+ λ− r̂) j′L.

Moreover, let z be the solution to

1

2
σ2f2z′′ −

(
µH + ξ − σ2

)
fz′ − (ρ+ λ+ ξ) z = (r̂ + ξ)− (ρ+ λ− r̂) j′L(0)

with boundary conditions

lim
f↓0

z(f) <∞

z(f†) = u(f†) = j′H(f†).

The solution is

z(f) = − r̂ + ξ

ρ+ λ+ ξ
+

(ρ+ λ− r̂) j′L(0)

ρ+ λ+ ξ
+

(
j′H(f†) +

r̂ + ξ

ρ+ λ+ ξ
−

(ρ+ λ− r̂) j′L(0)

ρ+ λ+ ξ

)(
fω1

f†

)ω1

,

where

ω1 =

(
µH + ξ − 1

2σ
2
)

+

√(
µH + ξ − 1

2σ
2
)2

+ 2σ2 (ρ+ λ+ ξ)

σ2
> 0.

Let δ(f) = z − u. It is easily verified that δ(0) = 0 and δ(f†) = 0. Moreover, δ satisfies

1

2
σ2f2δ′′ −

(
µH + ξ − σ2

)
fδ′ − (ρ+ λ+ ξ) δ = (ρ+ λ− r̂) (j′L(f)− j′L(0)) ≥ 0.
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By Theorem 1, δ cannot have an interior nonnegative maximum, and the maximum is attained at

f = 0. Theorem 2 further implies δ′(0) < 0 so u′ (0) > z′ (0). Finally, we know that

z′(f) = ω1

(
j′H(f†) +

r (1− π) + ξ

ρ+ λ+ ξ
−

(ρ+ λ− r̂) j′L(0)

ρ+ λ+ ξ

)
f−ω1
† fω1−1 = ω1

(
j′H(f†) + 1

)
f−ω1
† fω1−1,

which implies z′(f) ≥ 0 given that j′H(f†) ≥ −1. Therefore, u′ (0) = j′′H (0) > 0.

Proof of Lemma 6

Proof. We differentiate the HJB (13) once and take the difference between the left limit f†− and

right limit f†+

1

2
σ2f2(j′′′H(f†+)− j′′′′H (f†−)) =

(
ρ+ λ−

(
r̂ + λ̂

)) [
aj′L(f†)− j′H(f†)

]
,

where a ≡ 1+ λ̂
ρ+λ−(r̂+λ̂)

The proof of Proposition 3 shows aj′L(f†)− j′H(f†) < 0 so that j′′′′H (f†−) >

j′′′H(f†+).

Proof of Lemma 7

Proof.

JL(X,F ) = sup
τb,{Gs,Ds≤JL(Xs,Fs)}

Et

[∫ τb

t
e−(ρ+η)(s−t)

(
(1− π)Xs − (r̂ + ξ)Fs + (ρ+ η − ŷs−)Ds−

)
ds+ psdGs

)]

> sup
τb,{Gs}

Et

[∫ τb

t
e−(ρ+η)(s−t)

(
(1− π)Xs − (r̂ + ξ)Fs

)
ds+ psdGs

)]

= sup
τb

Et

[∫ τb

t
e−(ρ+η)(s−t)

(
(1− π)Xs − (r̂ + ξ)Fs

)
ds

)]
= ṼL (X,F ) (A.26)

where the inequality comes from that (ρ + η − ŷs−)Ds− is positive. This implies that the value

function in the low state in the benchmark is higher than that in the economy with long-term debt

only for any (X,F ).

Let TL and τ̃bL be the default time in both economies in the low state. We have that ṽL(fτ̃bL) =

0⇒ jL(fτ̃bL) > 0, which means that TL > τ̃bL. It follows then that f bL > f̃ bL.
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Proof of Lemma 8

Proof. Given f bL > f̃ bL and g̃L(f) > gL(f) = 0 and TL > τ̃bL, the result follows from the definition

pL = E
[∫ τξ∧TL

t
e−(r+η)(s−t)rds+ e−(r+η)(TL−t)1TL>τξ

]
p̃L = E

[∫ τξ∧τ̃bL

t
e−(r+η)(s−t)rds+ e−(r+η)(τ̃bL−t)1τ̃bL>τξ

]
.

Proof of Lemma 9

Proof. We define an auxiliary process zt that satisfies z0 = f0 and

dzt = −(ξ + µH)ztdt− σztdBt.

The value functions are equivalently

jH(z) ≡ sup
τb,dt∈[0,jH(zt)]

E
[∫ τb

0
e−ρ̂t

(
(1− π)− (r (1− π) + ξ)zt + (ρ+ λ− (1− π) y) dt + λ (jL(zt)− dt)+) dt]

ṽH(z) ≡ sup
τb

E
[∫ τb

0
e−ρ̂t ((1− π)− (r (1− π) + ξ)zt + λṽL(zt)) dt

]
,

where ρ̂ ≡ ρ+ λ− µH . Note that

jH(f) ≥ sup
τb

E

[∫ τb

0
e−ρ̂t ((1− π)− (r (1− π) + ξ)ft + (ρ+ λ− (1− π) r) jL(ft)) dt

]
> sup

τb

E

[∫ τb

0
e−ρ̂t ((1− π)− (r (1− π) + ξ)ft + λjL(ft)) dt

]
≥ sup

τb

E

[∫ τb

0
e−ρ̂t ((1− π)− (r (1− π) + ξ)ft + λṽL(ft)) dt

]
= ṽH(f).

It follows that f bH > f̃ bH .

Proof of Lemma 10

Proof. Define ∆H(f) = pH(f)− p̃H(f). We get
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� On f ∈ (0, f†), from the HJB equations, pH = −j′H and p̃H = −ṽ′H , we can find

1

2
σ2f2∆′′H (f)−

(
ξ + µH − σ2

)
f∆′H(f)− (ρ+ λ+ ξ) ∆H (f) = − (ρ− (1− π) r) pL (f)− λ4L (f)

From here we get that

1

2
σ2f2∆′′H (f)−

(
ξ + µH − σ2

)
f∆′H(f)− (ρ+ λ+ ξ) ∆H(f) ≤ 0.

By the maximum principle, ∆H (f) cannot have a nonpositive minimum. In addition,

∆H(0) =
(1− π) r + ξ

ρ+ λ+ ξ

λ (ρ+ η − (1− π) (r + η)) + (ρ− (1− π) r) (ρ+ η + ξ)

[(1− π) (r + η) + ξ] (ρ+ η + ξ)
> 0.

Hence, ∆H (f) single crosses 0 from above when f starts from f = 0.

� On f ∈ (f†, f̃
b
H), from the HJB equations, pH = −j′H and p̃H = −ṽ′H , we can find

1

2
σ2f2∆′′H (f)−

(
ξ + µH − σ2

)
f∆′H(f)− (ρ+ ξ) ∆H(f) = − [ρ− (1− π) (r + λ)] pH(f)

− λ (p̃H(f)− p̃L(f))

Given ρ > (1− π) (r + λ) and p̃H(f) > p̃L(f), we get that

1

2
σ2f2∆′′H (f)−

(
ξ + µH − σ2

)
f∆′H(f)− (ρ+ ξ) ∆H(f) ≤ 0.

It follows that ∆H (f) cannot have a nonpositive minimum. In addition, ∆H(f̃ bH) ≥ 0 since

f bH ≥ f̃ bH . Hence, ∆H (f) single crosses 0 from below when f goes to f = f̃ bH .

A.2 Analysis of Section 3.4: Limit when σ → 0

Proof of Proposition 4

The first step in the analysis is to derive the limit of the value function. This is given in the

following proposition

Proposition 14 (Limit value function). Suppose that µL + ξ < 0 and µH + ξ > 0. Consider the
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case when λ > λ̄, where λ̄ is given in equation (A.16). Let

γ ≡ r̂ + η̂ − µL
−(ξ + µL)

> 1

ψ ≡ r̂ + λ̂− µH
ξ + µH

> 0.

In the limit when σ2 → 0, the value function converges to

jL(f) =
1− π

r̂ + η̂ − µL
− r̂ + ξ

r̂ + η̂ + ξ
f +

1

γ − 1

1− π
r̂ + η̂ − µL

(
f

f bL

)γ

jH(f) =

u0(f) f ∈ [0, f†]

u1(f) +
(
u0(f†)− u1(f†)

) ( f
f†

)−ψ
f ∈

(
f†, f

b
H

]
,

where u0(f) and u1(f) are given in equations (17) and (18). The default boundary in the low state

is f bL = 1−π
r̂+ξ . In the high state, the threshold f† solves

jL(f†) =
ρ− r̂ + πλ

ρ+ λ− r̂
u0(f†)

where the functions u0(f) and u1(f) are given in equations (17) and (18). The default boundary

solves

u1(f bH) +
(
u0(f†)− u1(f†)

)( f†

f bH

)ψ
= 0.

Proof. Under the assumption that µL + ξ < 0, the default boundary becomes

f bL =
1− π
r̂ + ξ

.

Using L’Hôpital rule, and noticing that
√
x2 = ±|x|, we get

lim
σ2→0

γ =
1

2
+

1

2

[
(µL + ξ)2

]−1/2
[(µL + ξ) + 2 (r̂ + η̂ − µL)]

=
1

2
− 1

2
(µL + ξ)−1 [(µL + ξ) + 2 (r̂ + η̂ − µL)]

= − r̂ + η̂ − µL
ξ + µL
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Similarly, under the assumption that µH + ξ > 0, we get that

lim
σ→0

φ =∞

lim
σ→0

β1 =∞

lim
σ→0

β2 = − r̂ + λ̂− µH
µH + ξ

= −ψ.

The smooth pasting condition for f bH can be written as

u1(f bH)

 β2
β1

(
f†
fbH

)β1
(
f†
fbH

)β1
−
(
f†
fbH

)β2 −
(
f†
fbH

)β2
(
f†
fbH

)β1
−
(
f†
fbH

)β2
 =

1

β1
u′1(f bH)f bH+

(
jH(f†)−u1(f†)

) 1− β2
β1(

f†
fbH

)β1
−
(
f†
fbH

)β2 .
In the limit as σ2 → 0, this equation simplifies to

u1(f bH) +
(
jH(f†)− u1(f†)

)( f†

f bH

)ψ
= 0

Similarly, we can write the smooth pasting condition at f† as

1

β1

(
u′0(f†)− u′1(f†)

)
f† +

φ

β1

(
jH(f†)− u0(f†)

)
=

u1(f bH)
1− β2

β1(
f†
fbH

)β1
−
(
f†
fbH

)β2
(
f†

f bH

)β1+β2

+
(
jH(f†)− u1(f†)

)( f†
fbH

)β1
− β2

β1

(
f†
fbH

)β2
(
f†
fbH

)β1
−
(
f†
fbH

)β2 ,

and taking the limit we get

jH(f†) = u0(f†)

Substituting in the smooth pasting condition for f bH , we get the following equation for f bH

u1(f bH) +
(
u0(f†)− u1(f†)

)( f†

f bH

)ψ
= 0,

Substituting the solution for jH(f†) in indifference condition

jL(f†) =
ρ− r̂ + πλ

ρ+ λ− r̂
jH(f†),
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we obtain the following equation for f†:

1− π
r̂ + η̂ − µL

(
1− (ρ− r̂ + πλ)(ρ+ λ+ η̂ − µL)

(ρ+ λ− µH)(ρ+ λ− r̂)

)
−
(

1− (ρ− r̂ + πλ)(ρ+ λ+ η̂ + ξ)

(ρ+ λ− r̂)(ρ+ λ+ ξ)

)
1

r̂ + η̂ + ξ

(
f†

f bL

)
+

λ̂+ (µH − µL)(γ − 1)− η̂
ρ+ λ− r̂ + (µH − µL)(γ − 1)− η̂

1

γ − 1

1− π
r̂ + η̂ − µL

(
f†

f bL

)γ
= 0

Finally, from the limit coefficients (φ, β1, β2), we obtain that the value function in the H state

converges to

jH(f) =

u0(f) f ∈ [0, f†]

u1(f) +
(
u0(f†)− u1(f†)

) ( f
f†

)−ψ
f ∈

(
f†, f

b
H

]
,

Substituting the previous expressions on the equilibrium conditions determining the price, pθ =

−j′θ, we get

Proposition 15 (Limit price of long-term debt). Under the assumptions in Proposition 14, the

limit price of long-term debt when σ2 → 0 is

pL(f) =
r̂ + ξ

r̂ + η̂ + ξ

[
1−

(
f

f bL

)γ−1
]

(A.27)

pH(f) =


r̂+ξ

r̂+η̂+ξ

[
1 + η̂

ρ+λ+ξ − δ
(
f
fbL

)γ−1
]

f ∈ [0, f†]

r̂+ξ

r̂+λ̂+ξ
+ ψ

(
u0(f†)− u1(f†)

)
1
f†

(
f
f†

)−(ψ+1)
f ∈

(
f†, f

b
H

]
,

(A.28)

where, as before, the constant δ is given by

δ =
ρ+ λ− r̂

ρ+ λ− r̂ + (µH − µL)(γ − 1)− η̂
∈ (0, 1).

Proof. From the solution for the value function, we can obtain the price of the long-term debt. The

price of the long-term bond is

pL (f) =
r̂ + ξ

r̂ + η̂ + ξ

[
1−

(
f

f bL

)γ−1
]

(A.29)
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and

pH(f) =


r̂+ξ

r̂+η̂+ξ

[
1 + η̂

ρ+λ+ξ − δ
(
f
fbL

)γ−1
]

f ∈ [0, f†]

r̂+ξ

r̂+λ̂+ξ
+ ψ

(
u0(f†)− u1(f†)

)
1
f†

(
f
f†

)−(ψ+1)
f ∈

(
f†, f

b
H

]
,

Having computed the price, we obtain the issuance function by substituting pL, pH , fp
′
L, fp

′
H .

In the low state,

gL(f) = −π(r + η)(ξ + µL)

r̂ + η̂ + ξ
+

πηξ(ξ + µL)

(r̂ + ξ)(r̂ + η̂ + ξ)

(
f

f bL

)−(γ−1)

.

If λ > λ̄, debt issuance policy in the high state

� For f ∈ (f†, f
b
H)

gH(f) = − π

ψ + 1

[
r + λ+

ξλ

r̂ + λ̂+ ξ

f†(
u0(f†)− u1(f†)

) ( f
f†

)ψ+1
]

� For f ∈ [0, f†]

gH(f) =
−(ξ + µL)

(
πr + (ρ− r)(1− δ)

)
δ(r̂ + η̂ + ξ)

+
−(ξ + µL)η̂

δ

[
πr

(r̂ + ξ)(r̂ + η̂ + ξ)
+

ρ− r
(r̂ + η̂ + ξ)(ρ+ λ+ ξ)

](
f

f bL

)−(γ−1)

From here, we get that

g′L(f) = −(γ − 1)
πηξ(ξ + µL)

(r̂ + ξ)(r̂ + η̂ + ξ)f bL

(
f

f bL

)−(γ−2)

> 0.

and

� For f ∈ (f†, f
b
H)

g′H(f) = −π ξλ

r̂ + λ̂+ ξ

f2
†(

u0(f†)− u1(f†)
) ( f

f†

)ψ
.

The conditions determining the default boundary implies that

u0(f†)− u1(f†) = −u1(f bH)

(
f†

f bH

)−ψ
= −

(
1− π

r̂ + λ̂− µH
− r̂ + ξ

r̂ + λ̂+ ξ
f bH

)(
f†

f bH

)−ψ
> 0,
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where
1− π

r̂ + λ̂− µH
− r̂ + ξ

r̂ + λ̂+ ξ
f bH

is the value of waiting until the time the regime shifts to default, which must be negative at

the default boundary (otherwise, it would not be optimal to default at f bH). This means that

g′H(f) < 0.

� For f ∈ [0, f†]

g′H(f) = −(γ−1)
−(ξ + µL)η̂

δ

[
πr

(r̂ + ξ)(r̂ + η̂ + ξ)
+

ρ− r
(r̂ + η̂ + ξ)(ρ+ λ+ ξ)

]
f bL

(
f

f bL

)−(γ−2)

< 0.

No Tax Shield

For the reminder of the analysis, we concentrate our attention on the case with π = 0. In this

case, the issuance policy reduces to gL(f) = 0, gH(f) = 0 for f > f†, and f < f†

gH(f) =
−(ξ + µL)(ρ− r)

δ

[
(1− δ)
r + η + ξ

+
η

(r + η + ξ)(ρ+ λ+ ξ)

(
f

f bL

)−(γ−1)
]
.

We can substitute δ and γ to express gH(f) exclusively in terms of the primitive parameters

gH(f) =
ρ− r

ρ+ λ− r

[
η(ξ + µH) + (µH − µL)(r + ξ)

r + η + ξ

+η

(
(ξ + µH)(r + η + ξ)− (ξ + µL)(ρ+ λ+ ξ)

(r + η + ξ)(ρ+ λ+ ξ)

)(
f

f bL

) r+η+ξ
ξ+µL

]

In the absence of a tax shield, the equation for f† reduces to

λ(ρ+ λ− µH)− (ρ− r)(µH − µL + η)

(r + η − µL)(ρ+ λ− µH)(ρ+ λ− r)
− λ(ρ+ λ+ ξ)− (ρ− r)η

(ρ+ λ− r)(ρ+ λ+ ξ)(r + η + ξ)

(
f†

f bL

)
+

λ+ (µH − µL)(γ − 1)− η
ρ+ λ− r + (µH − µL)(γ − 1)− η

1

γ − 1

1

r + η − µL

(
f†

f bL

)γ
= 0.

The proof of Proposition 5 follows similar steps.

Proof of Proposition 7

Comparative Statics gH : The following comparative statics follow immediately: for any f ∈
(0, f†), gH(f) is decreasing in λ and increasing in ρ, η and µH . The effect of µL is more difficult to
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determine. Differentiating the function we get

∂gH(f)

∂µL
=

ρ− r
ρ+ λ− r

[
− r + ξ

r + η + ξ

(
f

f bL

)γ−1

− η

r + η + ξ

+
η

ξ + µL

(
(γ − 1)(ξ + µH)

ρ+ λ+ ξ
+ 1

)
log

(
f

f bL

)](
f

f bL

)−(γ−1)

The sign of the derivative depends on the sign of

Ψ(f) ≡ − r + ξ

r + η + ξ

(
f

f bL

)γ−1

− η

r + η + ξ
− η

−(ξ + µL)

(
(γ − 1)(ξ + µH)

ρ+ λ+ ξ
+ 1

)
log

(
f

f bL

)
,

the function Ψ(f) is decreasing, with Ψ(f bL) < 0. For any η > 0, the limit when f goes to zero

is Ψ(f) → ∞. Thus, there is f̃ such that Ψ(f) > 0 on [0, f̃) and Ψ(f) < 0 on (f̃, f bL]. If f† > f̃ ,

then gH is increasing in µL for f < f̃ and decreasing for f > f̃ . When η = 0, the issuance function

reduces to gH(f) = (ρ−r)(µH−µL)
ρ+λ−r , which is decreasing in µL.

Proof of Proposition 8

Sample Path: The ODE describing the evolution of ft on (0, f†) can be solved in closed form.

Let

a0 =
−(ξ + µL)(ρ− r)(1− δ)

(r + η + ξ)δ
− (ξ + µH)

a1 =
−(ξ + µL)

δ

(ρ− r)η
(r + η + ξ)(ρ+ λ+ ξ)

f bL
γ−1

,

so for f < f†, ft solves

ḟt = a0ft + a1f
2−γ
t .

This coefficients can be written as

a1

a0
= − η

ρ+ λ+ ξ

[(
1 +

ξ + µH
−(ξ + µL)

r + η + ξ

ρ− r

)
δ − 1

]−1

︸ ︷︷ ︸
≡κ

f bL
(γ−1)

a0(γ − 1) = − (r + η + ξ)

 ξ + µH
−(ξ + µL)

−
(ρ− r)

(
(µH − µL)(γ − 1)− η

)
(r + η + ξ)(ρ+ λ− r)


︸ ︷︷ ︸

≡ν

.
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Substituting γ and simplifying terms, we get

ν =
(r + η + ξ)(ρ− r)

ρ+ λ− r

[
ξ + µH
−(ξ + µL)

λ

ρ− r
− r + ξ

r + η + ξ

]
,

which is positive only if
ξ + µH
−(ξ + µL)

λ

ρ− r
>

r + ξ

r + η + ξ
.

In addition, κ ∝ ν, so it is positive only if ν is positive as well.

Given these definitions, we can can write

ḟt
ft

= − ν

γ − 1

[
1− κ

(
ft

f bL

)1−γ
]
.

Moreover, this equation can be solved in closed form. Letting zt = log ft, we get the equation

żt = − ν

γ − 1

[
1− κf bL

γ−1
e(1−γ)zt

]
.

The general solution to these equation is given provided in (Zaitsev and Polyanin, 2002, p. 162),

and is given by

z =
1

γ − 1
log
(
Ce−νt + κf bL

γ−1
)
.

From here we get that

f =
[
Ce−νt + κf bL

γ−1
] 1
γ−1

.

The integration constant is determined by the initial condition

C = fγ−1
0 − κf bL

γ−1
,

so it follows that

ft =
[
fγ−1

0 e−νt + κf bL
γ−1 (

1− e−νt
)] 1

γ−1
.

Comparative Statics Path Let start considering the speed of adjustment ν

� ξ:

∂ν

∂ξ
=
λµH (η − µL + r)− µL (ηλ+ 2ξ(λ+ ρ) + µL(ρ− r) + r(λ− 2ξ)) + ξ2(−λ− ρ+ r)

(µL + ξ)2 (ρ+ λ− r)
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The denominator is positive, and the numerator is positive if and only if√
λ (µH − µL) (η − µL + r)

λ+ ρ− r
+ µL + ξ > 0

� µL:
∂ν

∂µL
=

λ (µH + ξ) (η + ξ + r)

(−µL − ξ) 2((ρ+ λ− r)
> 0.

� µH :
∂ν

∂µH
=

λ (µH + ξ) (η + ξ + r)

(−µL − ξ) 2((ρ+ λ− r)
> 0.

� λ:
∂ν

∂λ
=
ηξρ+ µH(ρ+ r)(η + ξ + r)− µL(ξ + r)(ρ− r) + ξr(η + 2ξ + 2r)

− (µL + ξ) ((ρ+ λ− r)2
> 0.

� η:
∂ν

∂η
=

λ (µH + ξ)

− (µL + ξ) ((ρ+ λ− r)
> 0.

� ρ:

ν =
(r + η + ξ)(ρ− r)

(ρ+ λ− r)

[
ξ + µH
−(ξ + µL)

λ

ρ− r
− r + ξ

r + η + ξ

]
= −(r + η + ξ)(ξ + µH)λ

(ρ+ λ− r)(ξ + µL)
− (ρ− r)(r + ξ)

(ρ+ λ− r)

Thus

∂ν

∂ρ
=

(r + η + ξ)(ξ + µH)λ

(ρ+ λ− r)2(ξ + µL)
− (r + ξ)(ρ+ λ− r)− (ρ− r)(r + ξ)

(ρ+ λ− r)2

=
(r + η + ξ)(ξ + µH)λ

(ρ+ λ− r)2(ξ + µL)
− (r + ξ)λ

(ρ+ λ− r)2

=
(r + η + ξ)(ξ + µH)λ− (r + ξ)(ξ + µL)λ

(ρ+ λ− r)2(ξ + µL)
< 0

A.3 Other Proofs of Section 3

Proof of Corollary 1

Proof. We differentiate the HJB at θ = L, which leads to
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(r + η + ξ) j
′
L(f) + (r + ξ) +

(
µL + ξ − σ2

)
fj′′L(f)− 1

2
σ2f2j′′′L (f) = 0, ∀f ∈

[
0, f bL

]
.

When f ∈ [0, f†], we differentiate the HJB at θ = H:

(ρ+ λ+ ξ) j′H(f) + (r + ξ)− (ρ+ λ− r) j′L(f) +
(
µH + ξ − σ2

)
fj′′H(f)− 1

2
σ2f2j′′′H (f) = 0.

The difference is

1

2
σ2f2

[
j′′′L (f)− j′′′H (f)

]
−
(
µH + ξ − σ2

)
f
(
j′′L(f)− j′′H(f)

)
− (ρ+ λ+ ξ)

(
j′L(f)− j′H(f)

)
= ηj′L(f)− (µH − µL) fj′′L(f) < 0

since j′L(f) ≤ 0 and j′′L(f) > 0 from the strict convexity. By the maximum principle, 4 (f) =

j′L(f)− j′H(f) can not have a nonpositive minimum in the region f ∈ [0, f†].

When f ∈
(
f†, f

b
L

]
, we differentiate the HJB at θ = H:

(r + λ+ ξ) j
′
H(f) + (r + ξ) +

(
µH + ξ − σ2

)
fj′′H(f)− 1

2
σ2f2j′′′H (f) = 0.

The difference is

1

2
σ2f2

(
j′′′L (f)− j′′′H (f)

)
−
(
µH + ξ − σ2

)
f
(
j′′L(f)− j′′H(f)

)
− (r + λ+ ξ)

(
j
′
L(f)− j′H(f)

)
= (η − λ) j

′
L(f)− (µH − µL) fj′′L(f) < 0

where we assume η ≥ λ and j′L(f) ≤ 0 and j′′L(f) > 0 from the strict convexity. By the maximum

principle, 4 (f) ≡ j′L(f) − j′H(f) can not have a nonpositive minimum in the region f ∈
(
f†, f

b
L

]
.

Since both j′L(f) and j′H(f) are continuous for all f ∈
[
0, f bL

]
, 4 (f) is continuous for all f ∈

[
0, f bL

]
.

It implies that 4 (f) can not have a nonpositive minimum in the region f ∈
[
0, f bL

]
.

In addition, given that

4 (0) = − r + ξ

r + η + ξ
+

(r + ξ) (η + ρ+ λ+ ξ)

(ρ+ λ+ ξ) (r + η + ξ)
=

r + ξ

r + η + ξ

η

ρ+ λ+ ξ
> 0,

4
(
f bL

)
= −j′H(f bL) > 0,

we know 4 (f) > 0 for any f ∈
[
0, f bL

]
.

From pL (f) = −j′L(f), pH (f) = −j′H(f), we know pH (f) > pL (f) for any f ∈
[
0, f bL

]
.
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Furthermore, when f ∈
[
0, f bL

]
, the firm never repurchases the long-term debt since

g (f) =
(ρ− r) (pH (f)− pL (f))

−fp′H (f)
=

(ρ− r) (pH (f)− pL (f))

fj′′H (f)
> 0.

B Analysis of Extensions in Section 5

B.1 Section 5.1 with Hedging

As (ρ − r)(jH(f) − jL(f)) > 0, the solution in Lemma 1 becomes dH(f) = jH(f) and z(f) =

jH(f) − jL(f) for all f ∈ [0, f bH ]. Given the optimal policy in Lemma 1, we can write the HJB

equation in simpler form

(ρ+ λ− µH) jH(f) = 1− (r + ξ) f + (ρ+ λ− r) jL(f)− (µH + ξ)fj′H(f) +
1

2
σ2f2j′′H(f), f ∈ (0, f†)

(r + λ− µH) jH(f) = 1− (r + ξ) f + qλjL(f)− (µH + ξ)fj′H(f) +
1

2
σ2f2j′′H(f), f ∈ (f†, f

b
H).

(A.30)

The solution to the HJB equation takes the same form given in equation (16). The function u0

is still given by (17), but the expression for u1 is different to the one in equation (18) because it

includes the term qλjL(f) capturing the continuation value after the regime switch. The explicit

expression for u1 in this case is provided in the appendix.

The price of debt is now given by the solution to the asset pricing equation.

(r + ξ + λ) pH (f) = r + ξ + λpL (f) +
(
gH(f) + σ2 − µH − ξ

)
fp′H(f) +

1

2
σ2f2p′′H(f), f ∈ (0, f†)

(r + ξ + λ) pH (f) = r + ξ + λqpL (f) +
(
gH(f) + σ2 − µH − ξ

)
fp′H(f) +

1

2
σ2f2p′′H(f), f ∈ (f†, f

b
H).

From, here, together with the indifference condition j′H(f) = −pH(f), we can obtain the equilibrium

issuance function. We omit the details, but a similar calculations to the ones in the absence of

hedging show that the equilibrium issuance policy is given by (22). Notice that although the form

of the issuance function does not change the total issuance of long-term debt does change as the

price of long-term debt is now different. The main impact of hedging though is on the value of the

threshold f†.
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Proof of Lemma 1 and Proposition 12

Proof. In equation (24), dH and z are chosen to maximize

−qλz + (ρ+ λ− yH) dH + λqmax {jL(f) + z − dH , 0}+ λ(1− q) max {jL(f)− dH , 0} .

There are three situations that we need to consider:

1. If dH ≤ jL(f), the objective becomes

−qλz + (ρ+ λ− r) dH + λq (jL(f) + z − dH) + λ(1− q) (jL(f)− dH) = (ρ− r) dH + λjL(f),

which is maximized at dH = jL(f) with the maximum value

(ρ+ λ− r) jL(f).

2. If dH ∈
(
jL(f), jL(f) + z

]
, the objective becomes

−qλz + (ρ+ λq − r) dH + λq (jL(f) + z − dH) = (ρ− r) dH + λqjL(f),

which is maximized at dH = jL(f) + z with the maximum value

(ρ− r + λq)jL(f) + (ρ− r)z.

Given that dH = jL(f) + z ≤ jH(f), we know z ≤ jH(f) − jL(f). The maximized z =

jH(f)− jL(f), and the maximum value is

(ρ− r)jH(f) + λqjL(f).

3. If dH > jL(f) + z, the objective becomes −qλz + (ρ− r) dH , which is clearly maximized at

z = 0 and dH = jH(f), with a maximum value

(ρ− r) jH(f).

Clearly, the last one is dominated, so the borrower’s choice is

� If (ρ− r)jH(f) + λqjL(f) ≤ (ρ+ λ− r)jL(f), then dH = jL(f), and z is irrelevant so without

loss of generality set as zero.
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� Otherwise, then dH = jH(f) and z = jH(f)− jL(f).

Solution HJB Equation

For f ∈ (0, f†) there is no change in the differential equation, so the solution remains the same.

On f ∈ (f†, f
b
H) the HJB equation becomes

(r + λ− µH) jH(f) = 1− (r + ξ) f + qλjL(f) +DHjH(f)

If f ≥ f bL, the continuation value jL(f) and the particular solution is

u1(f) =
1

r + λ− µH
− r + ξ

r + λ+ ξ
f.

When f < f bL, the particular solution takes the form

u1(f) =
1

r + λ− µH

(
1 + q

λ

r + η − µL

)
− r + ξ

r + λ+ ξ

(
1 + q

λ

r + η + ξ

)
f + C

(
f

f bL

)γ
,

Substituting in the previous the ODE, we find that the constant C is given by

C =
λq

λ− η + (µH − µL)(γ − 1)

1

γ − 1

1

r + η − µL
.

The solution then to the HJB equation is

jH(f) =


u0(f) +

(
jH(f†)− u0(f†)

) ( f
f†

)φ
f ∈ [0, f†]

u1(f) +
(
jH(f†)− u1(f†)

)
h0

(
f
∣∣f†, f bL)+

(
jH(f bL)− u1(f bL)

)
h1

(
f
∣∣f†, f bL) f ∈

(
f†, f

b
L

)
u1(f) +

(
jH(f bL)− u1(f bL)

)
h0

(
f
∣∣f bL, f bH)− u1(f bH)h1

(
f
∣∣f bL, f bH) f ∈

[
f bL, f

b
H

]
where

u0(f) = A 1

ρ+ λ− µH
− B r + ξ

ρ+ λ+ ξ
f + δ

1

γ − 1

1

r + η − µL

(
f

f bL

)γ

u1(f) =


1

r+λ−µH

(
1 + λq

r+η−µL

)
− r+ξ

r+λ+ξ

(
1 + λq

r+η+ξ

)
f + C

(
f
fbL

)γ
if f < f bL

1
r+λ−µH −

r+ξ
r+λ+ξf if f ≥ f bL,
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and the constants A,B, δ are given by

A =
ρ+ λ+ η − µL
r + η − µL

B =
ρ+ λ+ η + ξ

r + η + ξ
δ =

ρ+ λ− r
ρ+ λ− r − η + (µH − µL)(γ − 1)

.

The functions h0(·) and h1(·) are defined in equation (A.13)

To show that f† is decreasing in q when f† > 0, it suffices to show that jH(f) is increasing in q.

Lemma 11. If (ρ+ λ (1− q)− r) jL (0) > (ρ− r) jH (0), then the value function jH (f) is strictly

increasing in q.

Proof. For an arbitrary positive function j̃, we define the following operator:

Φ(j̃)(f) ≡ sup
τ≥0

E
[∫ τ

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt)|q)

)
dt
∣∣∣z0 = f

]
subject to dzt = −(ξ + µH)ztdt− σztdBt,

where

ν(z, j̃|q) ≡ max{(ρ+ λ− r) jL (z) , qλjL (z) + (ρ− r) j̃}

and ρ̂ ≡ ρ+ λ− µH . It follows from the HJB equation that the value function jH is a fixed point

jH(f) = Φ(jH)(f). Hence, it is enough to show that the operator Φ is contraction to get that the

solution is unique. First, we can notice that Φ is a monotone operator: For any pair of functions

j̃1 ≥ j̃0, we have ν(f, j̃1|q) ≥ ν(f, j̃0|q); thus it follows that Φ(j̃1)(f) ≥ Φ(j̃0)(f). Next, we can

verify that Φ satisfies discounting: For a ≥ 0, we have

ν(z, j̃ + a|q) = max{(ρ+ λ− r) jL(z), qλjL (z) + (ρ− r) (j̃ + a)}

≤ max{(ρ+ λ− r) jL(z) + (ρ− r)a, qλjL (z) + (ρ− r) (j̃ + a)} = (ρ− r)a+ ν(z, j̃|q),
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so letting τ∗(j̃) denote the optimal stopping policy, we have

Φ(j̃ + a)(f) = E

[∫ τ∗(j̃+a)

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt) + a|q)

)
dt
∣∣∣z0 = f

]

≤ E

[∫ τ∗(j̃+a)

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt)|q)

)
dt
∣∣∣z0 = f

]
+
ρ− r
ρ̂

E
[
1− e−ρ̂τ∗(j̃+a)

∣∣∣z0 = f
]
a

≤ E

[∫ τ∗(j̃)

0
e−ρ̂t

(
1− (r + ξ)zt + ν(zt, j̃(zt)|q)

)
dt
∣∣∣z0 = f

]
+
ρ− r
ρ̂

E
[
1− e−ρ̂τ∗(j̃+a)

∣∣∣z0 = f
]
a

= Φ(j̃)(f) +
ρ− r
ρ̂

E
[
1− e−ρ̂τ∗(j̃+a)

∣∣∣z0 = f
]
a ≤ Φ(j̃)(f) +

ρ− r
ρ+ λ− µH

a.

As Φ is monotone and satisfies discounting, it follows from Blackwell’s sufficiency conditions that

Φ is a contraction, which means that there is a unique fixed point jH(f) = Φ(jH)(f).

For any pair of parameters q1 ≥ q0, the inequality ν(f, j̃|q1) ≥ ν(f, j̃|q0) implies that the

operator Φ is increasing q. It follows from Theorem 1 in Villas-Boas (1997) that the fixed point

jH (f) = Φ(jH)(f) increases in q.

B.2 Section 5.2 with Restructuring

The value function satisfies

(ρ+ λ− µH) jH(f) = 1− (r + ξ) f + (ρ+ λ− r)jL(f)− (µH + ξ)fj′H(f) +
1

2
σ2f2j′′H(f), f ∈ (0, f†)

(r + λ− µH) jH(f) = 1− (r + ξ) f + λαjL(f)− (µH + ξ)fj′H(f) +
1

2
σ2f2j′′H(f), f ∈ (f†, f

b
H).

(A.31)

We see that the only difference with the original equation is that now, when the firm is fully levered,

there is a term λαjL(f) capturing the continuation value after the regime shift. Notice that the

HJB equation (A.31) takes the same form as the one with hedging in equation (A.30), so hedging

and renegotiation serve a similar economic purpose in the model. The asset pricing equation for

bond prices becomes

(r + ξ + λ) pH (f) = r + ξ + λpL (f) +
(
gH(f) + σ2 − µH − ξ

)
fp′H(f) +

1

2
σ2f2p′′H(f), f ∈ (0, f†)

(r + ξ + λ) pH (f) = r + ξ + λαpL +
(
gH(f) + σ2 − µH − ξ

)
fp′H(f) +

1

2
σ2f2p′′H(f), f ∈ (f†, f

b
H).
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Thus, together with the indifference condition j′H(f) = −pH(f), we obtain the equilibrium issuance

function in the high state is given by the same expression as the one in equation (22). The proof

of Proposition 13 follows the one in Proposition 12.

B.3 Section B.3 with Transitory Shocks

In this section, we extend the model to consider some further empirical implications. In the

main model, we have assumed that the state θt = L, is absorbing. If we interpret the changes

in regime as business-cycles, it is natural to assume that these are transitory. We can extend the

model to consider this situation. We denote the transition rate from the high state to the low

state by λHL, and the transition rate from the low state to the high state by λLH . The stationary

distribution of the process θt is then given by Pr(θ = H) = λLH/(λLH + λHL).

The equilibrium has the same qualitative features. The only changes is that in the HJB equation

(10) for jL(f) and in the asset pricing equation (20) for pL(f), we have to add additional terms

λLH
(
jH(f) − jL(f)

)
and λLH

(
pH(f) − pL(f)

)
, respectively. We provide the detailed calculations

in the appendix. The issuance policy takes the general form provided in equation (22). As in the

case where the low state is absorbing, we can obtain a more explicit solution for the equilibrium in

the limit when σ → 0.

Proposition 16 (Limit long-term debt issuance policy). Suppose that there is no tax shield (that

is, π = 0), µL + ξ < 0, µH + ξ > 0, and

(r + λHL − µH) (r + η − µL) + (r − µH)λLH ≥ 0.

In the limit when σ → 0, the issuance policy is

gθ(f) =
ρ− r
γ − 1

[
g0 + g1

(
f

f†

)−(γ−1)
]
1{f<f†, θ=H}

where g0 and g1 are positive coefficients and γ > 1 is the unique positive root of

γ2 +

(
ρ+ λHL − µH

µH + ξ
− r + λLH + η − µL

−(µL + ξ)

)
γ − (ρ+ λHL − µH) (r + η − µL) + (r − µH)λLH

−(µL + ξ)(µH + ξ)
= 0.

When shocks are transitory, the HJB equation for jL(f) becomes

(ρ+ η − µL) jL (f) = 1− (r + ξ) f + (ρ− r) jL(f) +DLjL(f) + λLH
(
jH(f)− jL(f)

)
.

The indifference condition for the issuance of short-term debt in high state remains the same and
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is given by

(ρ+ λHL − r) jL(f†) ≥ (ρ− r) jH(f†).

We solve the equation in this region, and the combines the solution using smooth pasting and value

matching conditions at the threshold f†. The default boundary are determined using the same

value matching and smooth pasting conditions as in the main version of the model.

Solution for f ∈ (0, f†). The characteristic equation of the associated homogenous equation is

now a quartic equation instead of a quadratic one. Hence the solution takes the general form:

jL(f) = A0 −A1f +A2f
γ1 +A3f

γ2 +A4f
γ3 +A5f

γ4

jH(f) = B0 −B1f +B2f
γ1 +B3f

γ2 +B4f
γ3 +B5f

γ4 .

Substituting the conjecture in the ODE, we get the linear system

(r + λLH + η − µL)A0 = 1 + λLHB0

(ρ+ λHL − µH)B0 = 1 + (ρ+ λHL − r)A0

(r + ξ + λLH + η)A1 = (r + ξ) + λLHB1

(ρ+ ξ + λHL)B1 = (r + ξ) + (ρ+ λHL − r)A1.

It follows that

A0 =
ρ+ λHL + λLH − µH

(ρ+ λHL − µH) (r + η − µL) + λLH (r − µH)

A1 =
(ρ+ ξ + λHL + λLH) (r + ξ)

(ρ+ ξ + λHL) (r + ξ + η) + λLH (r + ξ)

B0 =
1 + (ρ+ λHL − r)A0

ρ+ λHL − µH

B1 =
(r + ξ) + (ρ+ λHL − r)A1

ρ+ ξ + λHL

In addition, for any i = 1, . . . , 4

(r + λLH + η − µL)Ai+1 = − (µL + ξ)Ai+1γi + λLHBi+1 +
1

2
σ2Ai+1γi (γi − 1)

(ρ+ λHL − µH)Bi+1 = (ρ+ λHL − r)Ai+1 − (µH + ξ)Bi+1γi +
1

2
σ2Bi+1γi (γi − 1)
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If we multiply the equation for A2 by γ1, we get

(r + λLH + η − µL) γ1A2 = − (µL + ξ)A2γ
2
1 + λLHB2γ1 +

1

2
σ2A2γ

2
1 (γ1 − 1)

when λLH 6= 0, from the equation for A2 we have

λLHB2 =

[
(r + λLH + η − µL) + (µL + ξ) γ1 −

1

2
σ2γ1 (γ1 − 1)

]
A2.

Substituting in the equation for B2 we obtain an expression for B2γ1 that can be then substituted

back in the equation for A2 (multiplied by γ1). Canceling A2, we obtain the characteristic equation

for the homogenous equation

1

4
σ4γ4

1 +
1

2
σ2
(
µL + µH + 2ξ + σ2

)
γ3

1

+

[
1

4
σ4 − 1

2
σ2 (ρ+ λHL + r + λLH + η − 2 (µL + µH + ξ)) + (µL + ξ) (µH + ξ)

]
γ2

1

+

[(
µH + ξ +

1

2
σ2

)
(r + λLH + η − µL) + (ρ+ λHL − µH)

(
µL + ξ +

1

2
σ2

)]
γ1

+ (ρ+ λHL − µH) (r + η − µL) + (r − µH)λLH = 0

This equation has four roots.

Solution for f ∈ (f†, f
b
H). In this case, we guess a solution of the form

jL(f) = C0 − C1f + C2f
β1 + C3f

β2 + C4f
β3 + C5f

β4

jH(f) = D0 −D1f +D2f
β1 +D3f

β2 .

From the HJB equation for jH(f), we get that β1 and β2 are the roots for the quadratic equation

1

2
σ2β2 −

(
µH + ξ +

1

2
σ2

)
β + µH − r − λHL = 0,

which are given by

β1 =
µH + ξ + 1

2σ
2 +

√(
µH + ξ + 1

2σ
2
)2 − 2σ2 (µH − r − λHL)

σ2
,

β2 =
µH + ξ + 1

2σ
2 −

√(
µH + ξ + 1

2σ
2
)2 − 2σ2 (µH − r − λHL)

σ2
.
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From the equation for jL, we get that β3 and β4 are given by the roots to the quadratic equation

1

2
σ2β2 −

(
µL + ξ +

1

2
σ2

)
β − (r + λLH + η − µL) = 0,

which are

β3 =
µL + ξ + 1

2σ
2 +

√(
µL + ξ + 1

2σ
2
)2

+ 2σ2 (r + λLH + η − µL)

σ2
> 1,

β4 =
µL + ξ + 1

2σ
2 −

√(
µL + ξ + 1

2σ
2
)2

+ 2σ2 (r + λLH + η − µL)

σ2
< 0.

Matching coefficients, we get that

D0 =
1

r + λHL − µH

D1 =
r + ξ

r + ξ + λHL

C0 =
1 + λLHD0

r + λLH + η − µL

C1 =
r + ξ + λLHD1

r + ξ + λLH + η

C2 =
λLHD2

r + λLH + η − µL + (µL + ξ)β1 − 1
2σ

2 (β1 − 1)β1

C3 =
λLHD3

r + λLH + η − µL + (µL + ξ)β2 − 1
2σ

2 (β2 − 1)β2
.

Boundary Conditions. We still need to determine the coefficients (Ai, Bi) for i = 2, . . . , 5, the

coefficients D2, D3, and C4, C5, as well as the thresholds f†, f
b
H , f

b
L.

We start considering f ∈ (0, f†). Under reasonable parameters, we have found that all four

roots of the quartic characteristic equation are real, and that two of them are positive (let the

positive roots be γ1 and γ2). If this is the case, the transversality conditions

lim
f→0

jH(f) <∞,

lim
f→0

jL(f) <∞,
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imply that A4 = A5 = B4 = B5 = 0. Thus, we can write the value function as

jL(f) = A0 −A1f +A2f
γ1 +A3f

γ2

jH(f) = B0 −B1f +B2f
γ1 +B3f

γ2 ,

where the coefficients A0, A1, B0, B1 have already been determined. Moreover, from the previous

analysis we already have that for i = 2, 3[
(r + λLH + η − µL) + (µL + ξ) γi−1 −

1

2
σ2γi (γi−1 − 1)

]
Ai = λLHBi,

so the coefficients {B2, B3} are immediately determined by the 2 free coefficients {A2, A3}.
Next, we consider the intervals (f†, f

b
H) and (f†, f

b
L). Here we have that jθ(f) takes the form

jL(f) = C0 − C1f + C2f
β1 + C3f

β2 + C4f
β3 + C5f

β4

jH(f) = D0 −D1f +D2f
β1 +D3f

β2 .

where we have 4 free coefficients {C2, C3, C4, C5} since {D2, D3} are fully determined by {C2, C3}.
Thus, we have to determine (A2, A3, C2, C3, C4, C5) in addition to the free boundary (f†, f

b
L, f

b
H);

hence, we need 9 boundary conditions. The first boundary condition is the indifference condition

(ρ+ λHL − r) jL(f†) = (ρ− r) jH(f†).

The value function must be continuously differentiable at f† se we have the value matching and

smooth pasting conditions at f†

jH(f†−) = jH(f†+)

jL(f†−) = jL(f†+)

j′H(f†−) = j′H(f†+)

j′L(f†−) = j′L(f†+).
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Finally, we have the value matching and smooth pasting conditions at the default boundary

jL(f bL) = 0

jH(f bH) = 0

j′L(f bL) = 0

j′H(f bH) = 0.

Substituting the value function in these conditions, we get

A0 −A1f† +A2 (f†)
γ1 +A3 (f†)

γ2 =
ρ− r

ρ+ λHL − r
(B0 −B1f† +B2 (f†)

γ1 +B3 (f†)
γ2)

B0 −B1f† +B2 (f†)
γ1 +B3 (f†)

γ2 = D0 −D1f† +D2 (f†)
β1 +D3 (f†)

β2

A0 −A1 (f†) +A2 (f†)
γ1 +A3 (f†)

γ2 = C0 − C1f† + C2 (f†)
β1 + C3 (f†)

β2 + C4 (f†)
β3 + C5 (f†)

β4

−B1 + γ1B2 (f†)
γ1−1 + γ2B3 (f†)

γ2−1 = −D1 + β1D2 (f†)
β1−1 + β2D3 (f†)

β2−1

−A1 + γ1A2 (f†)
γ1−1 + γ2A3 (f†)

γ2−1 = −C1 + β1C1 (f†)
β1−1 + β2C3 (f†)

β2−1

+ β3C4 (f†)
β3−1 + β4C5 (f†)

β4−1

and

C0 − C1f
b
L + C2

(
f bL

)β1
+ C3

(
f bL

)β2
+ C4

(
f bL

)β3
+ C5

(
f bL

)β4
= 0

D0 −D1f
b
H +D2

(
f bH

)β1
+D3

(
f bH

)β2
= 0

−C1 + β1C2

(
f bL

)β1−1
+ β2C3

(
f bL

)β2−1
+ β3C4

(
f bL

)β3−1
+ β4C5

(
f bL

)β4−1
= 0

−D1 + β1D2

(
f bH

)β1−1
+ β2D3

(
f bH

)β2−1
= 0.

We can simply the above 9 equations into 3 equations and only solve the three unknowns (f†, f
b
L, f

b
H):

From

D0 −D1f
b
H +D2

(
f bH

)β1
+D3

(
f bH

)β2
= 0,

−D1 + β1D2

(
f bH

)β1−1
+ β2D3

(
f bH

)β2−1
= 0,
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we know

D2 =

β2
r+λHL−µH − (β2 − 1) r+ξ

r+ξ+λHL
f bH(

f bH
)β1 (β1 − β2)

D3 =

β1
r+λHL−µH − (β1 − 1) r+ξ

r+ξ+λHL
f bH(

f bH
)β2 (β2 − β1)

.

Then we know C2, C3 from

C2 =
λLHD2

r + λLH + η − µL + (µL + ξ)β1 − 1
2σ

2 (β1 − 1)β1

C3 =
λLHD3

r + λLH + η − µL + (µL + ξ)β2 − 1
2σ

2 (β2 − 1)β2

From

B0 −B1f† +B2 (f†)
γ1 +B3 (f†)

γ2 = D0 −D1f† +D2 (f†)
β1 +D3 (f†)

β2

−B1 + γ1B2 (f†)
γ1−1 + γ2B3 (f†)

γ2−1 = −D1 + β1D2 (f†)
β1−1 + β2D3 (f†)

β2−1 ,

we know

B2 =
−D1 + β1D2 (f†)

β1−1 + β2D3 (f†)
β2−1 +B1 − γ2B3 (f†)

γ2−1

γ1 (f†)
γ1−1 ,

B3 =
D0 −D1f† +D2 (f†)

β1 +D3 (f†)
β2 −

(
B0 −B1f† + 1

γ1

(
−D1f† + β1D2 (f†)

β1 + β2D3 (f†)
β2 +B1f†

))
(

1− γ2
γ1

)
(f†)

γ2

Then we know A2 and A3 where

A2 =
λLHB2

(r + λLH + η − µL) + (µL + ξ) γ1 − 1
2σ

2γ1 (γ1 − 1)
.

A3 =
λLHB3

(r + λLH + η − µL) + (µL + ξ) γ2 − 1
2σ

2γ2 (γ2 − 1)

From

C0 − C1f
b
L + C2

(
f bL

)β1
+ C3

(
f bL

)β2
+ C4

(
f bL

)β3
+ C5

(
f bL

)β4
= 0

−C1 + β1C2

(
f bL

)β1−1
+ β2C3

(
f bL

)β2−1
+ β3C4

(
f bL

)β3−1
+ β4C5

(
f bL

)β4−1
= 0
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we know

C4 =
C1 − β1C2

(
f bL
)β1−1 − β2C3

(
f bL
)β2−1 − β4C5

(
f bL
)β4−1

β3

(
f bL
)β3−1

,

C5 =
−C0 + C1f

b
L − C2

(
f bL
)β1 − C3

(
f bL
)β2 − C1fbL−β1C2(fbL)

β1−β2C3(fbL)
β2

β3(
1− β4

β3

) (
f bL
)β4

Therefore, we only need to solve (f†, f
b
L, f

b
H) from the following 3 equations:

A0 −A1f† +A2 (f†)
γ1 +A3 (f†)

γ2 =
ρ− r

ρ+ λHL − r
(B0 −B1f† +B2 (f†)

γ1 +B3 (f†)
γ2)

A0 −A1 (f†) +A2 (f†)
γ1 +A3 (f†)

γ2 = C0 − C1f† + C2 (f†)
β1 + C3 (f†)

β2 + C4 (f†)
β3 + C5 (f†)

β4

−A1 + γ1A2 (f†)
γ1−1 + γ2A3 (f†)

γ2−1 = −C1 + β1C2 (f†)
β1−1 + β2C3 (f†)

β2−1

+ β3C4 (f†)
β3−1 + β4C5 (f†)

β4−1

Limit when σ → 0

Consider the case when µL + ξ < 0 < µH + ξ. The characteristic equation for γi converges to

the quadratic equation

(µL + ξ) (µH + ξ) γ2
1 + [(µH + ξ) (r + λLH + η − µL) + (ρ+ λHL − µH) (µL + ξ)] γ1

+ (ρ+ λHL − µH) (r + η − µL) + (r − µH)λLH = 0

The present value of cash flow is finite given the creditors discount rate only if

(r + λHL − µH) (r + η − µL) + (r − µH)λLH > 0,

which implies that quadratic equation has one negative and one positive root. Let γ be the positive

root, which can be verified to be always greater than 1. Similarly, the roots βi converge to

β1 =∞

β2 = −r + λHL − µH
µH + ξ

β3 =
r + λLH + η − µL
− (µL + ξ)

β4 = −∞.
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Thus the solution to the HJB equation on (0, f†), becomes

jL(f) = A0 −A1f +A2f
γ

jH(f) = B0 −B1f +B2f
γ ,

while the solution for (f†, f
b
H) and (f†, f

b
L) becomes

jL(f) = C0 − C1f + C3f
β2 + C4f

β3

jH(f) = D0 −D1f +D3f
β2 .

The coefficient A2, B2 are given by

A2 =
λLH

(r + λLH + η − µL) + (µL + ξ) γ

B1 −D1

γ (f†)
γ−1 .

From the continuity and smoothness of jH(f) at f†, we know

B0 −B1f† +B2f
γ
† = D0 −D1f† +D3f

β2
†

−B1 + γB2f
γ−1
† = −D1 + β2D3f

β2−1
† ,

which implies that

B2 =
β2 (D0 −B0) + (1− β2) (D1 −B1) f†

(β2 − γ) fγ†

D3 =
(1− γ) (D1 −B1) f† + γ (D0 −B0)

(β2 − γ) fβ2†
.

The coefficients C3, C4 are

C3 =
λLHD3

r + λLH + η − µL + (µL + ξ)β2

C4 =
C1 − β2C3

(
f bL
)β2−1

β3

(
f bL
)β3−1

.
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Substituting in the HJB equation, we can write the solution for f ∈ [0, f†] as

jL(f) = A0 −A1f +
λLH

r + λLH + η − µL + (µL + ξ) γ

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
β2 − γ

(
f

f†

)γ
jH(f) = B0 −B1f +

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
β2 − γ

(
f

f†

)γ
.

For f > f†, we can write

jH(f) = D0 −D1f +

[
(1− γ) (D1 −B1) f† + γ (D0 −B0)

β2 − γ

](
f

f†

)β2
= D0

[
1 +

γ

β2 − γ

(
f

f†

)β2]
−D1f

[
1− 1− γ

β2 − γ

(
f

f†

)β2−1
]
−
[

(1− γ)B1f† + γB0

β2 − γ

](
f

f†

)β2
and

jL(f) = C0 − C1f + C3f
β2 + C4f

β3

= C0 − C1f

[
1− 1

β3

(
f

f bL

)β3−1
]

+ C3f
β2

[
1− β2

β3

(
f

f bL

)β3−β2]
.

where we recollect that the constant A0, A1, B0, B1, C0, C1, D0, D1 are

A0 =
ρ+ λHL + λLH − µH

(ρ+ λHL − µH) (r + η − µL) + λLH (r − µH)

A1 =
(ρ+ ξ + λHL + λLH) (r + ξ)

(ρ+ ξ + λHL) (r + ξ + η) + λLH (r + ξ)

B0 =
1 + (ρ+ λHL − r)A0

ρ+ λHL − µH

B1 =
(r + ξ) + (ρ+ λHL − r)A1

ρ+ ξ + λHL

D0 =
1

r + λHL − µH

D1 =
r + ξ

r + ξ + λHL

C0 =
1 + λLHD0

r + λLH + η − µL

C1 =
r + ξ + λLHD1

r + ξ + λLH + η
.
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Finally, we get the equations determining the thresholds f†, f
b
H , f

b
L which are given now by

jL(f†−) = jL(f†+)

jL(f bL) = 0

jH(f bH) = 0

which can be written as

A0 −A1f† +A2f
γ
† = C0 − C1f† + C3f†

β2 + C4f†
β3

C0 − C1f
b
L + C3f

b
L
β2

+ C4f
b
L
β3

= 0

D0 −D1f
b
H +D3f

b
H
β2

= 0.

Issuance Function: Before deriving the issuance function we need to derive the debt price, which

is given by pθ(f) = −j′θ(f). Taking derivatives for f ∈ (0, f†) we get

pL(f) = A1 +
λLH

r + λLH + η − µL + (µL + ξ) γ

γ

γ − β2

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
f†

(
f

f†

)γ−1

pH(f) = B1 +
γ

γ − β2

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
f†

(
f

f†

)γ−1

.

Finally, we compute the issuance function. We need to find p′H(f) for f ∈ (0, f†). This expression

is given by

−fp′H(f) = −γ(γ − 1)

γ − β2

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
f†

(
f

f†

)γ−1

.

Next, we compote pH(f)− pL(f) which is

pH(f)−pL(f) = B1−A1+
r + η − µL + (µL + ξ) γ

r + λLH + η − µL + (µL + ξ) γ

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
f†

γ

γ − β2

(
f

f†

)γ−1

From here we get that

gH(f) =
(ρ− r)(pH(f)− pL(f))

−fp′H(f)

=
ρ− r
γ − 1

[
g0 + g1

(
f

f†

)−(γ−1)
]
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where

g0 = − r + η − µL + (µL + ξ)γ

r + λLH + η − µL + (µL + ξ) γ

g1 = −
(

1− β2

γ

)
(B1 −A1)f†

β2 (D0 −B0) + (1− β2) (D1 −B1) f†

Finally, noting that pL(0) = A1, pH(0) = B1, and B0 = jH(0), an substituting the relations

(ρ− r)jH(0)− (ρ+ λHL − r) jL(0) = 1− (r + λHL − µH) jH(0)

(ρ− r)pH(0)− (ρ+ λHL − r) pL(0) = (r + ξ)− (r + ξ + λHL) pH(0),

we can write

g1 =

(
1

γ
+

µH + ξ

r + λHL − µH

)
(r + λHL − µH)(pH(0)− pL(0))f†

(ρ− r)jH(0)− (ρ+ λHL − r) jL(0)−
[
(ρ− r)pH(0)− (ρ+ λHL − r) pL(0)

]
f†

Letting

ϕ(f) ≡ (ρ− r)jH(f)− (ρ+ λHL − r) jL(f)

we can write

(ρ− r)jH(0)− (ρ+ λHL − r) jL(0)−
[
(ρ− r)pH(0)− (ρ+ λHL − r) pL(0)

]
f† = ϕ(0) + ϕ′(0)f†.

For f ∈ (0, f†),

ϕ′′(f) = (ρ+ λHL − r)
[

ρ− r
ρ+ λHL − r

− λLH
r + λLH + η − µL + (µL + ξ) γ

]
γ(γ − 1)Qfγ−2,

where

Q ≡ γ

γ − β2

β2 (D0 −B0) + (1− β2) (D1 −B1) f†
f†

(
1

f†

)γ−1

.

jθ(f) is strictly convex only if Q > 0. Hence, the sign of ϕ′′ is determined by the sign of the term

within the parenthesis. The coefficient γ is the positive root of the quadratic equation

γ2 +

(
ρ+ λHL − µH

µH + ξ
− r + λLH + η − µL

−(µL + ξ)

)
γ − (ρ+ λHL − µH) (r + η − µL) + (r − µH)λLH

−(µL + ξ)(µH + ξ)
= 0.
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This equation can be rewritten more conveniently as

λLH
r + λLH + η + (γ − 1)µL + γξ

=
ρ+ λHL + (γ − 1)µH + ξγ

ρ+ λHL − r
>

ρ− r
ρ+ λHL − r

,

which implies that the term within the parenthesis in ϕ′′(f) is negative. Thus, we conclude that

ϕ(f) is concave on [0, f†], so ϕ(f†) ≤ ϕ(0) + ϕ′(0)f†. By construction, ϕ(f†) = 0, so it follows that

ϕ(0) + ϕ′(0)f† ≥ 0, which means that g1 > 0. Moreover, from the previous equation for γ we also

get that r + λLH + η + (γ − 1)µL + γξ > 0 and

r + η + (γ − 1)µL + γξ = −λLH
r + (γ − 1)µH + ξγ

ρ+ λHL + (γ − 1)µH + ξγ
< 0,

so it follows that g0 > 0.

B.4 Section 5.3 with Cash Flow Jumps

Suppose that

dXt = µXtdt+ σXtdBt − (1− ω−1)Xt−dNt,

where Nt is a Poisson process with intensity λ and ω > 1. Using Ito’s Lemma, ft solves

dft = (gt − µ− ξ + σ2)ftdt− σftdBt + (ω − 1)ft−dNt

Thus, the scaled value function satisfies the delay differential equation

(ρ+ λ− µ) j(f) = 1− (r + ξ) f − (µ+ ξ) fj′(f) +
1

2
σ2f2j′′(f)

+ max
{

(ρ− r)j(ωf)

ω
+ λ

j(ωf)

ω
, (ρ− r)j(f)

}
We guess and verify that the optimal short-term debt policy is given by

d(f) =


j(ωf)
ω if f ∈ [0, f†]

j(f) if f ∈ (f†, f
b].
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The HJB equation can be written as

(ρ+ λ− µ) j(f) = 1− (r + ξ) f − (µ+ ξ) fj′(f) +
1

2
σ2f2j′′(f) + (ρ+ λ− r)j(ωf)

ω
, f ∈ (0, f†)

(r + λ− µ) j(f) = 1− (r + ξ) f − (µ+ ξ) fj′(f) +
1

2
σ2f2j′′(f), f ∈ (f†, f

b).

The default boundary solves the value matching and smooth pasting conditions j(f b) = j′(fb) = 0.

Long-term bonds satisfy the asset pricing equation

(r + ξ + λ) p(f) = 1− (r + ξ) f +
(
g(f)− µ− ξ + σ2

)
fj′(f) +

1

2
σ2f2j′′(f) + λp(ωf), f ∈ (0, f†)

(r + ξ + λ) p(f) = 1− (r + ξ) f +
(
g(f)− µ− ξ + σ2

)
fj′(f) +

1

2
σ2f2j′′(f), f ∈ (f†, f

b).

Finally, we derive the issuance policy g(f) combining the asset pricing equation with the indifference

condition p(f) = −j′(f). This yields

g (f) =
(ρ− r) (p (f)− p (ωf))

fj′′ (f)
.

Numerical Computation: For computational purposes, it is easier to work with the the state

variable x = log(1/f) = − log f . Let j̃(x) ≡ j(e−x) and δ = logω. Then, we get

j̃′(x) = −j′(e−x)e−x

j̃′′(x) = j′′(e−x)e−2x + j′(e−x)e−x = j′′(e−x)e−2x − j̃′(x)

Substituting in the HJB equation we get

(r + λ− µ) j̃(x) = 1− (r + ξ) e−x +

(
µ+ ξ +

1

2
σ2

)
j̃′(x) +

1

2
σ2j̃′′(x)

− (ρ− r) min
{
j̃(x)− aj̃(x− δ)

eδ
, 0
}
,

where

a ≡ ρ+ λ− r
ρ− r

.

We write this as a system of two first order equations. Letting y0(x) = j̃(x) and y1(x) = j̃′(x),
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we can reduce the second order equation to the following system of first order equations

y′0(x) = y1(x)

y′1(x) =
2

σ2

[
(r + ξ) e−x − 1 + (r + λ− µ) y0(x)−

(
µ+ ξ +

1

2
σ2

)
y1(x)

+(ρ− r) min
{
y0(x)− ay0(x− δ)

eδ
, 0
}]

.

The previous equation is a system of two first order delay differential equations with constant

coefficient that can be solved using standard numerical routines. The value matching and smooth

pasting conditions at the default boundary xb = − log f b are y0(xb) = y1(xb) = 0. The only

remaining step is to specify the transversality condition. From the HJB equation we get j(0) =
ω

(ρ+λ)(ω−1)+r−µω , so we have the transversality condition

lim
x→∞

y0(x) =
ω

(ρ+ λ)(ω − 1) + r − µω
.

To incorporate this transversality condition, we approximate the value function for f = ε. This

corresponds to a value of x given by xε = − log ε. Differentiating the HJB we get

(ρ+ λ+ ξ) j′(f) = − (r + ξ)−
(
µ+ ξ − σ2

)
fj′′(f) + (ρ+ λ− r)j′(ωf),

and evaluating at f = 0, we get

j′(0) = −1.

Hence, for ε close to zero

j(ε) ≈ ω

(ρ+ λ)(ω − 1) + r − µω
− ε,

which means that

y0(xε) = j̃(xε) ≈
ω

(ρ+ λ)(ω − 1) + r − µω
− e−xε .

Finally, we can write the price and issuance function in terms of the functions y0(x), y1(x). The

price of long-term bonds is given by

p(f) = −j′(f) = j̃′(x)ex = y1(x)ex.
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Letting x† = − log f†, we get that on the [x†,∞), the issuance policy is

g(x) =
(ρ− r)

(
p (e−x)− p

(
e−(x−δ)) )

−e−xp′ (e−x)
=

(ρ− r)
(
y1(x)− y1(x− δ)e−δ

)
−e−x(y′1(x) + y1(x))
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B.5 Disaster Shock

Now we show that the disaster shock can be microfounded by a model with three states, high

(H), low (L), and disaster (`), where µH > µL > µ`. In other words, the low state can still get

worse. As before, let λ be the transition intensity from H to L and η be the one from L to `. We

are interested in the condition such that in the low state L, the borrower optimally choose to issue

risky short-term debt. In other words, the corresponding f† is zero in the low state L. To do so,

we only need to study the value functions in θ = L and θ = `.

When θ = L, the HJB is

(ρ+ η) jL (f) = max
{0≤dL≤jL}

(1− π)− (r (1− π) + ξ) f + (ρ+ η − (1− π) y) dθ (f) + η (j`(f)− dL (f))+

+µL
(
jL (f)− j′L (f) f

)
+

1

2
σ2f2j′′L (f)− ξfj′L (f)

⇒ (ρ+ η − µL) jL (f) = max
{0≤dL≤jL}

(1− π)− (r (1− π) + ξ) f + (ρ+ η − (1− π) yL) dL (f)

+η (j`(f)− dL (f))+ − (µL + ξ) fj′L (f) +
1

2
σ2f2j′′L (f)

The HJB when θ = ` is

(ρ− µ`) j` (f) = max
{0≤d`≤j`}

(1− π)− (r (1− π) + ξ) f + (ρ− (1− π) y`) d` (f)− (µ` + ξ) fj′` (f) +
1

2
σ2f2j′′` (f) .

= (1− π)− (r (1− π) + ξ) f + (ρ− (1− π) r) j` (f)− (µ` + ξ) fj′` (f) +
1

2
σ2f2j′′` (f) ,

which implies that

((1− π) r − µ`) j` (f) = (1− π)− (r (1− π) + ξ) f − (µ` + ξ) fj′` (f) +
1

2
σ2f2j′′` (f)

The short rate is

yL(d, f) = r + η1d>j`(f)

and

y`(d, f) = r.

In state `, we have d = j`(f). In state L we have

1. If dL = j`(f), the flow benefit of issuing short-term debt is

(ρ+ η − (1− π) r) j`(f)
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2. If dL = jL(f), the flow benefit of issuing short-term debt is

(ρ+ η − (1− π) (r + η)) jL(f)

3. Hence, d = j` is optimal if

(ρ+ η − (1− π) r) j`(f) ≥ [ρ+ η − (1− π) (r + η)] jL(f)

We can conclude that

� If (ρ+ η − (1− π) r) j`(f) ≥ [ρ+ η − (1− π) (r + η)] jL(f) the HJB equation is

((1− π) r − µ`) j` (f) = (1− π)− (r (1− π) + ξ) f − (µ` + ξ) fj′` (f) +
1

2
σ2f2j′′` (f)

(ρ+ η − µL) jL (f) = (1− π)− (r (1− π) + ξ) f + (ρ+ η − (1− π) r) j`(f)

− (µL + ξ) fj′L (f) +
1

2
σ2f2j′′L (f)

which can be reduced to

((1− π) r − µ`) j` (f) = (1− π)− (r (1− π) + ξ) f − (µ` + ξ) fj′` (f) +
1

2
σ2f2j′′` (f)

(ρ+ η − µL) jL(f) = (1− π)− (r (1− π) + ξ) f + (ρ+ η − (1− π) r) j`(f)

− (µL + ξ) fj′L(f) +
1

2
σ2f2j′′L (f)

� If (ρ+ η − (1− π) r) j`(f) < [ρ+ η − (1− π) (r + η)] jH(f) the HJB equation is

((1− π) r − µ`) j` (f) = (1− π)− (r (1− π) + ξ) f − (µ` + ξ) fj′` (f) +
1

2
σ2f2j′′` (f)

(ρ+ η − µL) jL (f) = (1− π)− (r (1− π) + ξ) f + [ρ+ η − (1− π) (r + η)] jL(f)

− (µL + ξ) fj′L (f) +
1

2
σ2f2j′′L (f)

which can be reduced to

((1− π) (r + η)− µ`) j` (f) = (1− π)− (r (1− π) + ξ) f − (µ` + ξ) fj′` (f) +
1

2
σ2f2j′′` (f)

((1− π) (r + η)− µL) jL(f) = (1− π)− (r (1− π) + ξ) f − (µL + ξ) fj′L(f) +
1

2
σ2f2j′′L (f)
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� In state `, the default boundary is f b` , satisfying

j`(f
b
` ) = 0

j′`(f
b
` ) = 0.

Since jL (0) = 1−π
ρ+η−µL

ρ+η−µ`
(1−π)r−µ` and j` (0) = 1−π

(1−π)r−µ` , to let f† = 0 in the low state, it is necessary

and sufficient to have

(ρ+ η − (1− π) r) j`(0) ≤ [ρ+ η − (1− π) (r + η)] jL(0).

That is

(ρ+ η − (1− π) r)
1− π

(1− π) (r + η)− µ`
≤ (ρ+ η − (1− π) (r + η))

1− π
ρ+ η − µL

ρ+ η − µ`
(1− π) r − µ`

.

From here, we get

(1− π) η2 + [(1− π) ρ+ πµ` − µL] η − (ρ− (1− π) r) (µL − µ`) ≤ 0.

This implies that

0 < η ≤ η̄ =
− [(1− π) ρ+ πµ` − µL] +

√
[(1− π) ρ+ πµ` − µL]2 + 4 (1− π) (ρ− (1− π) r) (µL − µ`)

2 (1− π)
.

(A.32)
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