
Monitoring versus Discounting in Repeated Games�

Takuo Sugaya

Stanford GSB

Alexander Wolitzky

MIT

February 2, 2023

Abstract

We study how discounting and monitoring jointly determine whether cooperation

is possible in repeated games with imperfect (public or private) monitoring. Our main

result provides a simple bound on the strength of players� incentives as a function

of discounting, monitoring precision, and on-path payo¤ variance. We show that the

bound is tight in the low-discounting/low-monitoring double limit, by establishing a

folk theorem where the discount factor and the monitoring structure can vary simul-

taneously.
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1 Introduction

Supporting non-static Nash outcomes in long-run relationships requires two ingredients.

Players�actions must be monitored, so that future play can depend on current behavior.

And players must be patient, so that variation in future play can provide incentives. The

current paper asks how to measure these ingredients, and how much of each is required. We

�nd that if the ratio of the discount rate and the �detectability�of deviations is large, then

all repeated-game Nash outcomes are static "-correlated equilibria (Theorem 1); and if the

ratio of discounting and detectability is small, then all payo¤ vectors that Pareto-dominate

static Nash payo¤s can be attained as perfect equilibria in the repeated game (Theorem 2).

Our paper is in the tradition of the folk theorem for repeated games with imperfect

public monitoring (Fudenberg, Levine, and Maskin, 1994; henceforth FLM), but we allow

arbitrary (possibly private) monitoring and study the tradeo¤between discounting and mon-

itoring, rather than the classical limit where discounting vanishes for �xed monitoring. A

similar tradeo¤ between discounting and monitoring arises in repeated games with frequent

actions (e.g., Abreu, Milgrom, and Pearce, 1991; Sannikov and Skrzypacz, 2010; henceforth

SS), but we do not parameterize the game by an underlying continuous-time signal process,

and instead view the frequent-action limit as a particular instance of a low-discounting/low-

monitoring double limit. Our results do have implications for games with frequent actions,

as well as other applications. These include games with many players, where a large popu-

lation of players are monitored by a noisy aggregate signal; and the question of the rate of

convergence of the equilibrium payo¤ set as discounting and monitoring vary. We discuss

these applications at the end of the paper, and pursue them further in companion papers

(Sugaya and Wolitzky, 2022a,b).

Our negative result (Theorem 1) involves some new ideas. First, we focus on the amount

of information conveyed by a monitoring structure, rather than the distribution of informa-

tion among the players. We capture this notion by considering the blind game �B associated

to any repeated game �, where the signals that were observed by the players in � are instead

observed by a neutral mediator. We interpret �B as the repeated game where society has

the same amount of information as in �, but this information is distributed so as to support
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a maximally wide range of equilibrium outcomes. Theorem 1 provides a necessary condition

for cooperation in �B. A fortiori, the same condition applies for � itself, as well as for any

other repeated game where the same amount of information is distributed di¤erently� that

is, for any repeated game with the same blind game.

Second, we measure the average strength of a player�s incentives over all histories that

arise in the course of the game. This notion is captured by a player�s maximum deviation gain

at the occupation measure over actions induced by an equilibrium. Here our approach con-

trasts with earlier work that analyzes incentives history-by-history (e.g., Fudenberg, Levine,

and Pesendorfer, 1998; al-Najjar and Smorodinsky, 2000, 2001; Awaya and Krishna, 2016,

2019). It leads to sharper results, because sometimes an equilibrium can be constructed

that provides strong incentives at a particular history by letting continuation play depend

disproportionately on behavior at that history, but such a construction necessarily provides

weaker incentives at other histories.

Third, we measure the detectability of a deviation by the �2-divergence� the variance

of the likelihood ratio di¤erence� between the signal distribution under equilibrium play as

compared to that under the deviation. The �2-divergence is a standard measure of statistical

distance.1 It arises in our analysis because minimizing continuation payo¤ variance subject

to incentive constraints requires making continuation payo¤s proportional to likelihood ratio

di¤erences, with a constant of proportionality equal to the (inverse) �2-divergence.

In total, Theorem 1 may be summarized as stating that, for any repeated game �, any

Nash equilibrium outcome in the associated blind game �B, and any possible deviation by

any player, we have

deviation gain �
r

�

1� �
(detectability) (payo� variance);

where the deviation gain, detectability (measured by �2-divergence), and payo¤ variance are

all assessed at the equilibrium occupation measure. The proof is based on a simple but novel

1Several other standard measures (e.g., total variation distance, Kullback-Leibler divergence) are equiva-
lent to �2-divergence under a non-moving support assumption, and hence are equally valid for characterizing
the tradeo¤ between discounting and monitoring in the low-discounting/low-monitoring double limit. How-
ever, our proofs and intuition rely on �2-divergence, and our non-asymptotic results are strongest under this
measure. See footnote 8 for details on this point.
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variance decomposition argument. The idea is that, if deviating from non-static Nash play

is unpro�table, then signals must vary signi�cantly with actions, and continuation payo¤s

must vary signi�cantly with signals; and, moreover, this payo¤ variation must be delivered

relatively quickly due to discounting. Theorem 1 shows that recursively decomposing the

variance of a player�s continuation payo¤s across periods yields a relatively tight bound on

the average strength of her incentives.2

Our positive result (Theorem 2) is a partial converse to Theorem 1. It shows that the

tradeo¤ between discounting and monitoring expressed in Theorem 1 is tight up to constant

factors in the low-discounting/low-monitoring double limit. Theorem 2 is an extension of

the folk theorems of FLM, Kandori and Matsushima (1998; henceforth KM), and SS. It

generalizes FLM and KM by letting discounting and monitoring vary simultaneously, and

it generalizes SS by considering the general low-discounting/low-monitoring double limit,

rather than parameterizing monitoring by an underlying continuous-time signal process.3 A

limitation of Theorem 2 is that it assumes that monitoring has a product structure. This

assumption facilitates an easy comparison with Theorem 1, but it is overly strong from the

perspective of the prior work on repeated games such as FLM, KM, and SS. However, we

prove Theorem 2 as a corollary of a more general result, Theorem 3, which we present in the

appendix, and which does not assume product structure monitoring.

The tradeo¤ we �nd between discounting and monitoring has a clear interpretation. In

probability theory, the sum of the conditional variances of a martingale�s increments is often

a useful measure of the �intrinsic time� experienced by the martingale (e.g., Dubins and

Savage, 1965; Freedman, 1975). Analogously, our results show precisely that repeated-game

equilibrium play is approximately myopic if players are impatient, and a folk theorem holds

if players are patient, where patience is measured relative to the intrinsic time experienced

by a martingale with likelihood ratio di¤erence increments, rather than calendar time.

2We emphasize that this bound applies for any repeated-game Nash equilibrium, regardless of whether
monitoring is public or private, despite the well-known fact that the equilibrium payo¤ set with private
strategies or monitoring generally lacks a useful recursive structure (Kandori, 2002).

3We also allow any number of players, while SS consider two-player games.
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2 Preliminaries

The Repeated Game. We consider discounted repeated games with imperfect monitoring.

A stage game G = (I; A; u) consists of a �nite set of players I = f1; : : : ; Ng, a �nite

product set of actions A = �i2IAi, and a payo¤ function ui : A ! R for each i 2 I. Let

�u > 0 denote an upper bound on the range and magnitude of any player�s stage-game payo¤:

e.g., take �u = maxi;a 2 jui (a)j. We denote a (possibly correlated) distribution over action

pro�les by � 2 �(A), and denote the set of such distributions resulting from independent

mixing by �� (A) = �i2I�(Ai). For any action pro�le distribution � 2 �(A), we let

ui (�) := Ea�� [ui (a)] and Vi (�) := Vara�� (ui (a)) denote the mean and variance of player

i�s payo¤ under �.

Amonitoring structure (Y; p) consists of a �nite product set of possible signal realizations

Y = �i2IYi and a family of conditional probability distributions p (yja), which we assume

have common support �Y � Y : that is, for each y; a, we have p (yja) > 0 i¤ y 2 �Y . This

non-moving support assumption excludes perfect monitoring (where yi = a with probability

1 for all i). Throughout, whenever we take a sum over signals y, this sum should be read as

being taken over �Y rather than Y , so that 0-probability signal pro�les are excluded.

A repeated game � = (G; Y; p; �) is described by a stage game, a monitoring structure,

and a discount factor � 2 (0; 1). In each period t = 1; 2; : : :, (i) the players take actions

(ai)i, (ii) the signal y = (yi)i is drawn according to p ((yi)i j (ai)i), and (iii) each player i

observes yi. Players remember their own past actions, so a history for player i takes the

form hti = (ai;t0 ; yi;t0)
t�1
t0=1, and a strategy �i for player i maps histories h

t
i to distributions over

actions ai;t. Players maximize discounted expected payo¤s with discount factor �.

An outcome � of the repeated game is a distribution over paths of actions and signals,

(A� Y )1. Each strategy pro�le � induces a unique outcome �.

The monitoring structure is said to be public if yi = yj for all y 2 �Y ; i; j 2 I. When

considering public monitoring, we omit the player subscript on y. In addition, public mon-

itoring has a product structure if there exist sets (Y i)i2N and conditional probability dis-

tributions (pi (�jai))i2N on (Y i)i2N such that Y = �i2NY i and p (yja) =
Q
i2N p

i (yijai) for

all y 2 Y; a 2 A. Thus, with public, product structure monitoring, yi is a conditionally
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independent signal of player i�s action ai (not to be confused with the signal observed by

player i in a general monitoring structure, which is denoted by yi).

The Blind Game. For any repeated game �, the set of outcomes � that are induced

by any Nash equilibrium � (or moreover by any communication equilibrium, as in Forges,

1986) is smaller than the set of outcomes that are induced by a Nash equilibrium in the

corresponding blind game. The blind game, which we denote by �B, is a variant of � where

(i) the players have access to a neutral mediator, (ii) at the beginning of each period, the

mediator privately recommends an action ri 2 Ai to each player i, and (iii) at the end of

each period, the mediator observes the signal y (which continues to be drawn according to

p ((yi)i j (ai)i)), while the players observe nothing. Players remember their own past actions,

while the mediator does not observe the players�actions. Thus, a history for player i in

the blind repeated game �B takes the form hti =
�
(ri;t0 ; ai;t0)

t�1
t0=1 ; ri;t

�
, and a history for

the mediator takes the form ht0 =
�
(ri;t0)i ; (yi;t0)i

�t�1
t0=1
. A strategy �i for player i maps

histories hti to distributions over actions ai;t; a strategy �0 for the mediator maps histories

ht0 to distributions over recommendation pro�les (ri;t)i. By standard arguments (similar

to Forges, 1986), any outcome � that is induced by a Nash or communication equilibrium

in � is also induced by a Nash equilibrium in �B where the players follow the mediator�s

recommendations on path. Our necessary conditions for cooperation (Theorem 1) apply for

�B, and hence apply a fortiori for �.

Occupation Measures. Given an outcome �, let ��t 2 �(A) denote the marginal

distribution of period-t action pro�les under �, and de�ne �� 2 �(A), the occupation

measure over action pro�les induced by �, by

�� (a) = (1� �)
1X
t=1

�t�1��t (a) for all a 2 A:

The occupation measure �� describes the �discounted expected fraction of periods�where

each action pro�le is played in the course of the repeated game. Note that the payo¤s under
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an outcome � are determined by its occupation measure ��, as

(1� �)
X
t

�t�1
X
a

��t (a)u (a) =
X
a

(1� �)
X
t

�t�1��t (a)u (a) =
X
a

�� (a)u (a) = u (��) :

In other words, the occupation measure is a su¢ cient statistic for the players�payo¤s.

Manipulations. A manipulation for a player i is a mapping si : Ai ! �(Ai). The

interpretation is that when player i is recommended action ai, she instead plays si (ai).

The gain from a manipulation si at an action pro�le distribution � 2 �(A) is

gi (si; �) =
X
a

� (a) (ui (si (ai) ; a�i)� ui (a)) :

For any " > 0, an action pro�le distribution � is a static "-correlated equilibrium if gi (si; �) �

" for all i and si.

For any � 2 �(A), let p (yj�) =
P

a � (a) p (yja). We de�ne the detectability of a

manipulation si at an action pro�le distribution � as

�2i (si; �) =
X
a;y

� (a) p (yja)
�
p (yja)� p (yjsi (ai) ; a�i)

p (yja)

�2
:

When � (a) = 1 for some a 2 A, our detectability measure is the �2-divergence between

the probability distributions p (�ja) and p (�jsi (ai) ; a�i). (The measure extends linearly for

non-degenerate �.) The �2-divergence is a standard measure of statistical distance. Note

that it is well-de�ned by our non-moving support assumption.4

We emphasize that manipulations, gain, and detectability are all �static� concepts, in

that they are de�ned relative to a single action pro�le distribution and (for detectability) a

single draw from the monitoring structure.

Remark 1 Why does �2-divergence arise in our analysis? The �2-divergence equals the vari-

ance of the likelihood ratio di¤erence between p (�ja) and p (�jsi (ai) ; a�i). The likelihood ratio

di¤erence (p (yja)� p (yj~ai; a�i)) =p (yja) determines the �strength of incentives�provided by
4Recall that we have also assumed that Y is �nite. Theorem 1 goes through when Y is in�nite, provided

that �2i (si; �) is �nite for all i; si; �.
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rewards or punishments that are conditioned on the arrival of signal y (Mirrlees, 1975; Holm-

ström, 1979). Since the expected likelihood ratio di¤erenceP
y p (yja) ((p (yja)� p (yj~ai; a�i)) =p (yja)) equals 0, the likelihood ratio di¤erence is �often

large�� so the signal is a useful basis for incentives� if and only if its variance is large.

More concretely, �2-divergence arises in Theorem 1 by applying the Cauchy-Schwarz in-

equality to an expression similar to

X
y

(p (yja)� p (yjsi (ai) ; a�i))wi (y)

=
X
y

p (yja)
�
p (yja)� p (yjsi (ai) ; a�i)

p (yja)

�
(wi (y)� E [wi (~y)]) ;

where wi (y) denotes player i�s continuation payo¤ following signal y. This expression is

the loss in player i�s expected continuation payo¤ when she manipulates according to si at

action pro�le a. For the inner product hX; Y ia =
P

y p (yja)X (y)Y (y), Cauchy-Schwarz

upper-bounds this loss by q
�2i (si; a)Var (wi (y)):

This observation shows that �2-divergence and continuation payo¤ variance must both be

large to deter manipulations. It also suggests that, as we will see, �2-divergence is a useful

metric for analysis based on decomposing the variance of continuation payo¤s.

Conversely, �2-divergence arises in Theorem 2 because the smallest �2-divergence �2i (si; a)

among manipulations si that always disobey the recommendation ai is equal to the amount

of slack in a standard statistical identi�ability condition for the folk theorem with imperfect

public monitoring.5

An intuition for why Theorems 1 and 2 are near-converses is that Cauchy-Schwarz is tight

when the likelihood ratio di¤erences (p (yja)� p (yjsi (ai) ; a�i)) =p (yja) and the continuation

payo¤s wi (y) are co-linear, and making these quantities co-linear minimizes continuation

5See Lemma 3 in Appendix A for a formal statement.
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payo¤ variance subject to incentive-compatibility. That is, the solution to the program

min
wi: �Y!R

X
y

p (yja) (wi (y)� E [wi (~y)])2

s.t.
X
y

(p (yja)� p (yjsi (ai) ; a�i))wi (y) �
1� �

�
(ui (si (ai) ; a�i)� ui (a))

is

wi (y) = (ui (si (ai) ; a�i)� ui (a))�
p (yja)� p (yja0i; a�i)

p (yja) � 1� �

�
� 1

�2i (si; ai)
:

In turn, minimizing continuation payo¤ variance maximizes e¢ ciency when continuation

payo¤ movements are small and are approximately con�ned to the boundary of a smooth

set of payo¤s, which is the most e¢ cient way to provide incentives in repeated games (e.g.,

FLM; Sannikov, 2007).6

3 Bounding Equilibrium Incentives

Our main result bounds a player�s gain from a manipulation as a function of the discount

factor, the detectability of the manipulation, and the variance of the player�s payo¤, where

gain, detectability, and variance are all assessed at the equilibrium occupation measure. As

a consequence, every repeated-game equilibrium occupation measure is a static "-correlated

equilibrium, and every repeated-game equilibrium payo¤ vector is a static "-correlated equi-

librium payo¤ vector, for " > 0 given by the bound.

Theorem 1 For any Nash equilibrium outcome � in �B, any player i, and any manipulation

si, we have

gi (si; �
�) �

r
�

1� �
�2i (si; �

�)Vi (��): (1)

In particular, �� is a static "-correlated equilibrium (and hence payo¤s under � are static

6The �2-divergence is closely related to the Fisher information. If ai were a continuous variable, the

Fisher information would be de�ned as
P

y p (yja)
�

@
@ai

p (yjai; a�i) =p (yja)
�2
, which is a local �2-divergence.

Fisher information arises in moral hazard problems with quadratic utility (Jewitt, Kadan, and Swinkels,
2008; Hébert, 2018) or frequent actions (Sadzik and Stacchetti, 2015), as well as in some career concerns
models (Dewatripont, Jewitt, and Tirole, 1999), because these problems likewise involve minimizing the
variance of rewards subject to incentive compatibility.
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"-correlated equilibrium payo¤s), for

" = max
i;si

r
�

1� �
�2i (si; �

�)Vi (��):

Theorem 1 precludes cooperation when players are too impatient, monitoring is too

imprecise, or on-path payo¤ variance is too small. It permits cooperation if � ! 1 for any

�xed positive detectability, consistent with FLM�s folk theorem. It also permits cooperation

with vanishing on-path payo¤ variance if detectability is high enough, consistent with folk

theorems under perfect monitoring (which we admit as a limit case). We emphasize that

the theorem covers all Nash equilibria, whether signals are observed publicly or privately, by

either the players or a mediator.

Theorem 1 implies that cooperation is impossible if detectability is much smaller than

discounting. We record this implication as a corollary.

Corollary 1 For any stage game G and any " > 0, there exists k > 0 such that the following

holds:

For any monitoring structure (Y; p), any discount factor � satisfying

maxi;si;a �
2
i (si; a)

1� �
< k; (2)

and any Nash equilibrium outcome � in the repeated game � = (G; Y; p; �) (or in the blind

game �B), the induced occupation measure over actions �� is a static "-correlated equilibrium.

An important feature of Theorem 1 is that the deviation gain is bounded by a multiple of

(1� �)�1=2, rather than (1� �)�1. This is somewhat surprising, as continuation payo¤s are

weighted by (1� �)�1, and it is essential for characterizing the tradeo¤ between discounting

and monitoring (e.g., for establishing Corollary 1). The key idea behind this property is

bounding incentives on average, not at each history. In particular, the proof of Theorem 1

shows that if (1) is violated, then there exists a period t such that it is pro�table for player i

to follow the equilibrium until period t and then manipulate according to si. However, this

deviation may be pro�table only for certain choices of t� it may be unpro�table for a period

t that gets disproportionate weight in determining continuation payo¤s. Put di¤erently, an
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incentive bound of order (1� �)�1 results when no restrictions are placed on continuation

payo¤s beyond feasibility, while we instead recursively bound the variance of continuation

payo¤s, which results in an incentive bound of order (1� �)�1=2.

Remark 2 Prior results that bound incentives in repeated games as a function of discounting

and monitoring precision do so history-by-history, and hence obtain bounds of order (1� �)�1

(e.g., Fudenberg, Levine, and Pesendorfer, 1998, Proposition 1; al-Najjar and Smorodinsky,

2001, Theorem 1; Pai, Roth, and Ullman, 2017, Theorem 3.1). Awaya and Krishna (2016,

2019) derive a bound based on deterring a permanent deviation to a �xed action, which is also

of order (1� �)�1.7 In our own prior work, (Sugaya and Wolitzky, 2017, 2018), we derived

bounds that hold independently of monitoring precision; these are again of order (1� �)�1.

We illustrate Theorem 1 with an example.

Example 1 (Prisoner�s Dilemma with Binary Product Structure Monitoring) Consider

the prisoner�s dilemma with payo¤ matrix

C D

C 1; 1 �1; 2

D 2;�1 0; 0

and symmetric product structure monitoring with precision � 2 (1=2; 1), so that Y =

fC;Dg�fC;Dg, where each signal component equals the corresponding player�s action with

probability �, independently across players.

We bound the equilibrium probability of cooperation by applying (1) for the manipulation

that always defects. For any equilibrium outcome � , the gain from this deviation evaluated

7See, e.g., Awaya and Krishna (2019, Proposition 4.1). Unlike our bound, their bound for each player i
depends only on the marginal of p on Y�i, so our bound and theirs are non-nested. Their bound is tighter
for monitoring structures where the impact of a player�s action on the distribution of y is much greater than
its impact on the distribution of y�i. Such monitoring structures play an important role in their analysis.
It may be possible to use our techniques to improve their bound; this is left for future research.
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at the occupation measure �� equals ��CC+�
�
CD, while its detectability evaluated at �

� equals

(��CC + ��CD)

 
�

�
� � (1� �)

�

�2
+ (1� �)

�
(1� �)� �

1� �

�2!
+ (��DC + ��DD) (0)

= (��CC + ��CD)
(2� � 1)2

� (1� �)
:

Thus, (1) gives

��CC + ��CD �
�

1� �

(2� � 1)2

� (1� �)
V1 (�

�) ; (3)

where V1 (��) = ��CC + 4�
�
DC + ��CD � (�

�
CC + 2�

�
DC � ��CD)

2.

Inequality (3) can be further simpli�ed to bound the players�average equilibrium payo¤,

w := (u1 (�
�) + u2 (�

�)) =2. Note that w � (1 + ��CC) =2 and, for a given value for �
�
CC,

mini Vi (�
�) is maximized by taking �CD = �DC = (1� ��CC) =2, which gives Vi (�

�) =

(5=2) (1� ��CC)� (1=4) (1� ��CC)
2 � (5=2) (1� ��CC). Inequality (3) now implies that

��CC �
5

2

�

1� �

(2� � 1)2

� (1� �)
(1� ��CC) =) ��CC � max

�
1� 2

5

1� �

�

� (1� �)

(2� � 1)2
; 0

�
:

We thus obtain the payo¤ bound

w � max
�
1

2
; 1� 1

5

1� �

�

� (1� �)

(2� � 1)2
�
: (4)

In Section 4, we will quantify the tightness of this bound in the frequent-action limit where

the prisoner�s dilemma converges to Sannikov�s (2007) continuous-time partnership game,

where each player controls the drift of a Brownian motion.

There are three steps in the proof of Theorem 1. First, if manipulating according to si is

unpro�table in period t, then the conditional variance of player i�s period-t+1 continuation

payo¤ must be su¢ ciently large compared to (1� �)2 times the ratio of the (squared) gain

from this manipulation in period t and the detectability of this manipulation in period t

(equation (7) below). Second, applying this lower bound on conditional variance recursively

using the law of total variance, we show that a discounted sum of the variances of player i�s

stage-game payo¤s (times 1 � �) must exceed a discounted sum of the conditional variance
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bounds (equation (8), which obtains after canceling a 1 � � term). Finally, by Jensen�s

inequality, this inequality relating a discounted sum of payo¤variances and a discounted sum

of ratios of the deviation gain and detectability of si in each period implies a corresponding

inequality relating the payo¤ variance and the ratio of the deviation gain and detectability

of si evaluated at the equilibrium occupation measure, which simpli�es to (1).

We also mention a tighter (but more complicated) bound than that given in Theorem

1, which applies for any communication equilibrium outcome � in �, but not necessarily for

any equilibrium outcome in �B. This is the bound that results when the mediator must

rely on self-reported signals, so that detectability is now measured with respect to a player�s

opponents�signals and her own self-report. Speci�cally, a manipulation for player i would

now consist of a pair (si; �i), where si : Ai ! �(Ai) describes the mixed action si (ai) taken

by player i when she is recommended ai, and �i : Ai � Ai � Yi ! Yi describes the signal

�i (ai; âi; yi) reported by player i when she is recommended ai, takes âi, and observes yi. One

can then de�ne the gain from a manipulation (si; �i) as above (noting that this depends only

on si), and de�ne the detectability of a manipulation (si; �i) at an action pro�le distribution

� as

~�2i (si; �i; �) =
X
a;y

� (a) p (yja)
 
p (yja)�

P
âi;y0i

si (ai) [âi] p (y
0
i; y�ijâi; a�i) �i (ai; âi; y0i) [yi]

p (yja)

!2
:

Note that

�2i (si; �) � ~�2i (si; �) := min
�i
~�2i (si; �i; �) for all i; si; �;

as this inequality holds with equality when �i (ai; âi; yi) = yi for all ai; âi; yi. Theorem 1 holds

for any communication equilibrium outcome � in � with ~�2i (si; �
�) in place of �2i (si; �

�), by

essentially the same proof.
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3.1 Proof of Theorem 1

We �rst introduce some notation. Given a path of action pro�les a1 = (a1; a2; : : :), let

uti = ui (a
t), and denote player i�s continuation payo¤ at the beginning of period t by

wti = (1� �)

1X
t0=t

�t
0�tut

0

i :

Denote a history of actions and signals at the beginning of period t by ht = (at; yt).

Fix a Nash equilibrium outcome � in �B, a player i, and a manipulation si. Let H t

denote the set of period-t histories ht that are reached with positive probability under �,

and de�ne a H t-measurable random variable W t
i : H

t ! R by W t
i (h

t) = E [wtijht] for all

ht 2 H t. By the law of total variance (e.g., Billingsley, 1995, Problem 34.10(b)), we have

Var
�
W t+1
i

�
= Var

�
E
�
W t+1
i jht

��
+ E

�
Var

�
W t+1
i jht

��
: (5)

Similarly, de�ne U ti : H
t ! R by U ti (ht) = E [utijht] for all ht 2 H t.

In what follows, we suppress the dependence of gi (si; �) and �2i (si; �) on si.

Lemma 1 For each period t, we have

Var
�
E
�
W t+1
i jht

��
� 1

�
Var

�
W t
i

�
� 1� �

�
Var

�
U ti
�

and (6)

E
�
Var(W t+1

i jht)
�
�

�
1� �

�

�2
gi (�

�
t )
2

�2i (�
�
t )
; (7)

where in (7) we follow the convention 0=0 = 0. In particular, (7) implies that �2i (�
�
t ) =

0 =) gi (�
�
t ) = 0.

Proof. For (6), since wti = (1� �)uti + �wt+1i , for every history ht 2 H t we have

W t
i

�
ht
�
= (1� �)U ti

�
ht
�
+ �E

�
W t+1
i jht

�
:

Therefore,

Var
�
W t
i

�
= Var

�
(1� �)U ti + �E

�
W t+1
i jht

��
� (1� �)Var

�
U ti
�
+ �Var

�
E
�
W t+1
i jht

��
:

13



Dividing by � and rearranging yields (6).

For (7), let � (ht; a) denote the probability that history ht is reached in period t and then

action pro�le a is played. Since � is an equilibrium outcome, we have

1� �

�
gi (�

�
t ) �

X
ht;a;y

�
�
ht; a

�
(p (yja)� p (yjsi (ai) ; a�i))W t+1

i

�
ht; a; y

�
:

This holds because, if she follows the equilibrium until period t and then manipulates accord-

ing to si� which is a feasible deviant strategy, albeit perhaps not an optimal one� player i can

guarantee an expected continuation payo¤ of
P

ht;a;y � (h
t; a) p (yjsi (ai) ; a�i)W t+1

i (ht; a; y)

by following the mediator�s recommendations from period t + 1 onward. (In other words,

in the continuation game player i plays as if her period-t action were ai rather than si (ai).

This continuation play may not be optimal, but we are only giving a necessary condition.)

Therefore,

1� �

�
gi (�

�
t ) �

X
ht;a;y

�
�
ht; a

�
(p (yja)� p (yjsi (ai) ; a�i))W t+1

i

�
ht; a; y

�
=

X
ht;a;y

�
�
ht; a

�
p (yja)

�
p (yja)� p (yjsi (ai) ; a�i)

p (yja)

��
W t+1
i

�
ht; a; y

�
� E

�
W t+1
i jht

��

�

rP
ht;a;y � (h

t; a) p (yja)
�
p(yja)�p(yjsi(ai);a�i)

p(yja)

�2
�
qP

ht;a;y � (h
t; a) p (yja)

�
W t+1
i (ht; a; y)� E

�
W t+1
i jht

��2
=

q
�2i (�

�
t )E

�
Var

�
W t+1
i jht

��
;

where the second inequality follows from Cauchy-Schwarz. Finally, if �2i (�
�
t ) > 0 then

squaring both sides and rearranging yields (7); if instead �2i (�
�
t ) = 0 then we have gi (�

�
t ) =

0, and (7) reduces to E
�
Var(W t+1

i jht)
�
� 0, which holds as variance is non-negative.

(The di¤erent orders in 1� � in (6) and (7) are important and can be given an intuitive

explanation. In (6), Var (U ti ) is weighted by 1�� because current-period payo¤s have weight

1� �, and variance is maximized when current payo¤s and continuation payo¤s are perfectly

correlated, in which case the weight comes out of variance linearly. In (7), gi (�
�
t )
2 =�2i (�

�
t )

is weighted by (1� �)2 because we bounded the current-period deviation gain (1� �) gi (�
�
t )
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using Cauchy-Schwarz and squared both sides of the resulting inequality.)

By (5), (6), and (7), for each period t, we have

Var
�
W t+1
i

�
� 1

�
Var

�
W t
i

�
� 1� �

�
Var

�
U ti
�
+

�
1� �

�

�2
gi (�

�
t )
2

�2i (�
�
t )
:

Recursively applying this inequality and using Var (W 1
i ) = 0, for each T 2 N we have

�TVar
�
W T+1
i

�
� (1� �)

TX
t=1

�t�1

 
1� �

�

gi (�
�
t )
2

�2i (�
�
t )
� Var

�
U ti
�!

:

As payo¤s are bounded, the left-hand side of this inequality converges to 0 as T !1, while

(since �2i (�
�
t ) is also bounded) the right-hand side converges to

(1� �)
X
t

�t�1

 
1� �

�

gi (�
�
t )
2

�2i (�
�
t )
� Var

�
U ti
�!

:

Therefore,

�
X
t

�t�1Var
�
U ti
�
� (1� �)

X
t

�t�1
gi (�

�
t )
2

�2i (�
�
t )
: (8)

At this point we are almost done, because inequality (8) actually implies the desired

inequality, (1). This observation relies on the following lemma.

Lemma 2 Let �+ (A) = f� 2 �(A) : 8i; �2i (�) = 0 ) gi (�) = 0g. The function

fi : �
+ (A)! R+ de�ned by

fi (�) =
gi (�)

2

�2i (�)
for all � 2 �(A) ;

with convention 0=0 = 0, is convex.

Proof. Fix any �; �0 2 �+ (A) and � 2 [0; 1], and let

a = gi (�) ; b = �2i (�) ; c = gi (�
0) ; d = �2i (�

0) :
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By linearity of gi and �2i , we have

�fi (�) + (1� �) fi (�
0)� fi (�� + (1� �)�0) = �

a2

b
+ (1� �)

c2

d
� (�a+ (1� �) c)2

�b+ (1� �) d
� 0;

so fi is convex. To see why the last inequality holds, note that if b = 0 then a = a2=b = 0

(by � 2 �+ (A) and the 0=0 = 0 convention), so the inequality is trivial, and similarly if

d = 0. If instead b and d are both strictly positive, then we have

�
a2

b
+ (1� �)

c2

d
� (�a+ (1� �) c)2

�b+ (1� �) d
=
� (1� �) (ad� bc)2

(�b+ (1� �) d) bd
� 0:

We also use the fact that

�

1� �
Vi (�

�) =
�

1� �

X
a

(1� �)
X
t

�t�1��t (a) (ui (a)� ui (�
�))2

= �
X
t

�t�1
X
a

��t (a) (ui (a)� ui (�
�))2

� �
X
t

�t�1
X
a

��t (a) (ui (a)� ui (�
�
t ))

2

= �
X
t

�t�1Var
�
uti
�
� �

X
t

�t�1Var
�
U ti
�
;

where the �rst inequality follows because E
�
(X � x)2

�
� E

�
(X � E [X])2

�
for any random

variable X and number x, and the second inequality follows from the law of total variance.

By (8), we thus have

�

1� �
Vi (�

�) � (1� �)
X
t

�t�1
gi (�

�
t )
2

�2i (�
�
t )
�
�
(1� �)

P
t �
t�1gi (�

�
t )
�2

(1� �)
P

t �
t�1�2i (�

�
t )

=
gi (�

�)2

�2i (�
�)
;

where the second inequality follows from Lemma 2 and Jensen�s inequality. Rearranging and

taking square roots yields (1).
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4 Tightness of the Bound

We now show that the bound derived in Theorem 1 is tight up to constant factors in the

low-discounting/low-monitoring double limit. We establish this result for public, product

structure monitoring. We then discuss extensions to more general monitoring structures.

The bound in Theorem 1 applies for any Nash equilibrium. For a converse result estab-

lishing the possibility of cooperation (a kind of �folk theorem�), a more restrictive solution

concept is preferable. Since our folk theorem assumes public monitoring, we use the standard

solution concept for such games: perfect public equilibrium (PPE), which is a strategy pro�le

that forms a Nash equilibrium conditional on any public history ht = (yt0)
t�1
t0=1. For any stage

game G, public monitoring structure (Y; p), and discount factor �, we denote the set of PPE

payo¤ vectors in the repeated game � = (G; Y; p; �) by E (�).

For any stage game G, let F = co
�
fu (a)ga2A

�
� RN denote the set of feasible payo¤s,

and let F � � F denote the set of feasible payo¤s that weakly Pareto-dominate a convex

combination of static Nash payo¤s: that is, v 2 F � if v 2 F and there exist a collection of

static Nash equilibria (�n) and non-negative weights (�n) such that v �
P

n �nu (�n) andP
n �n = 1. Our folk theorem gives conditions under which E (�) covers almost all of F �,

excepting points very close to the boundary. We make the standard assumption that the

�target�payo¤ set (in our case F �) is full dimensional: dimF � = N .

Theorem 2 For any stage game G satisfying dimF � = N and any " > 0, there exists k > 0

such that the following holds:

For any public, product monitoring structure (Y; p) and any discount factor � satisfying

mini;si;a:si(ai)[ai]=0 �
2
i (si; a)

1� �
> k and (9)

p (yja)
1� �

> k for all y; a; (10)

and for any v 2 intF � such that the Euclidean distance between v and the boundary of F � is

greater than ", we have v 2 E (G; Y; p; �).

We compare Corollary 1 and Theorem 2. Heuristically, Corollary 1 says that for any

repeated game, cooperation is impossible if detectability is much smaller than discounting;
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and Theorem 2 says that for any repeated game with public, product structure monitoring

that satis�es a full-dimensionality condition on payo¤s, cooperation is possible if detectability

is much larger than discounting. Note that the constant k di¤ers between the two results: k

must be taken to be su¢ ciently small in Corollary 1 and su¢ ciently large in Theorem 2.8

Two further points bear emphasis. First, the premise of Corollary 1 is that detectability

is small for any recommended action pro�le a and any manipulation si, while the premise

of Theorem 2 is that detectability is large for any recommended action pro�le a and any

manipulation si that always disobeys the recommendation ai. (Compare equations (2) and

(9).) Without the latter requirement, Theorem 2 would be vacuous, because detectability

is always small for a manipulation that rarely disobeys the recommendation. Second, The-

orem 2 additionally requires that no signal is exceedingly rare relative to the discount rate

(equation (10)). We explain the role of this requirement shortly.

Theorem 2 can also be compared to the classical folk theorems of FLM and KM. The key

di¤erence with these results is that Theorem 2 lets the discount factor and the monitoring

structure vary simultaneously, while standard folk theorems �x the monitoring structure

and show that cooperation is possible when the discount factor is high enough. Formally,

the di¤erence is that in Theorem 2 the constant k is uniform over monitoring structures

(Y; p) satisfying equations (9) and (10), while standard folk theorems show only that for

each monitoring structure (Y; p) that satis�es certain identi�ability conditions, there exists

a su¢ ciently high k (or equivalently, a su¢ ciently high �) that supports cooperation.9

Theorem 2 is also related to SS�s folk theorem for repeated games with frequent actions

(their Theorem 2). SS consider a model where signals are parameterized by an underlying

continuous-time Lévy process (a sum of Brownian and Poisson signals), and players interact

every � units of time, with real-time discount rate r (so � = e�r�, and hence 1� � � r�).

8If the hypothesis that p (yja) = (1� �) > k in Theorem 2 is strengthened to a uniform lower bound on
p (yja) (independent of �), then �2-divergence can be replaced with various other divergences in the statement
of Theorem 2, as these divergences are all equivalent when probabilities are bounded away from zero. For
example, if p (yja) � " for all y; a, then the total variation distance TV satis�es �2 � 4TV 2 � "�2, and the
Kullback-Leibler divergence KL satis�es �2 � 2"KL � "2�2. For inequalities implying these bounds and
many more, see e.g. Sason and Verdú (2016).

9FLM and KM do not assume product structure monitoring, FLM�s folk theorem (e.g., their Theorem 6.1)
imposes identi�ability conditions only at certain action pro�les, and KM�s folk theorem (their Theorem 1)
is a minmax threat folk theorem. (FLM also proved a minmax folk theorem under additional assumptions.)
Our theorem can be extended in these regards, as we discuss below.
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SS prove a folk theorem for the double limit where �! 0 and r ! 0. To compare with our

results, observe that for Brownian signals (with the space of signal realizations partitioned

into arbitrary �xed intervals) we have

(p (yja)� p (yja0i; a�i))
2

p (yja) � �

1
= � and p (yja) � 1;

and for Poisson signals we have

(p (yja)� p (yja0i; a�i))
2

p (yja) � �2

�
= � and p (yja) � �:

Hence, under SS�s information structure equations (9) and (10) both reduce to

r <
1

k
:

Theorem 2 therefore implies SS�s result, up to some minor di¤erences.10 Relative to their re-

sult, our main contribution is dispensing with their parameterization by an underlying Lévy

process. That is, we prove a general folk theorem for discrete-time repeated games in the

low-discounting/low-monitoring double limit, which implies the folk theorem for repeated

games with frequent actions (which assumes an underlying continuous-time parameteriza-

tion) as a special case. Another signi�cant di¤erence is that SS assume that N = 2: this

assumption seems important for their proof, which relies on parameterizing the boundary of

the equilibrium payo¤ set as a 1-dimensional curve.11

We preview the key ideas of the proof of Theorem 2. We prove Theorem 2 as a corol-

lary of the more general Theorem 3, which we state in the appendix. Theorem 3 is more

general than Theorem 2 because it requires only a version of KM�s �pairwise identi�ability�

condition, rather than product structure monitoring.12 The proof of Theorem 3 builds on

10SS prove a pure-strategy minmax-threat folk theorem (rather than a Nash-threat folk theorem)
and do not assume product structure monitoring; however, they assume bounded likelihood ratios
p (yja0i; a�i) =p (yja). Our Theorem 3 likewise does not assume product structure monitoring, and under
bounded likelihood ratios it can be adapted to give a pure-strategy minmax-threat folk theorem.
11We also mention Fudenberg and Levine (2007), who establish (in)e¢ ciency results in a frequent-action

game with one patient player and a myopic opponent, in contrast to SS�s model with two patient players, or
our model with N patient players.
12However, Theorem 3 is not immediately comparable to Corollary 1, which is why we relegate it to the
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FLM, KM, and SS. Similarly to FLM and KM, the goal is to show that for any v 2 intF �,

a su¢ ciently small ball B around v is self-generating (cf. De�nition 1 in Appendix A). In

the � ! 1 limit considered by FLM and KM, this follows because payo¤ vectors in B can

be enforced with continuation payo¤ movements of magnitude O (1� �), so since the set B

is smooth, taking continuation payo¤s to lie on translated tangent hyperplanes in B results

in a vanishing e¢ ciency loss. In contrast, when discounting and monitoring vary together,

equation (9) implies that payo¤ vectors in B can be enforced with continuation payo¤s of

variance o (1� �), while equation (10) additionally implies that continuation payo¤ move-

ments can be taken to have magnitude o (1) (but not necessarily O (1� �)): this follows

because the solution to the variance-minimization program in Remark 1 is

X
y

p (yja) (wi (y)� E [wi (~y)])2 = (ui (si (ai) ; a�i)� ui (a))
2 �

�
1� �

�

�2
� 1

�2i (si; ai)
;

which is o (1� �) when � ! 1 faster than �2i (si; ai) ! 0, and which implies that wi (y) �

E [wi (~y)] = o (1) for all y when p (yja) > 1� � and � ! 1 faster than �2i (si; ai)! 0. A key

lemma (Lemma 6) shows that under these conditions, requiring continuation payo¤s to lie in

B again results in a vanishing e¢ ciency loss. The intuition is that larger continuation payo¤

movements must land farther in the interior of B, resulting in greater ine¢ ciency; but since

the continuation payo¤ variance is small, these large movements are infrequent enough that

the ex ante expected ine¢ ciency is small.

Comparing equations (2) and (9) shows that the tradeo¤ between dectectability and

discounting expressed in Theorem 1 is tight up to constant terms (i.e., the di¤erence in the

constant k in the two equations) in the low-discounting/low-monitoring double limit. One

may wonder how much slack the constant factors are hiding. This is a tricky question to

answer in general, because the calculations involved in proving Theorem 2 are somewhat

intricate. However, we can give a clear answer for a frequent-action version of the prisoner�s

appendix. While Theorem 3 is more general than Theorem 2, it still assumes pairwise identi�ability rather
than �individual identi�ability.� (See Appendix A for the de�nitions of these terms.) We conjecture that
Theorem 3 remains valid under individual identi�ability for public monitoring or for private monitoring in
the presence of a mediator, but proving either of these results would involve complications similar to those
in the literature on the folk theorem with private monitoring (e.g., Sugaya, 2022). These complications are
orthogonal to the current paper�s focus on monitoring precision, and would necessitate a much longer proof.
This conjecture is thus left for future research.
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dilemma considered in Example 1.

Example 2 (Prisoner�s Dilemma Redux) Consider again Example 1, now parameter-

ized by a triple (�; r; �), where � > 0, r > 0, and � 2 (1=2; 1). The payo¤ matrix is as in

Example 1. The discount factor is � = e�r�. Monitoring is public with a symmetric product

structure, where Y i = f�1; 1g and

pi
�
1jai
�
=

8<: 1
2
+
�
� � 1

2

�p
�=
 if ai = C;

1
2
�
�
� � 1

2

�p
�=
 if ai = D;

where 
 := 4� (1� �). We let the players access a public randomization device.

With this parameterization, as �! 0 the process

X i
� =

1p
�

b�=�cX
t=1

yit

converges in distribution to a Brownian motion with drift 2� � 1 (resp., � (2� � 1)) when

ai� = C (resp., D) and variance 
.13 Thus, for small � the game is almost the same as the

continuous-time partnership game studied by Sannikov (2007).

For any�, the detectability �2 of a manipulation that always disobeys the recommendation

equals
(2� � 1)2�

� (1� �)�
�
� � 1

2

�2
�
:

Thus, for su¢ ciently small �,

�2

1� �
=

1

e�r�
(2� � 1)2�

� (1� �)�
�
� � 1

2

�2
�
� 1

r

(2� � 1)2

� (1� �)
:

For any su¢ ciently small � and any " � 1=2, inequality (4) derived in Section 3 now implies

that, for the players to attain an average equilibrium payo¤ of w = 1� ", we must have

�2

1� �
� 1

5"
: (11)

13This follows from the functional central limit theorem (e.g., Billingsley, 1995, Theorem 37.8).
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At the same time, by adapting the proof of Theorem 2, we can establish the following result.14

Proposition 1 For any su¢ ciently small � and any " � 54
23
� 6

23

p
58 � :361, if

�2

1� �
� 1�

18
p
10

125
� 4

25

�
"2
� 1

0:295"2
; (12)

then there exists a PPE with payo¤ vector (1� "; 1� ").

The constants on the right-hand sides of inequalities (11) and (12) correspond to the

required values of k in Corollary 1 and Theorem 2, respectively, so the ratio of these con-

stants quanti�es the constant-factor slack between our necessary and su¢ cient conditions

for cooperation. Observe that there are two sources of slack: an absolute constant factor of

5=0:295, and a factor of " (the distance between the target payo¤ vector (1� "; 1� ") and

the e¢ cient payo¤ vector (1; 1)). Some absolute constant-factor slack is to be expected, since

(11) comes from a general theorem (Theorem 1) that does not make use of the structure

of the prisoner�s dilemma stage game, the symmetric product structure monitoring, or the

perfection requirement imposed by the PPE solution concept. On the other hand, the "-factor

slack arises because Theorem 1 tightly characterizes the relationship between discounting and

monitoring, but not the relationship between these variables and the distance to the boundary

of the feasible payo¤ set. We derive tighter results on the rate of convergence to the boundary

of the feasible payo¤ set in a companion paper (Sugaya and Wolitzky, 2022b).

5 Discussion

This paper has established general results on the tradeo¤between discounting and monitoring

for supporting cooperation in repeated games. We conclude by discussing some applications.

We have already mentioned implications of our results for repeated games with frequent

actions, where the interaction frequency 1=� goes to in�nity while the real-time discount

rate r is �xed, and signals are parameterized by an underlying continuous-time stochastic

14A similar result can be obtained by applying Sannikov�s characterization of the set of PPE payo¤s in
the continuous-time limit game (his Theorem 2). However, it is not straightforward to show that this set
approximates the PPE payo¤ set in the discrete-time game.
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process. This �frequent action limit�is a particular type of low-discounting/low-monitoring

double limit where discounting and monitoring vanish at the same rate, which corresponds

to the edge case in between our necessary and su¢ cient conditions for cooperation. This

edge case is interesting and important, but it is also perhaps somewhat special and detail-

dependent.15 When specialized to frequent-action games where both �! 0 and r ! 0, our

folk theorem generalizes that of Sannikov and Skrzypacz (2010) to games with more than

two players.

Another type of low-discounting/low-monitoring double limit arises in large-population

repeated games, where many patient players are monitored by a noisy aggregate signal, which

provides little information about each individual player�s action. This type of model was

studied by Green (1980) and Sabourian (1990) under a continuity condition on the mapping

from action pro�les to signals, and by Fudenberg, Levine, and Pesendorfer (1998) and al-

Najjar and Smorodinsky (2000, 2001) under the assumption that each player�s action is hit by

independent, individual-level noise. In a companion paper (Sugaya and Wolitzky, 2022a), we

derive necessary and su¢ cient conditions for cooperation in large-population repeated games

with individual-level noise, as a function of the population size, the discount factor, and the

channel capacity (the maximum expected entropy reduction) of the monitoring structure.

These results extend those in the current paper by introducing individual-level noise and

letting the stage game� and in particular the number of players� vary together with the

discount factor and the monitoring structure.

Our negative result (Theorem 1) can be extended to show that for any �xed imperfect

monitoring structure, the Nash equilibrium payo¤ set cannot converge to the boundary

of the feasible payo¤ set at a rate faster than (1� �)1=2+" for any " > 0. Since the rate of

convergence of the PPE payo¤set with imperfect public monitoring is known to be (1� �)1=2,

this result shows that allowing private strategies and monitoring cannot signi�cantly increase

the rate of convergence, which resolves in the negative a question posed by Hörner and

Takahashi (2016). Moreover, by accounting for monitoring precision as well as discounting,

15Sadzik and Stacchetti (2015) study the frequent action limit of repeated principal-agent problems with
one-dimensional actions and concave preferences, where the signal process converges to a Brownian motion.
Our results cover repeated principal-agent problems, and complement Sadzik and Stacchetti�s by providing
necessary and su¢ cient conditions for cooperation for more general games and monitoring structures.
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this bound can be re�ned to show that the distance between the equilibrium payo¤ set and

the boundary of the feasible payo¤ set must exceed ((1� �) =maxi;si;a �
2
i (si; a))

1=2+". This is

another result where the relevant timescale is the intrinsic time experienced by a martingale

with likelihood ratio di¤erence increments. We present these results in a second companion

paper (Sugaya and Wolitzky, 2022b).

Appendix

A Proof of Theorem 2

We prove Theorem 2 as a corollary of a more general result, Theorem 3. In this appendix,

we assume either product structure monitoring or the genericity condition that each player

has a strict incentive to follow an action pro�le that maximizes her own payo¤.

Assumption 1 Monitoring is public, and one of the following holds:

1. Monitoring has a product structure.

2. For each player i, there exists an action pro�le ai 2 argmaxa2A ui (a) satisfying

ui (a
i) > ui

�
ai; a

i
�i
�
for all ai 6= aii.

We introduce some notation. For each i and a, let

Pi (a) =
[
a0i 6=ai

�
p (yja0i; a�i)
p (yja)

�
y2 �Y

:

That is, Pi (a) is the set of vectors of likelihood ratios that can arise when player i deviates

from ai while the remaining players take a�i. Also, for each a, de�ne the inner product h�; �ia
on Rj �Y j by

h~p; ~qia =
X
y

p (yja) ~p (y) ~q (y) for all ~p; ~q 2 Rj �Y j;

and let k�ka denote the associated norm. Let 1 denote the vector of 1�s in Rj
�Y j.

For any � 2 [0; 1], we say that monitoring satis�es �-individual identi�ability if for any

action pro�le a and player i, the following two conditions hold:
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1. There exists a vector z 2 Rj �Y j such that kzka = 1 and

hz;1ia > hz; pia + � for all a and p 2 Pi (a) : (13)

2. We have

p (yja) > �2 for all y 2 �Y : (14)

Intuitively, (13) says that the vector of likelihood ratios under equilibrium play is suf-

�ciently di¤erent from the corresponding vector under any deviation by player i. When

� = 0, �-individual identi�ability is weaker than FLM�s individual full rank condition. If

�-individual identi�ability holds under product structure monitoring, then for any action

pro�le a and player i, there exists a unit vector z 2 Rj �Y j that satis�es (13) and (14) as well

as

z
�
yi; y�i

�
= z

�
yi; ~y�i

�
for all yi; y�i; ~y�i: (15)

For any � 2 [0; 1], we say that monitoring satis�es �-pairwise identi�ability if for any

action pro�le a and any pair of distinct players i and j, the following three conditions hold:

1. There exists a vector z 2 Rj �Y j such that kzka = 1 and

hz;1ia > hz; pia + � for all p 2 Pi (a) [ Pj (a) : (16)

2. There exists a vector z 2 Rj �Y j such that kzka = 1 and



z; pi

�
a
� � > hz;1ia >



z; pj

�
a
+ � for all pi 2 Pi (a) and pj 2 Pj (a) : (17)

3. (14) holds.

Intuitively, (16) says that the vector of likelihood ratios under equilibrium play is suf-

�ciently di¤erent from the corresponding vector under any deviation by player i or j, and

(17) says that the vector of likelihood ratios under any deviation by i is su¢ ciently di¤erent

from the vector under any deviation by j. When � = 0, �-individual identi�ability coincides

25



with KM�s assumptions (A2) and (A3), which are weaker than FLM�s pairwise full rank

condition.16 In general, �-pairwise identi�ability says that KM�s assumptions hold with �

slack.

�-pairwise identi�ability implies �-individual identi�ability. Conversely, under prod-

uct structure monitoring, �-individual identi�ability implies (�=2)-pairwise identi�ability

(Lemma 4).

Theorem 2 follows easily from the following result, which is a generalization of the folk

theorems of FLM, KM, and SS.17

Theorem 3 Assume that dimF � = N and Assumption 1 holds. For any v 2 intF �, there

exists c > 0 such that, for any � > 0, any monitoring structure (Y; p) that satis�es �-pairwise

identi�ability, and any � > 1� c�2, we have v 2 E (G; Y; p; �).

To prove Theorem 2 from Theorem 3, we use two simple lemmas.

Lemma 3 For any action pro�le a and player i, the following are equivalent:

1. There exists a vector z 2 Rj �Y j satisfying kzka = 1 and (13).

2. minsi:si(ai)[ai]=0 �
2
i (si; a) > �2.

Proof. By the separating hyperplane theorem, the former condition is equivalent to

min~p2co(Pi(a)) k1� ~pka > �, or equivalently

min
~p2co(Pi(a))

vuutX
y

p (yja)
�
p (yja)� ~p (y)

p (yja)

�2
> �:

The result follows because

min
si:si(ai)[ai]=0

�2i (si; a) = min
~p2co(Pi(a))

X
y

p (yja)
�
p (yja)� ~p (y)

p (yja)

�2
:

16When � = 0, (16) coincides with KM�s assumption (A2), and (17) coincides with KM�s assumption (A3).
17To prove Theorem 2, it su¢ ces to prove Theorem 3 under Assumption 1.1. However, Assumption 1.1 is

unduly restrictive and the proof of Theorem 3 under Assumption 1.2 is almost identical, so we include it for
completeness.
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Remark 3 When �2i (si; a) > �2 for all si such that si (ai) [ai] = 0, the vector

z =
1� p̂p

minsi:si(ai)[ai]=0 �
2
i (si; a)

;

where p̂ 2 argmin~p2co(Pi(a)) k1� ~pka, satis�es kzka = 1 and (13). Note that this vector is

co-linear with the vector of likelihood ratio di¤erences ((p (yja)� p̂ (y)) =p (yja))y2 �Y .

Lemma 4 If a product monitoring structure satis�es �-individual identi�ability, then it sat-

is�es (�=2)-pairwise identi�ability.

Proof. Under product structure monitoring and �-individual identi�ability, for any action

pro�le a and any pair of distinct players i and j, there exist unit vectors zi and zj that

satisfy (13) and (15). De�ne z := (zi + zj) = kzi + zjka. For any pj 2 Pj (a), let a0j 2 Aj

satisfy pj =
�
p
�
yja0j; a�j

�
=p (yja)

�
y2 �Y . Note that, for any �y

�i,



z; p (a)� pj

�
a
=

1

kzi + zjka

 X
y

zi (y)
�
p (yja)� p

�
yja0j; a�j

��
+


zj; p (a)� pj

�
a

!

=
1

kzi + zjka

0@X
yi

zi
�
yi; �y�i

�X
y�i

�
p
�
yi; y�ija

�
� p

�
yi; y�ija0j; a�j

��
+


zj; p (a)� pj

�
a

1A
=

1

kzi + zjka



zj; p (a)� pj

�
a
:

where the second line follows by (15), and the third line follows because
P

y�i p (y
i; y�ija) =P

y�i p
�
yi; y�ija0j; a�j

�
under product structure monitoring. Thus, since kzi + zjka � 2, the

vector z satis�es (16) with �=2 in place of �. Similarly, the vector (�zi + zj) = k�zi + zjka
satis�es (17) with �=2 in place of �.

Proof of Theorem 2. Fix c such that the conclusion of Theorem 3 holds, �x any ĉ < c, and

let k = 4=ĉ. By Lemma 3, (9) and (10) imply 2
p
(1� �) =ĉ-individual identi�ability. Since

monitoring has a product structure, Lemma 4 now implies that �-pairwise identi�ability

holds for � =
p
(1� �) =ĉ, and � = 1� ĉ�2 > 1� c�2. Then v 2 E (G; Y; p; �) by Theorem 3.

To complete the proof, it remains to show that the constant c in the statement of Theorem

3 can be chosen uniformly for all payo¤ vectors v at distance at least " from the boundary

of F �. This last claim follows immediately from the proof of Theorem 3, where the constant

27



c is explicitly constructed as a function of the distance between v and the boundary of F �.

A.1 Proof of Theorem 3

Fix v 2 intF �. If Assumption 1.1 holds, let "u =1 and �x ai 2 argmaxa2A ui (a) arbitrarily.

If Assumption 1.2 holds, let "u > 0 be such that, for each player i, there exists an action

pro�le ai 2 argmaxa2A ui (a) satisfying ui (ai) � ui
�
ai; a

i
�i
�
+ "u for all ai 6= aii. (If both

assumptions hold, either de�nition works.)

Let "v > 0 denote the Euclidean distance between v and the boundary of F �, let " =

min f"u; "v; �u=4g 2 (0; �u), and let û = �u + ". Let B = fv0 : d (v; v0) � "=2g, the closed

ball of radius "=2 centered at v. We will �nd c > 0 such that if (Y; p) satis�es �-pairwise

identi�ability and � > 1� c�2, then B � E (G; Y; p; �), and hence v 2 E (G; Y; p; �).

The following de�nition and lemma are due to Abreu, Pearce, and Stacchetti (1990).

De�nition 1 A bounded set W � RN is self-generating if for all v̂ 2 W , there exist � 2

�� (A) and w : �Y ! RN satisfying

1. Promise keeping (PK): v̂ = (1� �)u (�) + �
P

y p (yj�)w (y).

2. Incentive compatibility (IC): supp (�i) � argmaxai (1� �)ui (ai; ��i)+�
P

y p (yjai; ��i)wi (y)

for all i.

3. Self-generation (SG): w (y) 2 W for all y.

When (PK), (IC), and (SG) hold, we say that the pair (�;w) decomposes v̂ on W .

Lemma 5 Any bounded, self-generating set W is contained in E (�).

Our key lemma (Lemma 6) will provide a su¢ cient condition for B to be self-generating,

and hence contained in E (�). It is based on the following de�nition, where k�k denotes the

Euclidean norm in RN , � = f� 2 RN : k�k = 1g, and for each � 2 �, k�+k =
qP

�n>0
(�n)

2

and k��k =
qP

�n<0
(�n)

2.
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De�nition 2 The maximum score in direction � 2 � with reward bound X > 0 is de�ned

as

k (�;X) := sup
�2��(A);x: �Y!RN

� �
 
u (�) +

X
y

p (yj�)x (y)
!

subject to

1. Incentive compatibility with " slack (IC"): For each player i, either (i) ui (�) �

ui (ai; ��i) for all ai and
P

y:x(y)=x p (yja) =
P

y:x(y)=x p (yja0i; a�i) for all x 2 R, a,

and a0i, or (ii) for all ai =2 supp (�i),

ui (�) +
X
y

p (yj�)xi (y) � ui (ai; ��i) +
X
y

p (yjai; ��i)xi (y) + "1 f�i � 0g :

2. Half-space decomposability with reward bound X (HSX):

� � x (y) � 0 and




x (y)�Py0 p (y
0j�)x (y0)





k�+k

� X�u for all y; and

P
y p (yj�)




x (y)�Py0 p (y
0j�)x (y0)




2
k�+k2

� X�u2:

The following is our key lemma:18

Lemma 6 If there exists X > 0 such that

k (�;X) � max
v02B

� � v0 + "

4
for all � 2 �; and (18)

max fX;Ng � �

1� �

"2

212�u2
; (19)

then B is self-generating.

Proof. See Appendix A.2.
18If " = 0 and X = 1 then k (�;X) equals k� (�), the maximum score in direction � as de�ned by

Fudenberg and Levine (1994). Fudenberg and Levine showed that B is self-generating for all su¢ ciently
high � if k� (�) � maxv02B � � v0 for all �. Lemma 6 extends their result to show that B is self-generating for
a given value of � if k (�;X) � maxv02B � � v0 + "=4 for all �, where the magnitude and the variance of the
normalized rewards x (y) are bounded by a constant multiple of (1� �)�1.
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To complete the proof, we �nd c > 0 such that if (Y; p) satis�es �-pairwise identi�ability

and � > 1� c�2, then there exists X > 0 that satis�es (18) and (19). To de�ne c and X, we

�rst introduce one more constant, denoted � 2 (0; 1), which we will use to partition the set

of directions � 2 � in a manner similar to FLM and KM.

For any � 2 �, let i (�) 2 argmaxn2I �n denote a player with the highest Pareto weight

under � (choosing arbitrarily in case of a tie); let m (�) = �i(�) = maxn �n denote the

corresponding Pareto weight; and let M (�) = maxn6=i j�nj denote the highest Pareto weight

in absolute value terms of any player other than i (�).

Lemma 7 Let � > 0 satisfy

N �umax

(
�;
1�

p
1�N�2p

1�N�2

)
� "

4
: (20)

1. For all � 2 �, if m (�) �M (�) =�, then � � u
�
ai(�)

�
� maxv02B � � v0 + "=4.

2. For all � 2 �, if m (�) � �, then there exists a static Nash equilibrium �NE such that

� � u
�
�NE

�
� maxv02B � � v0 + "=4.

Proof. See Appendix A.3

Now we �x the constants

�X =
4N2û2

�4�u2
and c =

�4"2

213N2û2
: (21)

Lemma 8 If � < 1 and � > 1� c�2, then

max

� �X

�2
; N

�
<

�

1� �

"2

212�u2
:

Proof. Note that c < 1=2 and hence � > 1=2, as " < �u, � < 1, and N � 1. Hence, we

have � > 1 � c�2 > 1 � c > 1 � �4"2

213N2û2
, and so �X

�2
<

�Xc
1�� =

"2

(1��)213�u2 < �"2

(1��)212�u2 and

N < "2

(1��)213�u2 <
�"2

(1��)212�u2 .

We henceforth assume that (Y; p) satis�es �-pairwise identi�ability and � > 1� c�2. By

Lemmas 6 and 8, to complete the proof it su¢ ces to show that k
�
�; �X=�2

�
� maxv02B � �

v0 + "=4 for all � 2 �.
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We �rst observe that for each pair of players i 6= j and each action pro�le a, we can de�ne

rewards
�
xj;�i (y; a)

�
y2 �Y and

�
xj;+i (y; a)

�
y2 �Y with mean 0 and variance at most û

2=�2 that

induce player i to take ai when her opponents take a�i; and that have the property that for

player j, taking aj maximizes the expectation of x
j;�
i (y; a) and minimizes the expectation

of xj;+i (y; a), for each y. This is a direct implication of �-pairwise identi�ability.

Lemma 9 For each pair of players i 6= j and action pro�le a 2 A, there exist
�
xj;�i (y; a)

�
y2 �Y ;�2f�1;+1g

such that, for each � 2 f�1;+1g, we have

X
y

p (yja)xj;�i (y; a) = 0; (22)X
y

p (yja0i; a�i)x
j;�
i (y; a) � �û for all a0i 6= ai; (23)

� �
X
y

p
�
yja0j; a�j

�
xj;�i (y; a) � 0 for all a0j 6= aj; and (24)

X
y

p (yja)xj;�i (y; a)
2 � û2

�2
: (25)

Moreover, if Assumption 1.1 holds then xj;�i (�; a) can be taken to depend only on yi.

Proof. Fix any i, j, and a. We �rst construct
�
xj;�1i (y; a)

�
y2 �Y . Let z 2 R

j �Y j satisfy kzka = 1

and (16). By the de�nitions of h�; �ia, Pi, and Pj, we have

X
y

(p (yja)� p (yja0i; a�i)) z (y) � � for all a0i 6= ai; andX
y

�
p (yja)� p

�
yja0j; a�j

��
z (y) � � for all a0j 6= aj:

De�ning

xj;�1i (y; a) =
û

�

 
z (y)�

X
~y

p (~yja) z (~y)
!

for all y;
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conditions (22)�(24) hold by construction, and condition (25) holds because

X
y

p (yja)
�
xj;�1i (y; a)

�2
=

û2

�2

X
y

p (yja)
 
z (y)�

X
~y

p (~yja) z (~y)
!2

� û2

�2

X
y

p (yja) z (y)2 = û2

�2
:

To construct
�
xj;+1i (y; a)

�
y2 �Y , let z 2 R

j �Y j satisfy kzka = 1 and (17), and proceed as in

the construction of
�
xj;�1i (y; a)

�
y2 �Y .

Under product structure monitoring, by (13) and (15), there exists xi such that
P

y p (yja)xi (y; a) =

0,
P

y p (yja0i; a�i)xi (y; a) � �û for all a0i 6= ai,
P

y p (yja)xi (y; a)
2 � û2=�2, and xi (yi; y�i; a) =

xi (yi; ~y�i; a) for all yi; y�i; ~y�i; a. De�ning xj;�1i (y; a) = xj;+1i (y; a) = xi (y; a) also satis�es

(24) for each �, since the distribution of yi (and hence xi) is independent of a�i.

Finally, we show that k
�
�; �X=�2

�
� maxv02B � � v0 + "=4 for all � 2 �. We partition �

into three cases: (1) � < m (�) < M (�) =�; (2) m (�) �M (�) =�; and (3) m (�) � �.

Case 1: � < m (�) < M (�) =�. Fix any a� 2 argmaxa � � u (a). Fix i = i (�), and �x

some j 6= i such that �i= j�jj < 1=�. For each y, de�ne x (y) = (xn (y))n2I by

xn (y) =

8>>><>>>:
x
j;sign(�j�i)
i

�
y; a�

�
�
P

n0 6=i
�n0
�i
x
i;sign(�i�n0 )
n0

�
y; a�

�
if n = i;

x
i;sign(�i�j)
j

�
y; a�

�
� �i

�j
x
j;sign(�j�i)
i

�
y; a�

�
if n = j;

x
i;sign(�i�n)
n

�
y; a�

�
if n 6= i; j;

where sign (�) = �1 for � � 0 and sign (�) = +1 for � > 0. Note that � � x (y) = 0 8y, and

hence � �
�
u
�
a�
�
+
P

y p
�
yja�

�
x (y)

�
= � � u

�
a�
�
� maxv02B � � v0 + "=4. Moreover, (IC")

holds because, for each player, (23) and (24) imply that the expected loss in continuation

payo¤ from deviating is at least û, which exceeds the maximum di¤erence between any two

stage game payo¤s by at least ". Finally, for (HSX=�2), by j�nj =�i � 1=� 8n, �i= j�jj � 1=�,

(22), and (25), we have






x (y)�X
~y

p
�
~yja�

�
x (~y)







2

� û2

�2

0@ 1�X
n6=i

�n=�i

!2
+ (1� �i=�j)

2 +N � 2

1A
| {z }

�(1+(N�1)=�)2+(1+1=�)2+N�2

� 4N2û2

�2�2
:

32



Hence, (HSX=�2) holds, because we have


x (y)�P~y p
�
~yja�

�
x (~y)





k�+k

� 2Nû

�2�2
=

p
�X

�2
�u �

�X

�2
�u; (26)

and, since k�+k2 � �2i � �2, we have

X
y

p
�
yja�

� 


x (y)�P~y p
�
~yja�

�
x (~y)




2
k�+k2

� 4N2û2

�2�4
=
�X

�2
�u2:

Case 2: m (�) � M (�) =�. Fix i = i (�) and let � = ai. For each y, de�ne x (y) =

(xn (y))n2I by

xn (y) =

8<: �
P

n0 6=i
�n0
�i
x
i;sign(�i�n0 )
n0 (y; ai) if n = i;

x
i;sign(�i�n)
n (y; ai) if n 6= i:

Note that � �x (y) = 0 8y, and hence � �
�
u (ai) +

P
y p (yjai)x (y)

�
= � �u (ai) � maxv02B � �

v0 + "=4, by Lemma 7.1. We verify (IC") and (HSX=�2).

For (IC"), for player i, note that
P

y p (yjai)xi (y) = 0 by (23), and
P

y p
�
yjai; ai�i

�
xi (y) �

0 8ai 6= aii by (24). If Assumption 1.1 holds, then xi (y) depends only on (y
n)n6=i, so (IC")(i)

holds. If Assumption 1.2 holds, then ui (ai) � ui
�
ai; a

i
�i
�
� " 8ai 6= aii, so (IC")(ii) holds.

Next, for any player n 6= i, (23) implies that the expected loss in continuation payo¤ from

deviating is at least û, which exceeds the maximum di¤erence between any two stage game

payo¤s by at least ".

For (HSX=�2), by j�nj =�i �M (�) =m (�) � � 8n, (22), and (25), we have






x (y)�X
~y

p
�
~yjai
�
x (~y)







2

� û2

�2

0@ X
n6=i

�n=�i

!2
+N � 1

1A
| {z }

� N2û2

�2�4
:

�(N�1)2�2+N�1

Hence, (HSX=�2) holds, because we have (26) with ai in place of a�, and, since k�+k �

1�N� � 1� "=2�u � 1=2 (arguing as in Case 1 of the proof of Lemma 7 and applying (20)),
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we have X
y

p (yjai)



x (y)�P~y p (~yjai)x (~y)




2
k�+k2

� 4N2û2

�2�4
=
�X

�2
�u2:

Case 3: m (�) � �. For �NE satisfying Lemma 7.2, taking � = �NE and x (y) = 0 8y

attains a score greater than maxv02B � � v0 + "=4 and trivially satis�es (IC") and (HSX=�2).

A.2 Proof of Lemma 6

To show that B is self-generating, it su¢ ces to show that the extreme points of any ball

B0 � B of radius "=4 are decomposable on B0.

Lemma 10 Suppose that for any ball B0 � B with radius "=4 and any direction � 2 �, the

point v̂ = argmaxv02B0 � � v0 is decomposable on B0. Then B is self-generating.

Proof. Fix any v0 2 B. Since the radius of B is "=2, there exists a ball B0 � B with

radius "=4 such that v0 lies on the boundary of B0. There then exists a direction �0 such

that v0 = argmaxv02B0 �0 � v0. By hypothesis, v0 is decomposable on B0. Since B0 � B, this

implies that v0 is decomposable on B. Hence, B is self-generating.

We thus �x a ball B0 � B with radius "=4 and a direction � 2 �, and let v̂ =

argmaxv02B0 � � v0. We construct (�;w) that decompose v̂ on B0.

Since k (�;X) � maxv02B � � v0 + "=4 by hypothesis, there exist � and x : �Y ! RN that

satisfy (IC"), (HSX), and

� �
 
u (�) +

X
y

p (yj�)x (y)
!
� max

v02B
� � v0 + "=5 � max

v02B0
� � v0 + "=5: (27)

Fix any such � and x. De�ne

Xy =




x (y)�Py0 p (y
0j�)x (y0)




2
k�+k2 �u2

:
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Note that, by (HSX) and (19), we have

1� �

�

p
Xy�u =

1� �

�




x (y)�Py0 p (y
0j�)x (y0)





k�+k

� 1� �

�
X�u � "

64
, and (28)

1� �

�

X
y

p (yj�)Xy�u
2 � 1� �

�
X�u2 � "2

640
: (29)

To construct w, let

�i (y) = �
64�iXy�u

2

"
1 f�i � 0g for all i; y; (30)

and let � (y) = (�i (y))i2I . Note that �i (y) � 0 for all i; y. Finally, for each y, let

w (y) = v̂+
1� �

�

 
v̂ � u (�) + x (y)�

X
y0

p (y0j�)x (y0)
!
+

�
1� �

�

�2 
� (y)�

X
y0

p (y0j�) � (y0)
!
:

We show that (�;w) decomposes v̂ on B0 by verifying in turn (PK), (IC), and (SG) (with

W = B0).

(PK): This holds by construction: we have
P

y p (yj�)w (y) = (1=�) (v̂ � (1� �)u (�)),

and hence (1� �)u (�) + �
P

y p (yj�)w (y) = v̂.

(IC): Setting aside the constant terms in w (y), we see that an action ai maximizes

(1� �)ui (ai; ��i)+�
P

y p (yjai; ��i)wi (y) i¤ it maximizes ui (ai; ��i)+
P

y p (yjai; ��i)
�
xi (y) +

1��
�
�i (y)

�
.

If
P

y:x(y)=x p (yj~ai; a�i) is independent of ~ai, then the distribution of �i (y) is independent of

~ai, and hence (IC")(i) implies (IC). Otherwise, (IC")(ii) holds, and hence (IC) holds because,

for all ai =2 supp�i we have

ui (�) +
X
y

p (yj�)
�
xi (y) +

1� �

�
�i (y)

�
� ui (ai; ��i)�

X
y

p (yjai; ��i)
�
xi (y) +

1� �

�
�i (y)

�
� "1 f�i � 0g+

X
y

p (yj�) 1� �

�
�i (y) by (IC") and �i (y) � 0 8y

� 1 f�i � 0g
 
"� 64�i

"

1� �

�

X
y

p (yj�)Xy�u
2

!
by (30)

� 0 by (29) and �i � 1:
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(SG): We start with a standard geometric observation.

Lemma 11 For each w 2 RN , we have w 2 B0 if � � (v̂ � w) � 0 and

kv̂ � wk �
r
"

4
� � (v̂ � w): (31)

Proof. (31) implies that � � (v̂ � w) �
p

"
4
� � (v̂ � w), and hence 0 � � � (v̂ � w) � "

4
. Let

x := v̂ � w � � � (v̂ � w)�. Since kxk2 = kv̂ � wk2 � (� � (v̂ � w))2 � kv̂ � wk2, (31) implies

that kxk2 � "
4
� � (v̂ � w). Denote the center of B0 by o = v̂ � "

4
�. We have

kw � ok = kw � o+ x� xk = kv̂ � o� (� � (v̂ � w))�� xk = k(� � (w � o))�� xk

=

q
k� � (w � o)�k2 + kxk2 �

r
"

4
� � (w � o) +

"

4
� � (v̂ � w) =

"

4
;

where the third equality is by v̂�o�(� � v̂)� = "
4
��
�
� �
�
o+ "

4
�
��
� = � (� � o)�, the fourth

equality is by � � x = 0, the inequality is by � � (w � o) = � � (v̂ � o)� � (v̂ � w) 2
�
0; "

4

�
and

kxk2 � "
4
� � (v̂ � w), and the �nal equality is by � � (v̂ � o) = "

4
. Hence, w 2 B0.

We thus show that, for each y, w (y) satis�es � � (v̂ � w (y)) � 0 and (31). Note that

v̂ � w (y) =
1� �

�
�(y)�

�
1� �

�

�2
� (y) +

�
1� �

�

�2X
y0

p (y0j�) � (y0) ;

where �(y) = u (�)� v̂+
P

y0 p (y
0j�)x (y0)�x (y). By (HSX) and (27), we have � ��(y) �

1��
�

"
5
and

k�(y)k � ku (�)� v̂k+





X
y0

p (y0j�)x (y0)� x (y)






 � pN �u+ k�+kpXy�u:

By (HSX) and the de�nition of � (cf. (30)),

�� � � (y) � k�+k2
64Xy

"
�u2; k� (y)k � k�+k

64Xy

"
�u2; and




X

y0

p (y0j�) � (y0)





 =







 
�i1 f�i � 0g

64
P

y p (yj�)Xy�u
2

"

!
i






 � k�+k 64" X
y

p (yj�)Xy�u
2:
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Therefore,

� � (v̂ � w (y)) =
1� �

�
� ��(y)�

�
1� �

�

�2
� � � (y) +

�
1� �

�

�2
� �
 X

y0

p (y0j�) � (y0)
!

� 1� �

�

"

5
+

�
1� �

�

�2
k�+k2

64Xy�u
2

"
�
�
1� �

�

�2
k�+k

64

"

X
y

p (yj�)Xy�u
2

� 1� �

�

"

10
+

�
1� �

�

�2
k�+k2

64Xy�u
2

"
� 0; (32)

where the last line follows since k�+k � 1 and (29) imply that 1��� k�+k
64
"

P
y p (yj�)Xy�u

2 �
"
10
. Thus, we have

r
"

4
� � (v̂ � w (y)) � 41� �

�
max

(r
1

640

�

1� �
"; k�+k

p
Xy�u

)
:

Similarly, we have

kv̂ � w (y)k � 1� �

�
k�(y)k+

�
1� �

�

�2
k� (y)k+

�
1� �

�

�2 


Py0 p (y
0j�) � (y0)





� 1� �

�

�p
N �u+ k�+k

p
Xy�u

�
+

�
1� �

�

�2
k�+k

64Xy

"
�u2 +

�
1� �

�

�2
k�+k

64

"

X
y

p (yj�)Xy�u
2

� 2
1� �

�

�p
N + k�+k

p
Xy

�
�u � 41� �

�
max

np
N �u; k�+k

p
Xy�u

o
; (33)

where the third inequality follows since k�+k � 1 and (29) imply that 1���
64
"

P
y p (yj�)Xy�u

2 �
1
10
" � �u, and (28) implies that 1��

�

64Xy
"
�u2 �

p
Xy�u.

Comparing (32) and (33), we see that w (y) satis�es (31) whenever
p
N �u �

q
1
640

�
1��",

which holds by (19).

A.3 Proof of Lemma 7

Case 1: m (�) � M (�) =�. Let i = i (�). Since m (�) � 1 and j�nj � M (�) � m (�)�

8n 6= i, we have j�nj � � 8n 6= i, and hence j�ij � 1 � N� (since k�k = 1). Since �i =

m (�) �M (�) =� > 0, we have �i � 1�N�. Since 2 jui (a)j � �u 8i; a, we have, for all v0 2 F �

and � 2 �, j(�� ei) � v0j �
P

n j�n � ei;nj �u=2 � ((N � 1)�+ j(1�N�)� 1j) �u=2 � N��u.
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Therefore, for ai 2 argmaxa2A ei � u (a), we have � � u (ai) � ei � u (ai)�N��u � maxv02F � ei �

v0 � N��u � maxv02F � � � v0 � 2N��u � maxv02B � � v0 + "=2 � 2N��u � maxv02B � � v0 + "=4,

where the last inequality is by (20).

Case 2: m (�) � �. Let �0n = min f�n; 0g = k��k and let �0 = (�0n)n2I 2 �. We claim

that
P

n j�
0
n � �nj � "=2�u. To see this, note that if �n � 0 then j�nj � �, and hence

j�0n � �nj = j0� �nj = j�nj � �. If instead �n � 0, then

j�0n � �nj =
�����n � k��k�nk��k

���� � 1� k��k
k��k

� 1�
p
1�N�2p

1�N�2
;

where the �rst inequality follows because j�nj � 1, and the second inequality follows because,

since
P

n0 (�n0)
2 = 1 and �n � m (�) � � 8n, we have k��k =

P
n0:�n0<0

(�n0)
2 � 1 � N�2.

In total, we have

X
n

j�0n � �nj � N max

(
�;
1�

p
1�N�2p

1�N�2

)
� "

2�u
by (20).

Since �0 � 0, by de�nition of F � there exists a static Nash equilibrium �NE such that

�0�u
�
�NE

�
� maxv02F � �0�v0. Since

P
n j�

0
n � �nj � "=2�u, 2 jui (a)j � �u 8i; a, and the distance

from B to the boundary of F � is greater than "=2, we have � �u
�
�NE

�
� �0 �u

�
�NE

�
�"=4 �

maxv02F � �
0 � v0 � "=4 � maxv02B �0 � v0 + "=4, as desired.

B Proof of Proposition 1

We start by deriving a su¢ cient condition to self-generate the convex hull of the union of a

ball B centered on the 45� line and the mutual defection payo¤ (0; 0).19 For any compact

set of payo¤s V � F �, we de�ne the minimum ine¢ ciency of V as

� (V ) = min
�2�+

max
v2F �

min
v02V

� � (v � v0) ; where

�+ =

�
� 2 � : (0; 0) 62 argmax

v2F �
min
v02V

� � (v � v0)

�
:

19A heuristic motivation for this proof approach is that the set of PPE payo¤s in the continuous-time
limit game has a shape that resembles the convex hull of the union of a ball centered on the 45� line and
the mutual defection payo¤. Compare Figure 1 below and Figure 2 of Sannikov (2007).
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That is, � (V ) is the minimum distance between the boundaries of V and F � in any direction

�, excluding directions where the minimizing boundary point of V is the mutual defection

payo¤ (0; 0). Also, for any ball B � F � with center o = (vo; vo) lying on the 45-degree line

and curvature �, let  denote the slope of a tangent line to B passing through (0; 0), which

is given by

 =
v2o�

2 �
p
2v2o�

2 � 1
v2o�

2 � 1 : (34)

Note that B � F � implies v2o�
2 � 1, with strict inequality if B \ @F � = ;. See Figure 1.

Figure 1: Self-generating the set B0. The set B is the ball centered at o passing through v1 and
v2. The set B0 is the convex hull of the union of B and the point (0; 0). To self-generate @B0,
both players cooperate to generate points on the blue portion of the bondary (Region 0), one player
cooperates to generate points on the green portions (Regions 1 and 2), and the players randomize
between v1 or v2 and mutual defection to generate points on the red portion (Region 3).

Lemma 12 Let B � F � be a ball with center o = (vo; vo) and curvature �, and let B0 =

co ((0; 0) [B). If
1

r

(2� � 1)2

� (1� �)
>

�

2� (B0)min
�
 2; 4

25

	 ; (35)

then B0 is self-generating for all su¢ ciently small �.
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Proof. Let `1 and `2 denote the tangent lines to B passing through (0; 0), and let v1 and v2

denote the corresponding tangency points on @B, with v11 < v12. (See Figure 1.) Note that

 is the slope of `2.20

We divide the boundary of B0 into four regions. Region 0 is the set of v 2 @B0 where the

outward unit normal vector � (v) = (�1; �2) at v satis�es �1 > 0, �2 > 0, and �1=�2 2 [1=2; 2].

For i 2 f1; 2g, Region i is the set of v 2 @B0 where (�1; �2) satis�es �1= � �i=�j � 1=2

and �j > 0. (Throughout, i and j denote distinct players.) Region 3 is the rest of @B0.

For v 2 @B0, let a (v) = (C;C) for v in Region 0, (ai (v) ; aj (v)) = (C;D) for v in Region

i, and a (v) = (D;D) for v in Region 3. Note that a (v) 2 argmaxa2Aminv2B0 � � (u (a)� v),

and a (v) is the unique maximizer unless v is the boundary of two regions. By the de�nition

of � (B0), for each v in Region 0, 1, or 2, we have

� (v) � (u (a (v))� v) � �
�
B0
�
: (36)

Since public randomization is available, it su¢ ces to show that for su¢ cient small �,

each v 2 @B0 is decomposable on B0. We prove this for v 2 @B0 in each of the four regions

in turn. We require some notation: �rst, let

�i
�
yi
�
=

1
2
�
�
� � 1

2

�p
�=


(2� � 1)
p
�=


1
�
yi = 1

	
�

1
2
+
�
� � 1

2

�p
�=


(2� � 1)
p
�=


1
�
yi = �1

	
:

We will use �i (y
i) as a �reward function�to induce player i to take C: in particular, we will

use the properties

E
�
�i
�
yi
�
jC; aj

�
� E

�
�i
�
yi
�
jD; aj

�
= 1 for all aj, and E

�
�i
�
yi
�
jC;C

�
= 0:

Second, we �x "̂ > 0 such that (the existence follows from (35))

r
� (1� �)

(2� � 1)2
(1 + "̂)2 <

2� (B0)min
�
 2; 4

25

	
�

: (37)

20Equation (34) for  is derived by solving the equations


v2 � o

 = 1=� and

�
v2 � o

�
� v2 = 0 for

v2 =
�
v21 ; v

2
2

�
, and taking  = v22=v

2
1 .
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Region 0: Fix v 2 @B0 in Region 0. We implement a = (C;C). Let � be the outward

unit normal vector of @B0 at v. De�ne x (y) such that

xi (y) = (1 + "̂) �i
�
yi
�
� �j
�i
(1 + "̂) �j

�
yj
�
for each i:

Since v is in Region 0, we have j�1=�2j 2 [1=2; 2], which together with k�k = 1 implies that
1
�21
+ 1

�22
� 25

4
. Thus, we have

ui (a) + E [xi (y) ja] = 0; (38)

ui (a) + E [xi (y) ja]� ui (a
0
i)� E [xi (y) ja0i; aj] � "̂ for a0i 6= ai; (39)

lim
�!0

E
�
kx (y)k2 ja

�
� E

�
kx (y)k2 ja0i; aj

�
= � (1 + "̂)2 ; (40)

lim
�!0

1� �

�
E
�
kx (y)k2 ja

�
=

�
1

�21
+
1

�22

�
r
� (1� �)

(2� � 1)2
(1 + "̂)2 � 25

4
r
� (1� �)

(2� � 1)2
(1 + "̂)2 ;(41)

max
y

r
1� �

�
kx (y)k �

r
1� �

�

s
1

�21
+
1

�22
(1 + "̂)

1�
p
�=


2
+ �
p
�=


(2� � 1)
p
�=


= O (1) : (42)

The above limits are all uniform in �, since �1; �2 � 1=4 in Region 0.

De�ne continuation payo¤s

w (y) = v +
1� �

�
(v � u (a) + x (y))� �

2

�
1� �

�

�2 �
kx (y)k2 � E

�
kx (y)k2 ja

��
�:

With these continuation payo¤s, (PK) holds because, since E [x (y) ja] = 0, we have

(1� �)u (a) + �E [w (y) ja] = v +
1� �

�
E [x (y) ja] = v:

(IC) holds because

(1� �)

�
u (a) +

�

1� �
E [w (y) ja]� u (a0i; aj) +

�

1� �
E [w (y) ja0i; aj]

�
= (1� �)

�
"̂+

�

2

1� �

�

�
E
�
kx (y)k2 ja

�
� E

�
kx (y)k2 ja0i; aj

���
;
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and, by (40),

lim
�!0

1� �

�

�
E
�
kx (y)k2 ja

�
� E

�
kx (y)k2 ja0i; aj

��
= 0:

Moreover, this convergence is uniform over v in Region 0, as �i is bounded away from 0 in

Region 0. Thus, for su¢ ciently small �, (IC) holds. Finally, by the Pythagorean theorem,

(SG) holds if

�
(�2;��1)> � (v � w (y))

�2
�
�
1

�

�2
�
�
1

�
� � � (v � w (y))

�2
for all y:

Substituting w (y) and simplifying terms, this inequality is equivalent to

1� �

�

�
(�2;��1)> � (u (a)� v)

�2
� 2

�
(�2;��1)> � (u (a)� v)

� 1� �

�
kx (y)k

� 2

�
� � (u (a)� v)�

�
1� �

�

�
E
�
kx (y)k2 jCC

�
�
 r

1� �

�
� � (u (a)� v)� �

2

�
1� �

�

� 3
2

E
�
kx (y)k2 jCC

�
+
�

2

�
1� �

�

� 3
2

kx (y)k2
!2

:

By (41) and (42), all terms in the �rst and last lines converge to 0 uniformly in �. Hence,

by (41), for small � this inequality is implied by

2� � (u (a)� v)� �r
25

4

� (1� �)

(2� � 1)2
(1 + "̂)2 > 0:

Since (36) implies � � (u (a)� v) � � (B0), this inequality follows from (37).

Region i 2 f1; 2g: Fix v 2 @B0 in Region i. We implement (ai; aj) = (C;D). With �

de�ned as above, we have j�jj �  . De�ne

xi (y) = (1 + "̂) �i
�
yi
�
, xj (y) = � (1 + "̂)

�i
�j
�i
�
yi
�
, and

w (y) = v +
1� �

�
(v � u (a) + x (y))� �

2

�
1� �

�

�2 �
kx (y)k2 � E

�
kx (y)k2 ja

��
�:

Note that only player i is incentivized by continuation payo¤s. The rest of the proof is the

same as in Region 0, except for the following: For (IC) for player j, player j has a strict

incentive to take D because the distribution of any function of x (y) is independent of her
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action. For (SG), we have

lim
�!0

1� �

�
E
�
kx (y)k2 ja

�
=
1

�2j
r
� (1� �)

(2� � 1)2
(1 + "̂)2 � 1

 2
r
� (1� �)

(2� � 1)2
(1 + "̂)2 ;

so the argument is as in the Region 0 case with  2 in place of 4=25.

Region 3: Each v 2 @B0 in Region 3 is a convex combination of (0; 0) and either v1

or v2. The point (0; 0) is a static Nash payo¤ and hence is trivially decomposable on B0,

and we have seen that each vi is decomposable on B0, since vi is in Region i. Hence, each

v 2 @B0 in Region 3 is decomposable on B0 given public randomization.

Proof of Proposition 1: Take B with center (1� 3"=2; 1� 3"=2) and curvature
p
2=".

Note that (1� "; 1� ") 2 @B. Elementary calculations (given below) yield  � 2=5 and

� (B0) =
�
9
10

p
5� 1p

2

�
". Hence, if (12) holds then so does (35), so by Lemma 12 B0 is

self-generating, and thus (1� "; 1� ") 2 E.

The required calculations are as follows: By de�nition of  , we have

 =
(2� 3")2 � 4"

p
1� 3"+ 2"2

4� 12"+ 7"2 :

This expression equals 2=5 when " = 54
23
� 6
23

p
58, and it is decreasing in " for " 2

�
0; 54

23
� 6

23

p
58
�
.

Hence,  � 2=5 i¤ " � 54
23
� 6

23

p
58.

Next, note that for each � 2 �+, there exists v 2 @B0 in Region 0, 1, or 2 such that

� is the outward unit normal vector at v. Note that k(�1; 2)� v1k = k(2;�1)� v2k � 1,

which is greater than
�
9
10

p
5� 1p

2

�
" when " � 54

23
� 6

23

p
58. Thus, to show that � (B0) =�

9
10

p
5� 1p

2

�
", it su¢ ces to show that the distance d from o to the line ` with equation

y = (3� x) =2 (i.e., the line through (�1; 2) and (1; 1)) is 9
10

p
5" as the radius of B0 is "=

p
2).

To see this, note that the vector (1; 2) =
p
5 is normal to `, so the point z 2 ` that minimizes

the distance to o is z = o+ d (1; 2) =
p
5. At the same time, since z 2 `, we have

1� 3
2
"+

2dp
5
=
1

2

�
3�

�
1� 3

2
"+

dp
5

��
:

Solving for d gives d = 9
10

p
5", as desired.
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