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1. Introduction
In many settings, individuals are uncertain about others’ behavior and, prior to taking action,
acquire data or rely on past experiences to address this strategic uncertainty. For instance, sellers
survey consumers’ willingness-to-pay to better price a product, infrequent bidders in online auc-
tions look up data from other auctions, voters assess parties’ past performance, and customers
recall past experiences at a restaurant. In all such situations, choices entail different payoffs
depending on others’ behavior, which is the object of uncertainty agents try to address: the like-
lihood consumers are to purchase a good a given price, the distribution of bids, the tendency of
representatives of a political party to pass specific legislation, the frequency with which the chef
overcooks a particular dish.

Since acquiring information is time-consuming, costly, uncertainty is often not fully resolved
whenmaking a choice, and the time and effort committed to resolving it is itself endogenous to the
environment. Such observation resonates with experimental evidence in strategic settings that is
difficult to square with existing equilibrium concepts, namely that decision times are longer with
stronger incentives and choices suggest greater strategic sophistication (Alós-Ferrer and Bruck-
enmaier, 2021; Esteban-Casanelles and Gonçalves, 2020). In contrast, otherwise puzzling behavior
and its relation to decision time have been rationalized in individual decision-making settings by
the lens of sequential sampling models, in which an agent sequentially acquires evidence prior
to making a choice.

This paper introduces an equilibrium framework based on sequential sampling in which players
face strategic uncertainty and acquire information to resolve it. Players have a prior belief about
others’ distribution of actions and before taking an action can sample from it at a cost, which
can be interpreted as obtaining data or as an internal deliberation process based on past expe-
riences. Optimal sequential sampling renders players’ action distributions dependent on their
opponents’. A sequential sampling equilibrium then corresponds to a fixed-point, a consistent
distribution of actions of all players, being equivalently characterized as a steady-state distribu-
tion of actions when players sample from past evidence, sidestepping the apparent circularity
of the solution concept. This delivers a disciplined model featuring an endogenous distribution
of choices, beliefs, and decision times, that I show not only rationalizes well-known deviations
from Nash equilibrium, but also makes novel predictions supported by existing data. Moreover, it
provides a rationale for Nash equilibrium, which it approximates as costs to information vanish.
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The solution concept builds on an individual decision-making foundation of sequential sampling
in a rich environment of choice under uncertainty. Players effectively act as decision makers, tak-
ing as given others’ uncertain behavior, characterized by an unknown distribution. Since play-
ers can sample at a cost from their opponents’ choice distribution prior to choosing an action,
they face an optimal stopping problem, trading-off informational gains and costs. Upon stopping,
players choose an action to maximize their expected payoff, given their posterior beliefs. Optimal
sequential sampling then generates stochastic choice through the randomness inherent to sam-
pling, without relying on indifference or choice mistakes: actions chosen upon stopping depend
on posterior beliefs, informed by the realized observations whose distribution depends on others’
behavior. An equilibrium is then characterized by a fixed-point condition on the distribution over
players’ actions.

A sequential sampling equilibrium always exists and has a steady-state foundation. While players
always believe they will stop sampling in finite time, it need not be the case when considering the
true distribution of their samples (as given by others’ behavior). The proof for existence follows
the novel observation that each player’s optimal stopping time is, more than finite, uniformly
bounded with respect to opponents’ distribution of actions. This allows us to obtain that players’
distribution of choices are continuous with respect to others’, and employ standard arguments.
In order to ground the solution concept as a steady-state, I consider a sequence of populations
of short-lived players who sequentially sample from data on past play. If the distribution of data
on actions converges as the data accumulates, the limiting distribution is a sequential sampling
equilibrium, and, conversely, any sequential sampling equilibrium can be taken to be one such
limiting distribution of data. Moreover, convergence always occurs in 2×2 games with a unique
Nash equilibrium.

Sequential sampling equilibrium provides a rationale for the relationship between higher incen-
tives, longer decision times, and more sophisticated play. While sequential sampling equilibrium
does allow for players to choose actions that are not rationalizable with positive probability, if
one scales up players’ payoffs by a sufficiently large factor, only k-rationalizable actions are cho-
sen with positive probability at any equilibrium, where the scaling factor needs to be larger for
higher orders of rationalizability. This relation between empirical learning and strategic sophis-
tication follows exactly from the fact that higher payoffs entail longer decision times, thereby
leading players to sample enough so as to learn to choose only k-rationalizable actions.

As an application, I explore the implications of sequential sampling in canonical binary action
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games and show how payoffs affect the joint distribution of choices and decision time. I establish
comparative statics results for sequential sampling. First, that increasing the payoffs to a given
action increases the probability that it is chosen more often and faster, and the other less often
and slower, a result that generalizes beyond two-action settings. Second, that an increase in the
underlying probability that an action is optimal entails an equivalent conclusion. Then, I use
these to prove that sequential sampling equilibrium predicts that the frequency with which an
action is chosen increases in its payoffs, and that the opponent chooses the best response to that
action more often and faster. If the former is a pervasive pattern in experimental settings (e.g.
Goeree andHolt, 2001), the latter provides a novel prediction on how time relates to choice, which
I find is borne out by existing experimental evidence.

Sequential sampling equilibrium also has implications for players’ equilibrium beliefs. Experi-
mental evidence has suggested that beliefs about others’ behavior are often biased (Costa-Gomes
and Weizsäcker, 2008), appear stochastic (Friedman and Ward, 2022), and depend on own in-
centives even when others’ behavior is held fixed (Esteban-Casanelles and Gonçalves, 2020). All
these patterns are implied by sequential sampling, where beliefs upon stopping will typically
be biased due to the dependence on the prior, stochastic, as they depend on the realized obser-
vations, and payoff-dependent, given these affect when players stop sampling. To go beyond
these general properties, I look at the case in which players’ priors to be Beta distributed and
I uncover a systematic relation between beliefs and decision time in binary action games: time
reveals preference intensity. Specifically, the longer the decision time, the closer is the player to
being indifferent between taking either action. This result, which has been recently shown in dif-
ferent environments (Fudenberg et al., 2018; Alós-Ferrer et al., 2021), carries over to equilibrium
analysis and is present in existing experimental data.

Sequential sampling also provides a new rationale for Nash equilibrium, based on costly informa-
tion acquisition. While as sampling costs decrease, players acquire more information, conditional
on stopping, their observations are neither independent nor identically distributed. I overcome
this complication and establish that, as information costs vanish, players do nevertheless learn
their opponents’ action distribution, from which we obtain convergence of sequential sampling
equilibria to Nash equilibria. But not all Nash equilibria are reached in this manner: Nash equi-
libria involving weakly dominated actions can never be reached, and any pure strategy Nash
equilibrium not involving weakly dominated actions can.

Finally, I discuss a number of possible extensions to the model. It is possible to extend sequential
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sampling equilibrium to games of incomplete information, as well as to more general informa-
tion structures. It is straightforward to adjust the solution concept to Bayesian games by having
samples include information on the realized actions as well as the state. An analogous result to
that of convergence to Nash equilibrium ensues: limit points of Bayesian sequential sampling
equilibria as sampling costs vanish are Bayesian Nash equilibria. Furthermore, I provide an ex-
tension to more general information structures. Among these, I consider the case where players
have limited observability, capturing situations in which players cannot learn about the behavior
of all other players or those in which data does not allow them to differentiate between some
action profiles. In this case, I prove that limit points of a sequence of equilibria with vanishing
costs are analogy-based expectations equilibria (Jehiel, 2005; Jehiel and Koessler, 2008).

To summarize, sequential sampling equilibrium constitutes a flexible equilibrium framework for
analyzing strategic interaction. It provides a rationale for standard solution concepts, accounts
for several behavioral patterns that have been documented in experiments, and makes novel
predictions not just regarding choices that individuals make in strategic settings, but for timed-
stochastic choice data, the joint distribution of choices, beliefs and decision times.

1.1. Related Literature

This paper is related to three broad literatures: information acquisition and learning in games,
and sequential sampling.

Information Acquisition in Games. There is a growing literature on equilibrium solution
concepts featuring information acquisition. Yang (2015) studies a coordination game in which
players can acquire unrestricted but costly information on an exogenous payoff-relevant param-
eter. As in much of the rational inattention literature (Sims, 2003; Matějka and McKay, 2015), the
cost of information is given by the decrease of the priors’ entropy. Denti (2022) allows for players
to obtain correlated information and for more general information cost functions (as in Caplin
and Dean, 2015). Hébert and La'O (2020) study this solution concept in mean-field games.

This paper provides the first solution concept in which the cost of information acquisition is ex-
perimental (Denti et al., 2022), with information acquisition corresponding to costly sequentially
sampling from an information structure. While the sequential information acquisition can be
studied from a static, ex-ante perspective (Morris and Strack, 2019; Hébert and Woodford, 2022),
there are two conceptual features distinguishing sequential sampling equilibrium beyond results
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specific to stopping time. First, in the aforementioned papers players hold beliefs and can learn
about their opponents’ action realizations. Second, players’ equilibrium beliefs are correct, and
so, whenever there is no uncertainty about exogenous parameters, equilibria in these papers cor-
respond to Nash equilibria of the underlying normal-form game. Instead, at sequential sampling
equilibrium players are uncertain — neither correct or incorrect — about the prevailing distribu-

tion of actions of their opponents.

Steady State Learning inGames. Osborne and Rubinstein (2003) suppose each player observes
a fixed number of samples from their opponents’ equilibrium distribution of actions, and themap-
ping from samples to actions is exogenously specified. Salant and Cherry (2020) study a special
case of this solution concept in mean-field games with binary actions, while keeping the sampling
procedure exogeneous: players employ unbiased estimators and best-respond to the obtained es-
timate.1 Osborne and Rubinstein (1998) examine a similar notion of equilibrium, where players
receive a fixed number of samples from the payoffs of each of their actions and choose the action
with the highest average payoff in the sample. More broadly, these correspond to a form of self-
confirming equilibrium (Fudenberg and Levine, 1993; Battigalli et al., 1992) in which the feedback
function is fixed. In contrast to these, sequential sampling equilibrium endogenizes the informa-
tion acquisition by the players, allowing us to relate players’ stopping time and choices. The
endogeneity of the sampling process results, for instance, in players sampling more when pay-
offs are scaled up, thereby affecting equilibrium choices and beliefs, a phenomenon that cannot
be captured with exogenous sampling. This has relevant implications on equilibrium behavior
comparative statics, namely, that with higher payoffs we have longer stopping times, and a higher
level of sophistication (in the sense of k-rationalizability) of the actions chosen in equilibrium.

It is natural to compare sequential sampling equilibria with dynamic learning processes in games.
Following the original interpretation of equilibrium beliefs as given by a scenario where players
“accumulate empirical evidence” (Nash, 1950), a large literature has studied convergence of learn-
ing processes to Nash equilibria.2 Most relevant to our paper are models in which short-lived
players best-responding to the observed frequency of past play, broadly known as fictitious play
(Brown, 1951).3 While not always delivering a convergent process (Shapley, 1964; Jordan, 1993),
1Related are solution concepts with noisy but unbiased beliefs, e.g. Friedman and Mezzetti (2005); Friedman (2022).
2See Fudenberg and Levine (1998) for a comprehensive overview, and Fudenberg and Levine (2009) and Fudenberg
(2020) recent surveys.

3The other major strand in this literature considers long-lived, forward-looking players who learn from experimen-
tation alone, e.g. Kalai and Lehrer (1993).
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its steady states correspond to Nash equilibria (Fudenberg and Kreps, 1993). The steady-state
characterization of sequential sampling equilibria provides a clear analogue to the characteriza-
tion of Nash equilibria as steady-states of fictitious play. The main difference between fictitious
play and the dynamic process I analyze is that, whereas data is freely observable in fictitious
play, sequential sampling players face information acquisition costs. As these costs vanish, with
limiting sequential sampling equilibria correspond to Nash equilibria.

Less related is the work on learning with misspecification. Esponda and Pouzo’s (2016) Berk-
Nash equilibrium allows for general forms of misspecification of the players’ prior beliefs and is
not restricted to either normal-form or complete information games. There, players best-respond
to their equilibrium beliefs, those in the support of players’ priors that minimize the Kullback–
Leibler divergence to equilibrium gameplay, which can be taken as arising as the limit case of
Bayesian learning with potentially misspecified priors (see Fudenberg et al., 2021). Costly in-
formation acquisition in a sequential sampling equilibrium differs in two manners. First, in a
normal-form game, absent misspecification about the opponents’ action distribution, Berk-Nash
corresponds to Nash equilibrium, whereas the focus on costly information acquisition allows us to
obtain different predictions despite retaining full support priors. Second, again in contrast with
sequential sampling equilibrium, equilibrium beliefs in Berk-Nash equilibrium in general pre-
clude any strategic uncertainty as equilibrium beliefs are degenerate except in knife-edge cases.

Sequential Sampling. Optimal stopping has been studied at least since the seminal papers by
Wald (1947) and Arrow et al. (1949). Sequential sampling has been used as a modeling device in
cognitive psychology and neuroscience to ground a relation between choice and decision time,4

and, in particular, to model choice based on memory retrieval (Gold and Shadlen, 2007; Shadlen
and Shohamy, 2016; Bakkour et al., 2018). Alaoui and Penta (2022) provide an axiomatic founda-
tion of sequential sampling as a representation of iterative of reasoning. Fudenberg et al. (2018)
consider a binary-action problem in which a decision-maker sequentially acquire information
about the difference in payoffs in an optimal manner. They show that at longer stopping times,
the agent is closer to being indifferent between the two actions. Alós-Ferrer et al. (2021) examine
the general relation between time-revealed indifference and stochastic choice primitives.

Sequential sampling equilibrium adopts this framework to model belief formation in strategic
settings, providing a relation between stopping time, beliefs, and choices. I further contribute to
4The classic reference is Ratcliff (1978). See Ratcliff et al. (2016) and Forstmann et al. (2016) for a review of the
literature and Krajbich et al. (2012); Clithero (2018); Chiong et al. (2020) for economic applications.
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this literature with novel results in problems with multiple available actions: comparative statics
results on how choices and stopping time relate to payoffs in general decision-problems with
arbitrary payoff correlation across actions. In the binary-action case that has been the focus of
much of the literature, I relate the true data generating process to the distribution of choices,
stopping times, and posterior beliefs, and obtain a time-revealed indifference result in a tractable
discrete-time environment.

2. Sequential Sampling Equilibrium

2.1. Setup

Preliminaries. Let Γ = 〈I, A,u〉 denote a normal-form game, where I denotes a finite set of
players or roles, with generic elements i, j andwhere−i denotes I\i; A :=×i∈I A i, where A i is i’s
finite set of feasible actions; and u := (ui)i∈I , with ui : A i×∆(A−i)→R denoting player i’s payoff
function, where ui is continuous and bounded,∆(A−i) being endowedwith the Euclidean norm. I
extend ui to the space of probability distributions over actions with ui(σi,σ−i)= Eσi [ui(ai,σ−i)],
where Eσi [·] corresponds to the expectation taken with respect to σi. While I focus throughout
on normal-form games, I highlight that the framework extends naturally to Bayesian games, as
discussed in Section 5.

Beliefs. In contrast to other solution concepts, each player i is uncertain about others’ true dis-
tribution of actions, σ−i, and holds beliefs given by a Borel probability measure µi ∈∆(∆(A−i)),
where ∆(∆(A−i)) is endowed with the topology of weak∗ convergence, metricized by Lévy-
Prokhorov metric ∥ · ∥LP . I require player i’s beliefs to have as support, supp(µi), the set of
all distributions, allowing for correlation — supp(µi) = ∆(A−i) — or the set of all distributions
assuming independence across opponents, in which case beliefs are given by a product measure
µi = × j∈−iµi j , where each µi j is a probability measure on ∆(A j) with full support. Results will
hold in either unless explicitly mentioned.5

Information. Prior to making a choice, player i can acquire information about the unknown
distribution σ−i in a sequential and costly manner. Player i has access to an information struc-
ture πi : ∆(A−i) → ∆(Yi), where Yi is a finite signal space. Throughout the main text, I restrict
attention to the case in which these signals are observations drawn from σ−i, i.e. πi corresponds
5It is also possible to extend this framework to accommodate other cases potentially of interest, e.g. ruling out
opponents play strictly dominated actions; we omit these cases to simplify the presentation.
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to the identity. More general signal structures are considered in Appendix B.

Sequential Sampling. As I mentioned, information acquisition is sequential. In other words,
prior to taking an action, player i can sequentially observe signals yi,t and decide when to stop
acquiring information.

I will write yt
i = (yi,ℓ)ℓ∈[1.. t] to stand for the sample path up to time t, where each realization yi,ℓ is

distributed according to σ−i, with the understanding that y0
i =;. Formally, I denote yi =

{
yi,t

}
t∈N

as a stochastic process defined on the probability space (Ω,F ,P) with Fi denoting the natural
filtration of yi. The set of sample paths of length t is denoted by Y t

i and the set of all finite
sample path realizations is denoted by Yi :=⋃

t∈NY t
i . Upon observing a given sample path up to

time t, yt
i , player i updates beliefs about σ−i according to Bayes’ rule, denoted by µi|yt

i .
6

Cost of Information. Naturally, information acquisition is also costly as otherwise player i

would never stop acquiring information. For the sake of convenience, I will throughout assume
that the cost of each observation is given by ci > 0. It is straightforward to adjust the model
in order to accommodate costs that depend on the number of observations, insofar as they are
eventually bounded away from zero from below,7 which, for all purposes, subsumes cases in
which there is an upper bound on the number of observations.

Extended Games. An extended game G is then a tuple comprising an underlying normal-form
game Γ, each players’ prior beliefs µ= (πi)i∈I , and sampling costs c = (ci)i∈I .

2.2. Equilibrium

Having introduced all the primitives of the model, I will turn to the equilibrium definition.

Choice. Given a belief µ′
i ∈∆(∆(A−i)), player i upon stopping acquiring information chooses an

action in order to maximize their expected utility. I will denote the player’s maximized utility by
vi :∆(∆(A−i))→R

vi(µ′
i) := max

σi∈∆(A i)
Eσi [Eµ′i [ui(ai,σ−i)]],

and I write σ∗
i : ∆(A−i) → ∆(A i) to denote a selection of optimal choices given beliefs, σ∗

i (µ′
i) ∈

argmaxσi∈∆(A i)Eµi [ui(σi,σ′
−i)].

6Note that µi induces a measure on ∆(A−i)×Yi .
7 Formally: there is some N and ci > 0 such that player i’s cost for any observation following the N-th is greater
than ci .
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Optimal Stopping. Player i acquires information optimally in order to maximize expected pay-
offs. That is, each player i faces an optimal stopping problem: based on accumulated evidence,
decide whether to stop and make a choice or obtain another signal. Formally, player i chooses a
stopping time ti in the set Ti of all stopping times taking values in N0 ∪ {∞} and adapted with
respect to natural filtration associated to yi.

Given a prior µi ∈∆(∆(A−i)), player i’s value function Vi :∆(∆(A−i))→R can be written as

Vi(µi) := sup
ti∈Ti

Eµi [vi(µi | yti
i )− ci · ti],

where µi | yti
i denotes the player’s posterior belief when, upon stopping according to stopping

time ti, the sample yti
i was observed.

It will be useful to consider the dynamic programming formulation of the optimal stopping prob-
lem, with Vi corresponding to a fixed point of an operator Bi : Cb(∆(∆(A−i)))→ Cb(∆(∆(A−i))),

Bi(Ṽi)(µ′
i)=max{vi(µ′

i),Eµ′i [Ṽi(µ′
i | y)]− ci},

which will be equivalent for our purposes. This lends our value function a clear interpretation:

Vi(µ′
i)︸ ︷︷ ︸

value at belief µ′i

=max{ vi(µ′
i)︸ ︷︷ ︸

value of stopping

, Eµi [Vi(µ′
i | yi)]− ci︸ ︷︷ ︸

expected value of continuing sampling

}.

We focus on the earliest optimal stopping time

τi(ω) :=min{t ∈N0 |Vi(µ′
i | yt

i (ω))= vi(µ′
i | yt

i (ω))},

where its optimality follows by standard arguments (Ferguson, 2008, Ch. 3, Theorem 3); while
omitted, I note the dependence of τi on the prior µ′

i.

For ease of reference, I summarize properties of optimal sequential sampling in this proposition:

Proposition 1. The following properties hold: (1) vi and Vi are bounded, convex, and uniformly

continuous. (2) For any prior µi, player i’s optimal stopping time is finite µi-a.s. and satisfies Pµi (τ>
T)≤ 2∥ui∥∞/ciT .

This and the remaining omitted proofs are in Appendix A.

EquilibriumDefinition. Each player acquires information on their opponents’ action distribu-
tion and their optimal stopping policy, τi, determines the sequences of signals following which
they optimally stop at take an action:

Y
τi
i :=

{
yt

i ∈Yi : Vi(µi | yt
i )= vi(µi | yt

i ) and ∀0≤ ℓ< t,Vi(µi | yℓi )> vi(µi | yℓi )
}

.
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Different opponent action distributions σ−i induce different distributions over the signals ac-
quired Pσ−i (yτi

i = yt
i ). Since different sequences of signals yt

i induce different posteriors µi | yt
i

at which different actions ai may be optimal, information acquisition implies a mapping from
opponents’ action distributions to the player’s distribution of actions,

Eσ−i [σ
∗
i (µi | yτi

i )]= ∑
yt

i∈Y
τi
i︸ ︷︷ ︸

set of stopping
sequences

∏
ℓ∈[1.. t]

σ−i(yi,ℓ)︸ ︷︷ ︸
probability
observing yt

i

σ∗
i (µi | yt

i )︸ ︷︷ ︸
best response

at posterior µi |yt
i

That is, the probability of player i taking action ai is given by the probability of taking such an
action once player i after observing yt

i , σ
∗
i (µi | yt

i ), considering every sequence of signals yt
i fol-

lowing which player i optimally stops, yt
i ∈Y

τi
i , and weighting it by the probability of its occur-

rence. The probability that a sequence of signals yt
i is observed is then given by

∏
ℓ∈[1.. t]σ−i(yi,ℓ),

as each observation corresponds to an action profile yi,ℓ ∈ A−i, sampled independently from i’s
opponents’ action distribution, σ−i.

I close the model by positing a consistency condition between every players’ action distribution:

Definition 1. A sequential sampling equilibrium of an extended game G = 〈Γ,µ, c〉 is a profile of
action distributions σ such that, for every i, σi = Eσ−i [σ

∗
i (µi | yτi

i )], where τi is player i’s earliest
optimal stopping time and σ∗

i (µ′
i) is optimal given belief µ′

i.

Interpretation. Sequential sampling equilibrium can be interpreted as positing that, prior to
taking an action, players can access existing information about others’ past behavior to better
ground their choices. As I show in Section 2.3, this interpretation of accessing past realizations
is well-grounded in a steady-state foundation for the solution concept: given its fixed-point def-
inition, sequential sampling equilibrium entails a self-enforcing distribution of action data.

Information acquisition can then refer to procuring hard information — such as data, experts’
opinions, or reviews. Our setup can speak tomany practical examples. For instance, a seller doing
market research to better price its product, consumers parsing reviews on a product’s quality,
voters learning about candidates’ platforms through their statements about different issues, or
infrequent bidders in online auctions looking at data from other past auctions to reason how to
bid. Alternatively, one take the sampling process as an underlying introspective process, whereby
players reason about how others may act by reaching back in their memory and past experiences.
As mentioned, this is in line with recent neuroscience literature, which has employed models of
evidence accumulation to describe how choices relate to decision time in a variety of individual
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decision-making contexts.

Sequential sampling equilibrium can also be taken as relaxing the implicit epistemic assumption
in Nash equilibrium that, in equilibrium, players come to know their opponents’ distribution of
actions. If players’ priors did assign probability one to the same Nash equilibrium of the under-
lying game, that Nash equilibrium will coincide with a sequential sampling equilibrium of the
game.8 In our model, however, players are uncertain about the prevailing distribution of actions,
and it is this uncertainty that drives their information acquisition. Further, it dispenses with
the assumption of mutual knowledge of the game and of others’ rationality, since all learning is
driven by the procured information and players need not know others’ payoff functions.

Existence. I briefly note that a sequential sampling equilibrium exists in all extended games.

Theorem 1. Every extended game has a sequential sampling equilibrium.

The proof proceeds by verifying that, for every player i, σ−i 7→ bi(σ−i) := Eσ−i [σ
∗
i (µi | yτi

i )] (1)
maps to a well-defined probability distribution of player i’s actions, and (2) such mapping is
continuous. The main difficulty is that, while we know that, by Proposition 1, τi is finite with
probability 1 with respect to the player’s prior (Pµi (τi <∞)= 1), we need player i’s optimal stop-
ping time to be finite with probability 1with respect to the actual distribution of opponents’ actions,
(Pσ−i (τi <∞) = 1), as otherwise bi(σ−i) ∉ ∆(A i). If player i never stops sampling with positive
probability (with respect to the true distribution of opponents’ actions), then bi does not define a
probability distribution over player i’s actions and no equilibrium exists.9 The following lemma
demonstrates that this condition on stopping time is also sufficient to guarantee the desired prop-
erties on bi:

Lemma 1. The following two statements are equivalent: (1) player i’s optimal stopping time is finite

with probability 1 with respect to σ−i, Pσ−i (τi <∞) = 1 for any σ−i ∈∆(A−i); (2) bi(σ−i) ∈∆(A i)

∀σ−i ∈∆(A−i). Moreover, if (1) holds, then bi is also continuous.

8As it is implicit in this statement, even though beliefs are degenerate and coincide on the same Nash equilibrium,
not all best responses need to coincide with that same Nash equilibrium, which explains why there may be multiple
sequential sampling equilibria instead of there being a unique equilibrium coinciding with the Nash equilibrium
players believe to occur. Such non-uniqueness can occur even when the game has a unique Nash equilibrium, echo-
ing Aumann and Brandenburger’s (1995) results on the epistemic characterization of Nash equilibrium, whereby
conjectures — and not choices — are found to coincide with Nash equilibrium.

9I provide an example in Online Appendix D to illustrate the potential non-existence of equilibria when priors do
not have full support.
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The proof can be found in Appendix A. With Lemma 1 in hand, it is then straightforward to show
existence of a sequential sampling equilibrium.

Proof. Given Lemma 1, if, for any σ−i, τi is finite with probability one with respect to σ−i, then
bi is a continuous mapping from ∆(A−i) to ∆(A i), and existence follows from Brouwer’s fixed
point theorem. By assumption, supp(µi)=∆(A−i) and, for any σ−i,

Pσ−i (τi(ω)≤ T)=Pσ−i (
{
ω : inf{t | Eµi,t(ω)[Vi(µi,t(ω)|yi,t+1]−Vi(µi,t(ω))≤ ci}≤ T

}
).

As Vi is uniformly continuous, there is δ> 0 such that, ∀µi,µ′
i ∈∆(Pi) satisfying ∥µi−µ′

i∥LP < δ,
|Vi(µi)−Vi(µ′

i)| < c. Since, by Berk (1966), µi,t weak∗ converges to a Dirac on σ−i, σ−i-a.s.,
Pσ−i (limt→∞Eµi,t[Vi(µi,t|yi,t+1]−Vi(µi,t)> ci)= 0.

In fact, we can obtain an upper bound on the stopping time by combining uniform continuity of
Vi and the fact that µi uniformly accumulates around the empirical frequency:

Remark 1. For every player i, ∃T i <∞ such that τi ≤ T i, where T i depends on ui, µi, and ci.

This transforms optimal stopping into a finite horizon problem, a useful result that not only sim-
plifies the analysis, but also makes our solution concept amenable to computational applications.

2.3. A Learning Foundation

For any equilibrium model, an important question is how players may come to behave according
to the model’s predictions. I previously stated that sequential sampling equilibria can be thought
of as a steady state of a process where players sample from accumulated past data. This section
formalizes that argument.

Dynamic Sequential Sampling. The dynamic process is as follows. Fix an extended game G.
Every period, n = 1,2, ..., a unit measure of agents plays the extended game G, evenly divided
across the different roles I . Each agent believes they face a stationary distribution of opponents’
actions, matching the empirical frequency of past actions, σn−1 ∈ ∆(A), not knowing calendar
time.

Within period n, each agent with role i leans about σn−1
−i by optimally sequentially samples ac-

cording to τθi . Upon stopping, the agent best responds to their posterior beliefs.10 This induces
10We keep fixed a selection of best responses σ∗

i used to break-ties.
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a distribution of actions and types in period n given by b(σn−1), where b :∆(A) →∆(A) is such
that b(σ)(a) := ×i∈I bi(σ−i)(ai), with bi(σ−i) := Eσ−i [σ

∗
i (µi | yτi

i )], as before. After taking an ac-
tion, agents then exit and are replaced by a new population as is standard in evolutionary models
of learning in strategic settings. At the start of the following period, the empirical frequency is
then σn = 1

n+1 b(σn−1)+ n
n+1σ

n−1, with σ0 given. I call any such {σn}n a dynamic sequential
sampling process of G.

While akin to fictitious play (Brown, 1951), under dynamic sequential sampling, each agent ob-
serves but a sample of past play realizations and the sample itself is an endogenous object.

Equilibria and Steady States. I now show an equivalence between sequential sampling equi-
libria and steady states of dynamic sequential sampling processes.

Theorem 2. Let G be an extended game. σ is a sequential sampling equilibrium of G if and only

if there is some dynamic sequential process {σn}n of G such that σn →σ.

Proof. I focus on the if part, since the converse is immediate. Let σ̄ denote the limit of σn. Then,

0= lim
n→∞

∥∥σn − σ̄∥∥∞ =
∥∥∥ lim

n→∞σ
n − σ̄

∥∥∥
∞
=

∥∥∥∥∥ lim
n→∞

1
n+1

σ0 + n
n+1

(
1
n

∑
ℓ∈[0..n−1]

b(σℓ)

)
− σ̄

∥∥∥∥∥∞
.

Asσn → σ̄ and b is continuous, then b(σn)→ b(σ̄). Consequently, the Cesàromean 1
n

∑
ℓ∈[0..n−1] b(σℓ)

also converges to b(σ̄) and therefore 0= ∥b(σ̄)− σ̄∥∞ =⇒ b(σ̄)= σ̄.

Theorem 2 establishes for sequential sampling equilibrium and the dynamic process I defined
above an analogue to Fudenberg and Kreps’s (1993) results relating Nash equilibria and fictitious
play, in the sense that sequential sampling equilibria coincide with the limits of convergent dy-
namic processes. Below I discuss two ways in which the dynamic process can be generalized.

Remark 2. Often it may be the case that information about more recent events is more easily
accessible. This can be modeled as a giving a different weight to each period, for instance, expo-
nential discounting past data: σn =βσn−1+(1−β)b(σn−1), β ∈ (0,1). Theorem 2 also holds under
this alternative definition: as σn → σ̄ =⇒ b(σn) → b(σ̄) and, for any fixed ℓ, βn−1−ℓb(σℓ) → 0,
we have σn =βnσ0 + (1−β) ·∑ℓ∈[0..n−1]β

n−1−ℓ ·b(σℓ)→ σ̄= b(σ̄).

Remark 3. The assumption that there is a continuum of agents for each role is also not essential:
a similar result holds when the populations are finite. Write an for the realized actions in period

13



n and σn for their empirical frequency (given a0), with an ∼ b(σn−1).11 Note that σn → σ̄ still
implies that b(σn) → b(σ̄), and the arguments above remain the same, with an converging in
distribution to a sequential sampling equilibrium.

Convergence. While in general we cannot exclude dynamic sequential sampling from cycling
and failing to converge — similarly to what occurs with fictitious play12 — in specific classes of
games, convergence and asymptotic stability are guaranteed.13 This next proposition shows this
is the case for binary action games, which we will discuss in more depth in the next section.

Proposition 2. LetG = 〈Γ,µ, c〉 be a two-player extended game. If Γ has a unique Nash equilibrium,

the limit of dynamic sequential sampling is a globally asymptotically stable sequential sampling

equilibrium.

Since it makes use of results discussed below, I defer the proof to the appendix.

3. Behavioral Implications
In this section, I characterize different behavioral implications of sequential sampling equilib-
rium. First, I explore the relation between stopping time and action sophistication. Then, I relate
incentives to the joint distribution of choices and stopping time. Finally, I focus on players’ beliefs
and their relation with stopping time.

3.1. Rationality and Sequential Sampling

There is evidence suggesting that when facing higher stakes, individuals take longer to make
choices, and choices reflect higher sophistication (as given by their level of rationalizability).14

This section shows how sequential sampling equilibrium can provide a rationale for such an as-
sociation by relating higher incentives, longer decision times, and a lower bound on the level
of rationalizability of action chosen in equilibrium. Further, this establishes a relation between
11If agents directly sample data with past actions, {aℓ}ℓ<n, one may worry that about whether sampling without
replacement affects the result; this is not the case — provided, of course, the starting dataset large enough (but still
finite; cf. Remark 1) so that sequential sampling without replacement is well defined.

12The classical reference is Shapley (1964). Cycling can occur even with stochastic fictitious play: see Hommes and
Ochea (2012).

13An equilibrium σ is asymptotically stable if for all ϵ > 0, there is a δ > 0 such that for any σ0 : ∥σ0 −σ∥∞ < δ,
∥σn−σ∥∞ < ϵ for all n. That is, if the dynamic sequential sampling process starting close enough to the equilibrium
remains closeby thereafter.

14See e.g. Rubinstein (2007); Esteban-Casanelles and Gonçalves (2020); Alós-Ferrer and Bruckenmaier (2021).
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empirical learning (as given by sequential sampling) and introspective learning (as given by ra-
tionalizability).

I first observe that, in our context, higher incentives as given by scaling up a player’s payoffs, is
equivalent to scaling down the cost to sampling. Optimal sequential sampling naturally predicts
an inverse relation between sampling cost and stopping time:

Remark 4. For lower sampling costs ci, player i’s optimal stopping time increases in first-order
stochastic dominance with respect to the prior µi and to any true distribution of opponents’
actions σ−i ∈∆(A−i); that is, both Pµi (τi ≤ t) and Pσ−i (τi ≤ t) increase for any t.

Our main result of this section goes further in determining a relation between cost and the level
of sophistication of actions chosen in equilibrium. Let us recall the definition of rationalizable
actions.

Definition 2. An action ai ∈ A i is 1-rationalizable if there is some σ−i ∈ ∆(A−i) such that,
∀σi ∈ ∆(A i), ui(ai,σ−i) ≥ ui(σi,σ−i). An action ai ∈ A i is k-rationalizable, for k ≥ 2, if there
is some σ−i ∈∆(Ak−1

−i ) such that, ∀σi ∈∆(A i), ui(ai,σ−i)≥ ui(σi,σ−i), where Ak−1
−i :=× j ̸=i Ak−1

j

denotes the set of (k−1)-rationalizable action profiles of player i’s opponents. An action ai is
rationalizable if ai ∈∩k∈NAk

i .

For presentation purposes — as implied by the above definition — I will focus on a definition of
rationalizability allowing for correlation among opponents’ actions, and require priors to have full
support on∆(A−i). The below result holds as well when considering a definition of rationalizable
actions that requires independence across opponents’ action distributions, provided beliefs also
do not allow for correlation.

We now show that scaling up incentives enough — or, equivalently, for low enough sampling
costs — only k-rationalizable actions are chosen at sequential sampling equilibria:

Theorem 3. For any normal-form game Γ, priors µ, and k ∈ N, there are cost thresholds ck
i > 0

such that, for any extended game G = 〈Γ,µ, c〉 in which ci ≤ ck
i for all i, in any sequential sampling

equilibrium σ of G only k-rationalizable actions are chosen with positive probability.

The result is obtained by combining three observations — the proofs for which can be found in
Appendix A. First, if player i believes that, with high enough probability, their opponents only
choose (k−1)-rationalizable actions, then player i will choose a k-rationalizable action:

15



Lemma 2. For any k ≥ 2, there are ϵ,δ> 0, such that, if µi(Bδ(∆(Ak−1
−i ))> 1−ϵ, then

argmaxai∈A i
Eµi [ui(ai,σ−i)]⊆ Ak

i .

Second, that if player i’s opponents do indeed only choose (k−1)-rationalizable actions, then
player i’s beliefs uniformly accumulate on the event that opponents only choose (k−1)-rationalizable
actions:

Lemma 3. For any µi ∈∆(∆(A−i)) with full support, and all ϵ,δ > 0, there is t such that, for any

sequence of observations yt
i for which yi,ℓ ∈ Ak−1

−i for ℓ ∈ [1 .. t], µi | yt
i (Bδ(∆(Ak−1

−i )))> 1−ϵ.

And third, that, when not all of player i’s actions are rationalizable, it suffices that sampling costs
are low enough to ensure that the player acquires a minimum number of signals:

Lemma 4. Suppose that there is no action ai that is a best response to all distribution of opponents’

actions σ−i ∈∆(A−i). Then, for any T ∈N0 and any full support prior µi ∈∆(A−i), there is ci > 0

such that for any sampling cost ci ≤ ci, the associated earliest optimal stopping time τi ≥ T +1.

The proof of Theorem 3 then proceeds easily:

Proof. The proof follows an induction argument. First, observe that no player will choose actions
that are not 1-rationalizable. Now, for k ≥ 1, assume that players choose only (k−1)-rationalizable
actions with positive probability. From Lemma 3, for any δ,ϵ > 0 there is a T such that, for all
t ≥ T , all i ∈ I , and any yt

i ∈ Ak−1
−i , µi,t(Bδ(∆(Ak−1

−i ))) ≥ µi,t(Bδ(δyt
i
)) > 1− ϵ. By Lemma 2, this

implies that if all players sample for at least T periods, they will only choose k-rationalizable
actions with positive probability. Lemma 4 ensures that we can find ck > 0 such that, if ci ≤ ck

∀i, all players sample at least T periods, i.e. that each player’s earliest optimal stopping time is
bounded below by T , τi ≥ T . This concludes the proof.

Remark 5. It is possible to generalize the result to classes of priors that satisfy a condition akin
to a lower bound on density:

Definition 3 (Diaconis and Freedman 1990). Let φ : R++ → R++. The set of φ-positive distribu-
tions on ∆(A−i) is given by Mi(φ) := {µi ∈∆(∆(A−i)) | infσ−i∈∆(A−i)µi(Bϵ(σ−i))≥φ(ϵ), ∀ϵ> 0}.

Since it is possible to obtain a uniform rate of accumulation around the empirical mean for any
prior µi ∈ Mi(φ) that depends only on φ, we can then extend Theorem 3 so that the same cost
thresholds holds for all φ-positive priors µi.
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3.2. Comparative Statics in Binary Action Games

Binary Action Games. In this section I provide comparative statics results for binary actions
games: normal-form games Γ= 〈I, A,u〉 with two players, |I| = 2, and such that each player i ∈ I

has two actions A i = {0,1} and ui(1,σ−i)−ui(0,σ−i) is strictly monotone and continuous in σ−i,
the probability that i’s opponent chooses action 1.15 Consequently, I identify µi ∈∆(∆(A−i)) with
a distribution on the unit interval. An extended binary action game G is an extended game for
which Γ is a binary action game.

Actions and Stopping Time. Our object of interest will be the probability (according to σ−i)
that player i stops before time t and, upon stopping, action ai is optimal, that is,

Pσ j (ai ∈ A∗
i (µi | yτi

i ) and τi ≤ t),

where A∗
i (µ′

i) := argmaxai∈A i
Eµ′i

[ui(ai,σ′
−i)] denotes the set of optimal choices at a given belief

µ′
i. Our main result characterizes how the joint distribution of player i’s choices and their stop-

ping times changes along to three dimensions: (1) the player’s payoffs, ui, (2) their beliefs, µi,
and (3) the true (unknown) distribution of their opponent’s actions, σ−i, taken as exogenous.

Ordering Payoffs and Beliefs. Let us introduce a partial order on player i’s utility functions:

Definition 4. Let ui,u′
i : A i×∆(A−i)→R. u′

i is said to has higher incentives to action ai than ui,
u′

i ≥ai ui, if and only if there is g :∆(A−i)→R+ such that u′
i(a

′
i,σ

′
−i)= ui(a′

i,σ
′
−i)+1a′

i=ai g(σ−i).

Beliefs are ordered according to a generalized version of the monotone likelihood ratio property
(cf. Lehrer and Wang, 2020):

Definition 5. Let µi,µ′
i ∈ ∆([0,1]). µ′

i is said to strongly stochastic dominate µi, µ′
i ≥SSD µi, if

µ′
i | yt

i first-order stochastically dominates µi | yt
i for any yt

i ∈Yi.

Note that, when µi and µ′
i are mutually absolutely continuous, ≥SSD corresponds to the mono-

tone likelihood ratio property, i.e. dµ′
i/dµi is increasing µ′

i-a.e.

MonotoneComparative Statics. The next result characterizes the behavior induced by optimal
sequential information acquisition taking σ−i are exogenous:
15Monotonicity in σ−i is automatically satisfied when ui(ai,σ−i) = Eσ−i [ui(ai,a−i)]. I require strict monotonicity
to prevent the case in which players are always indifferent between both actions (ui(1,σ−i) = ui(0,σ−i), ∀σ−i),
which is a trivial case. Since I will allude to extensions that may require non-linearity in σ−i , I impose only minimal
conditions on payoffs.
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Theorem 4. Let G be an extended binary action game and let ai ∈ argmaxa′
i∈A i

ui(a′
i,1). Then,

Pσ−i (ai ∈ A∗
i (µi | yτi

i ) and τi ≤ t) increases (i) in ui with respect to ≥ai , (ii) in µi with respect ≥SSD ,

and (iii) in σ−i. Moreover, it is C ∞ in σ−i.

Let us discuss the intuition behind the theorem (the proof is deferred to the Appendix A).

Claim (i) shows that increasing the payoff associated to action ai, u′
i ≥ai ui, makes the player not

only more likely to take that action under the true distribution of actions of the opponent, but to
take it faster and to choose the other action less often and slower. While an increase in payoffs
does increase the value of acquiring information at some posterior beliefs — which could lead the
player to learn more about the true σ−i and find out that perhaps action ai is not optimal after
all — this additional information acquisition occurs only when before the player was stopping
and taking an action other than ai. In other words, player i requires now less information to be
convinced to stop and take action ai and more information to stop and choose another action.
This result is not particular to binary action games: claim (i) is shown for general settings with
arbitrary finitely many actions and general payoff functions.16

Claim (ii) can be interpreted as stating that player i is more likely to stop earlier and take action
ai the greater the probability their prior assigns to action ai being optimal. The main difficulty
is again to show that this seemingly tautological statement holds with respect to the actual, un-
known, distribution of the opponent’s actions; importantly, note the claim does not depend on
whether or how correct player i’s beliefs are. Such monotonicity in beliefs allows one to make
predictions on how behavior changes with, for instance, the provision of information that shifts
beliefs in the stochastic dominance order (e.g. µi|1≥SSD µi|0).
Finally, the argument for why claim (iii) should hold is straightforward: higher σ−i means that
player i is more likely to observe higher signals and therefore becoming convinced that action ai

is the better alternative. The proof follows from claim (ii) and an induction argument. The fact
that the probability of action ai being optimal when stopping before time t is a polynomial with
respect to σ−i implies the claim on differentiability.

Theorem 4 provides comparative statics on the optimality of a given action, but leaves open the
possibility that more than one action is optimal. The next lemma closes this gap by showing that,
in binary action games, a player is never indifferent between the two actions at any belief held
upon stopping, provided the player samples at least once or is not indifferent under the prior µi.
16See Proposition 7 in the Appendix A.
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Figure 1: Generalized Matching Pennies
Note: δM ,γC > 0.

Lemma 5. Let G be an extended binary action game. Then, for any player i, A∗
i (µi | yτi

i ) is a

singleton or τi = 0. Moreover, if τi > 0, A∗
i (µi | yτi

i )= argmaxai∈A i
ui(ai, yi,τi ).

The reasoning underlying the proof is simple. Without loss of generality, assume that player i’s
best-response to a−i is to choose ai = a−i. Suppose that player i stops sampling after observing a
0-valued signal leaving player i indifferent between the two actions (the argument is symmetric
if the last signal is 1-valued). Then, before sampling the last observation, action 1 was already
optimal under player i’s prior, as observing a 0-valued observation induces a lower belief mean.
Moreover, if the last observation had instead realized to be 1-valued, player i would still want to
choose action 1. This implies that if player i stops sampling when indifferent between the two
actions, whichever action was optimal before taking the last signal is still optimal regardless of
the realization of the signal. Therefore, given that the player will not sample any further, the last
signal bears no informational value to the player. As the signal is costly, then it is suboptimal to
take it.

Applications. One immediate implication of Theorem 4 and Lemma 5 is in establishing a strong
connection between uniqueness of sequential sampling equilibrium in an extended game and
uniqueness of a Nash equilibrium of the underlying binary action game:

Proposition 3. A binary action game Γ has a unique Nash equilibrium if and only if any extended

game G = 〈Γ,µ, c〉 in which players with no weakly dominant actions sample at least once there is a

unique sequential sampling equilibrium.

An analogous result holds when, in symmetric extended binary action games (same payoff func-
tions, same prior, same sampling cost), one restricts to symmetric Nash equilibria and symmetric
sequential sampling equilibria. While uniqueness of a Nash equilibrium implies uniqueness of a
sequential sampling equilibrium, it is not the case that the two coincide.
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Awell-known and counter-intuitive prediction of Nash equilibriumpertains to generalizedmatch-
ing pennies, that is, 2×2 games with a unique Nash equilibrium in fully mixed strategies, whose
structure is illustrated in Figure 1. When the payoffs to action ai of player i increase, Nash equi-
librium predicts that the probability with which action ai is chosen remains the same and it is,
instead, the opponent’s mixed strategy that adjusts to make player i indifferent between choosing
any of the two actions — what one could call the opponent-payoff choice effect. However, experi-
mental evidence shows that increasing player i’s payoffs to an action leads that player to choose
that action more often, an own-payoff choice effect.17 This motivated the emergence of different
models, one of the most successful of which quantal response equilibrium (McKelvey and Palfrey,
1995), which directly embeds monotonicity of choices with respect to payoffs in the assumptions
for players’ behavior (Goeree et al., 2005).

Sequential sampling equilibrium not only rationalizes this empirical regularity via comparative
statics pertaining to behavior induced by optimal information acquisition, it delivers novel behav-
ior implications regarding stopping times. Increasing player i’s payoffs to action ai, (1) increases
the equilibrium probability that player i chooses action ai, and (2) leads their opponent, player
j, in equilibrium, choosing the best response to action ai more often and faster, and their other
action less often and slower, in the sense of Theorem 4. If the first observation states sequential
sampling equilibrium predicts the own-payoff choice effect,18 the second uncovers an entirely
novel prediction relating equilibrium choices and stopping time. Both follow directly from com-
bining Proposition 3, Theorem 4, and Lemma 5.

Supporting Evidence. To investigate whether these predictions find support in existing data, I
will rely on experimental data generously made available by Friedman and Ward (2022) who col-
lected data on choices and decision times for six different generalized matching pennies games.
The goal of this exercise is not to fit data or claim that sequential sampling equilibrium perfectly
describes subjects’ behavior or that it does so better than other existing models, but rather to
present suggestive evidence supporting its novel behavioral implications. No feedback or infor-
mation was provided throughout the experiment; details on the experiment, the data, and further
analysis can be found in Appendix C.
17This finding has been replicated several times, namely by Ochs (1995), McKelvey et al. (2000) and Goeree and Holt
(2001).

18A similar result holds in mymodel with respect to symmetric anti-coordination (extended) games. In such case, the
unique symmetric sequential sampling equilibrium exhibits the own-payoff effect under the same conditions as in
generalized matching pennies. This matches gameplay patterns documented in experimental settings by Chierchia
et al. (2018) in the context of symmetric two-player anti-coordination games.
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Figure 2: Opponent-Payoff Time Effect

Notes: The figure compares choices and decision times in generalized matching pennies games as given in
Figure 1, for γC = 1 (and scaled by 20). The data is from Friedman and Ward (2022). The panels exhibit
the frequency with which subjects in the player C’s role take a given action (a in panel (a); b in panel
(b)) before time t (in seconds). Different lines correspond to games in which the player M has different
payoffs to action a. This figure uses only choice data for instances where beliefs were not elicited. The
same patterns are present when beliefs are elicited. See Appendix C for further details on the data.

As shown in Figure 2, if one is to interpret stopping time as a proxy for decision time, the data
supports our predictions: when increasing δM subjects in the Clasher’s role do tend to choose
action b not only more often but also faster. Moreover, they choose action a less often and slower.

3.3. Time-Revealed Preference Intensity

In this section I characterize how stopping time relates to players’ posterior beliefs by consid-
ering a general family of priors in binary action games. For this section, I restrict attention to
games in which payoffs are linear in the opponent’s distribution of actions, i.e. ui(ai,σ−i) =
Eσ−i [ui(ai,a−i)].

Beta Beliefs. For tractability, I focus on priors that are linear in new information in a manner
that mimics Bayesian updating for Gaussian priors:
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Definition 6. A prior µi is said to be linear in the accumulated information if it is non-degenerate
and there are constants at,bt ∈ R such that for any yt

i ∈Yi the posterior mean satisfies Eµi [σ−i |
yt

i ]= at
∑t
ℓ=1 yt

i,ℓ+bt.

This property, together with the fact that beliefs are a martingale and some algebraic manipula-
tion, allows us to write the posterior mean as a convex combination of the prior mean and the
empirical mean of the accumulated information, Eµi [σ−i | yt

i ]=αt/t ·∑t
ℓ=1 yt

i,ℓ+ (1−αt) ·Eµi [σ−i],
where αt/t = 1/((1−α1)/α1 + t) ∈ (0,1). This is extremely convenient as, by linearity of expected
utility, one can then analyze optimal stopping just relying on the belief mean and the number
of samples. In fact, as shown by Diaconis and Ylvisaker (1979, Theorem 5), identifies a specific
parametric class of priors: a prior µi is linear in the accumulated information if and only if it is a
Beta distribution.

Collapsing Boundaries. When beliefs are linear in the accumulated information, we have the
following characterization of the set of beliefs at which player i optimally stops:

Proposition 4. Let Γ be a binary action game. Suppose that there is σ̃−i ∈ ∆(A−i) such that

ui(1, σ̃−i) = ui(0, σ̃−i). For any ci > 0, there are continuous functions σ−i,σ−i : R++ → [0,1] such

for any Beta distributed prior µi with parameters (α,β) player i does not optimally stop at µi if and

only if Eµi [σ−i] ∈ (σ−i(α+β),σ−i(α+β)). Furthermore, σ−i is decreasing and σ−i is increasing, and

∃Ti such that ∀t ≥ Ti σ−i(t)=σ−i(t)= σ̃−i.

The proof of the result is in Appendix A.

Proposition 4 shows that when beliefs are linear in accumulated information, it is sufficient to
consider the posterior mean to characterize the beliefs at which player i continues sampling at
any given moment as is illustrated in Figure 3. Note that if µi is a Beta distribution with parame-
ters summing to t, then µi | yi has parameters summing to t+1. The continuation region is then
characterized by an upper and lower threshold that delimit a decreasing interval that “collapses”
to a single point: the distribution at which player i is indifferent between either action. This
translates to our setting what is commonly known in the neuroscience literature as “collapsing
boundaries”.19
19See Hawkins et al. (2015) for a discussion on the evidence of collapsing boundaries and Bhui (2019) for supporting
experimental evidence in an environment in which, as in our model, there is uncertainty about the difference in
the binary actions’ expected payoffs.
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Figure 3: Stopping Regions for Beta Priors

Notes: The figure exhibits the continuation region (shaded area) and the stopping thresholds (darker blue
lines) for posterior means at which player i with a Beta stops. The figure also illustrates the possible
realizations of the sampling process for a player with a uniform prior (Beta(1,1)), with the posterior means
indicated by circles.

One can then interpret the stopping time as an indicator of the intensity of player i’s preference
for one action over another: player i samples for longer if and only if the player is sufficiently
close to being indifferent between the two alternatives, a phenomenon that resembles existing ex-
perimental evidence in individual decision-making (e.g. Konovalov and Krajbich, 2019). In other
words, Proposition 4 entails a behavior marker in the form of time-revealed preference intensity,
akin to results in Alós-Ferrer et al. (2021).

When the absolute difference in the expected payoffs is known — the case where the prior’s
support is a doubleton — the stopping region is characterized by fixed bounds in terms of the
posterior means as shown by Arrow et al. (1949). In contrast, when there is richer uncertainty
about the difference in expected payoffs, as when the prior is given by a Beta distribution, the
stopping region is characterized by bounds that collapse to the posterior mean that makes the in-
dividual indifferent between the two alternatives. A clear parallel emerges between our setup and
that in Fudenberg et al. (2018), where the individual infers the difference in payoffs of two alter-
natives from the drift of a Brownian motion and a similar contrast between known and unknown
payoff differences gives rise to, respectively, fixed and collapsing stopping bounds. An important
difference is that, in Fudenberg et al. (2018), collapsing boundaries hold on average and when
individuals have correct priors, while in our setup they hold even without these qualifications.

23



Comparative Statics in Stopping Beliefs. From Proposition 4 and Theorem 4, we obtain that
the distribution of beliefs shifts monotonically with respect to the true distribution. Specifically,
approximating the stopping posterior mean by the threshold, Eµi [σ−i | yτi

i ],20 and labeling actions
so that ui(1,σ−i)− ui(0,σ−i) is increasing in σ−i, then player i’s stopping (threshold) beliefs
increase in a first-order stochastic dominance sense as σ−i increases. This is because a higher σ−i

leads to a higher probability that player i chooses action 1more often and faster (resp. action 0 less
often and slower), implying that the posterior mean has to exceed a higher threshold when the
player stops earlier (resp. later), as the upper (resp. lower) bound characterizing the continuation
region is decreasing (resp. increasing) in the stopping time.

Supporting Evidence. Relying again on Friedman and Ward’s (2022) data, I find support for
both these predictions: (1) decision time is significantly negatively related to the distance between
the reported mean belief and the indifference point, and (2) increasing a player’s payoff to an
action shifts the opponent’s beliefs in the predicted first-order stochastic dominance sense — see
Online Appendix C.

4. Relation to Nash Equilibrium
One initial interpretation of Nash equilibrium posits that equilibrium beliefs are reached as play-
ers “accumulate empirical information” (Nash, 1950). In a sequential sampling equilibrium, play-
ers accumulate empirical information but at a cost. A natural question is whether, as these costs
vanish, sequential sampling equilibria converge to a Nash equilibrium. In this section I show this
is the case. Formally,

Theorem 5. Let Γ be a normal-form game, µ a collection of priors, and {cn}n be a sequence of

sampling costs such that cn → 0. For any sequence {σn}n such that each σn is a sequential sampling

equilibrium of extended game Gn = 〈Γ,µ, cn〉, the limit points of {σn}n are Nash equilibria of Γ.

The claim is conventional in form: players best-respond to their beliefs and their beliefs converge
to the true distribution of actions of their opponents. The main complication comes from the fact
that, conditional on stopping, the observations yτi

i are not independent nor independently dis-
tributed according to player i’s opponents’ action distribution. To overcome this issue, the proof
(see Appendix A) relies on three arguments. First, from Lemma 4 one has that as sampling costs
20This is so as to avoid discreteness issues inherent to the sampling procedure.
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vanish, players acquire a minimum number of observations T , and, for that minimum number,
each observation yT

i is iid according to the opponents’ action distribution. Second, I note beliefs
accumulate at a uniform rate around the empirical mean of the observed signals. Finally, I use the
optional stopping theorem to show that beliefs upon stopping converge to the true underlying
distribution in an appropriate manner.

Some comments on which Nash equilibria can be selected in this manner are in order. First, let
us define the concept of reachability of a Nash equilibrium:

Definition 7. A Nash equilibrium σ of a normal-form game Γ is reachable if there is a collection
of priors µ, a sequence of costs {cn}n ⊂ R++ such that cn → 0, and a sequence {σn}n, where for
each n, σn is a sequential sampling equilibrium of the extended game Gn = 〈Γ,µ, cn〉, such that
σn →σ. A Nash equilibrium if robustly reachable if it is reachable for any collection of priors µ.

In the remainder of the section, I will restrict player’s payoffs to be linear in distributions as usual.
In other words, I require that, for every player i, ui(ai,σ−i) = Eσ−i [ui(ai,a−i)], as conventional.
This will be a maintained assumption throughout the rest of this section.

Our first result provides, separately, necessary and sufficient conditions for reachability of a Nash
equilibrium.

Proposition 5. Let Γ be a normal-form game. (1) If σ is a Nash equilibrium of Γ involving weakly

dominated actions, then σ is not reachable. (2) If a is a pure-strategy Nash equilibrium of Γ not

involving weakly dominated actions, then a is reachable.

(1) holds since for any prior, no player will ever choose weakly dominated actions — recall that
priors have full support. For (2), note that if a does not involve weakly dominated strategies,
then, by Pearce’s (1984) Lemma 4, for each player i there is σ0

−i ∈ int∆(A−i) such that ai is a
best response to σ0

−i. If we endow each player i with prior µi ∈ ∆(∆(A−i)) corresponding to a
Dirichlet distribution with mean σ0

−i, then ai is a best response to any posterior belief µi | yt
i

when yi,t = a−i. Hence, for any costs cn, σ is sequential sampling equilibrium of 〈Γ,µ, cn〉. Note
that I require the Nash equilibrium to be in pure-strategies in order to control posterior beliefs
exactly, as otherwise, with some probability, σi may not be a best response to the posterior belief
held upon stopping.

For a Nash equilibrium to be reachable with any priors, we obtain a sufficient condition:
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Proposition 6. If a is a pure-strategy Nash equilibrium in undominated strategies of the normal-

form game Γ such that, for any player i, ai is a best response to any σ′
−i ∈ Bϵi (δa−i ) for some ϵi > 0,

then a is robustly reachable.

The intuition for the proof (in Appendix A) can be summarized as follows: for any prior, if player
i samples enough a−i observations, their posterior mean will lie within ϵi of a−i and choosing
ai is optimal. Lemma 4 then guarantees that players sample enough. Our requirement that ai is
a best response to any distribution of opponents’ actions that assigns high enough probability to
a−i is at the same time more relaxed than strictness of Nash equilibria, and more restrictive than
trembling hand perfection.

5. Extensions and Discussion
I conclude with a discussion of possible extensions of sequential sampling equilibrium.

Types and BayesianGames. Sequential sampling equilibrium can be easily extended to accom-
modate Bayesian games. This alignswith the idea that sequential sampling equilibria corresponds
to the case in which players don’t know their opponents’ payoffs, as given by their type.

In particular, consider games described by Γ := 〈I, A,Θ,ρ,u〉, such that I denote the finite set of
players, A :=×i∈I A i the (finite) set of action profiles, Θ=×i∈IΘi the (finite) set of type profiles,
whereΘi are player i’s possible types, ui : A×Θ→R payoff functions, and ρ ∈∆(Θ) a distribution
over types. Endowing each player i with a prior µi ∈ ∆(∆(A−i ×Θ)) and a sampling cost ci as
before we have extended games G = 〈Γ,µ, c〉. Each player i with type θi now learns about the
joint distribution of opponents’ action profiles and type profiles, qi ∈ ∆(A−i ×Θ), sequentially
sampling from qi at cost ci and stopping according to the earliest optimal stopping time τi,θi .

A sequential sampling equilibrium σ would then correspond to a fixed point such that σi,θi =
Eqi [σ

∗
i,θi

(µi | y
τi,θi
i )], whereσ∗

i,θi
(µi) is a selection of best responses given beliefµi, and qi,θi (a−i,θ)=

ρ(θ)× j ̸=iσ j,θ j (a j) for every a−i = (a j) j ̸=i ∈ A−i and θ = (θ j) j∈I ∈Θ.
Different assumptions on players beliefs will give rise to different equilibria. To apply similar
arguments to obtain existence of an equilibrium, we need but to require that players know the
distribution of their own types and that µi has full support on the set of distributions qi ∈∆(A−i×
Θ) satisfying qi(θi)= ρ(θi) for any θi ∈Θi.21 Differently, one could assume players know the true
21This renders their expected payoff given their type, Eqi [ui(ai,a−i,θ) | θi], to be continuous in qi ∈ suppµi .
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distribution of types, or, when types are independent, that they know so.

With the proper adjustments, behavioral implications can also be obtained, now comparing across
types. For instance, if the payoff to action ai is higher for type θi than for θ′i, everything else
equal, in every sequential sampling equilibrium type θi chooses action ai more often and faster
(in the sense of Theorem 4) than type θ′i. Finally, convergence to Bayesian Nash equilibria when
sampling costs vanish can be similarly obtained.

General Information Structures and Analogy Partitions. Throughout, it was assumed that
players observe action profiles drawn from a steady state distribution. Often, of course, infor-
mation — and even memory — is fuzzier, and it is not possible to perfectly distinguish between
certain actions taken by others, or even to observe what some other players do at all. In Online
Appendix B, I provide sufficient conditions under which is it possible to generalize sequential
sampling equilibrium to cases under which players observe not action profiles of their oppo-
nents, but a garbling, thereby accommodating situations such as noisy recollections, or missing
or misrecorded data. When considering information structures under which players are unable
to distinguish between specific action profiles (or types) of their opponents, as sampling costs
vanish, sequential sampling equilibria reach not Nash equilibria but analogy-based expectation
equilibria (Jehiel, 2005; Jehiel and Koessler, 2008).

Cost of Information and Discounting. In this paper, I considered a constant additive cost
per observation. One could have defined this cost of information in a more general manner,
allowing it to depend on the number of observations already acquired, or allowing a finite number
of observations at no cost. Alternatively, one could rely on discounting payoffs instead. It is
indeed possible to extend the setup to accommodate either, posing no problem for existence of
an equilibrium.

Misspecified Priors. Another maintained assumption was that priors are not misspecified, i.e.
players are able to learn the true data generating process. This assumption was crucial to obtain
existence of an equilibrium: it is the full support of players’ prior that guarantees that, as they
acquire more and more observations, their beliefs accumulate around a degenerate distribution.
When, instead, priors are misspecified, it is possible that players never stop sampling (accord-
ing to the true data generating process), even though they believe they will (according to their
posterior beliefs). I provide one such example of nonexistence in Online Appendix D.
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Myopic Sequential Sampling. Finally, a comment on a simpler, alternative, version of sequen-
tial sampling equilibrium, in which information acquisition is myopic. This is closely related
to a recent paper by Alaoui and Penta (2022), which provides an axiomatization of the delib-
eration process as one of myopic sequential information acquisition (cf. their Theorem 4). In
other words, the myopic stopping time would be given by τM

i (ω) := min{t | Eµi [vi(µi | yt+1
i ) |

yt
i (ω)]− vi(µi | yt

i (ω)) ≤ ci}, with players stopping whenever the expected value of sampling in-
formation is smaller than the cost of one more observation.

One could then define myopic sequential sampling equilibria simply by replacing the optimal
stopping time τi with the myopic one τM

i . While appealing for its simplicity, one immediate
implication is that myopic sequential sampling equilibria do not generically reach Nash equilibria
as the sampling costs vanish. This is because the expected value of sampling information is zero
whenever the optimal choices under beliefµi are still optimal under the posteriorµi | yi, nomatter
the realization of the observation. It is therefore immediate that any prior that is sufficiently
concentrated around a distribution of opponents’ actions for which ai is a strict best response,
for any ci > 0, player i will not see it worthwhile to acquire information. Thus, if in no Nash
equilibrium it is optimal to play such an action with probability 1, myopic sequential sampling
will fail to converge to a Nash equilibrium.
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Appendix A. Omitted Proofs

Proof of Proposition 1. For ease of notation, I’ll write Yi := A−i, Pi :=∆(Yi), and µi ∈∆(Pi). I
consider general continuous utility functions ui : A i ×Pi →R. Boundedness of Vi and vi follows
immediately from boundedness of ui. Below I prove the remaining properties.

Claim 1. For any µi ∈∆(Pi), and any optimal stopping time τi, Pµi (τi > T)≤ 2∥ui∥∞/ciT .

Proof. Let ∥ui∥∞ = max(ai ,pi)∈A i×Pi |u(ai, pi)| < ∞. We then have that, for any µi ∈ ∆(Pi) and
T ∈N,
−∥ui∥∞ ≤Vi(µi)≤Pµi (τi ≤ T)∥ui∥∞+Pµi (τi > T)(∥ui∥∞− ciT)=⇒Pµi (τi > T)≤ 2∥ui∥∞/ciT.

Claim 2. vi is uniformly continuous.

Proof. Eµi [ui(ai, pi)] is jointly continuous in (ai,µi) with respect to product topology. Let µi,n →
µi, ai,n → ai. Note that ∀ϵ > 0, ∃N such that ∀n ≥ N , ∀pi, |ui(ai,n, pi)− ui(ai, pi)| < ϵ/2 and
|Eµi,n[ui(ai, pi)]−Eµi [ui(ai, pi)]| < ϵ/2. Hence,
|Eµi,n[ui(ai,n, pi)]−Eµi [ui(ai, pi)]| ≤ |Eµi,n[ui(ai,n, p)−ui(ai, pi)]|+|Eµi,n[ui(ai, pi)]−Eµi [ui(ai, pi)]| < ϵ.
Continuity of vi follows from Berge’s maximum theorem and uniform continuity from Heine–
Cantor theorem.

Claim 3. Vi is uniformly continuous.

Proof. Let Ti,T denote the set of stopping times τ′ ∈ Ti that are bounded above by T and, for
every T ∈N, Vi,T :∆(Pi)→R be given by

Vi,T(µ) := sup
τ′∈Ti,T

Eµi [vi(µi | yτ
′

i )− ci ·τ′].
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Note that, as Ti,T is finite, it is compact with respect to the discrete topology, and an application
of Berge’s maximum theorem implies Vi,T is continuous.

Note that, for any µi ∈ ∆(Pi), T ∈ N, 0 ≤ Vi(µi)−Vi,T(µi) ≤ Pµi (τi > T)∥ui∥∞ ≤ 2∥ui∥2∞/ciT.

Hence, ∥Vi −Vi,T∥ ≤ 2∥ui∥2∞/ciT, and Vi,T converges uniformly to Vi. Since for any T , Vi,T is in
the space of bounded continuous functions C0

b(∆(Pi)), which, endowed with the sup-norm is a
Banach space, Vi is continuous; by the Heine–Cantor theorem, it is uniformly continuous.

Claim 4. vi, Vi, and Vi,T are convex, for any T ∈N.

Proof. This follows since each of these can be seen as the pointwise supremum over a family of
convex functions over ∆(Pi), which is compact with respect to ∥ ·∥LP .

Proof of Lemma 1. By contrapositive, that (2) implies (1) is straightforward. I prove a more
general claim that implies the converse. Let Στi

−i := {σ−i ∈∆(A−i) | Pσ−i (τi <∞) = 1} denote the
opponents’ distribution actions with respect to which player i’s optimal stopping time is finite
with probability 1.

Lemma 6. On Στi
−i, bi is a continuous mapping to ∆(A i).

Proof. Fix a selection of optimal choices σ∗
i (µ′

i) ∈ argmaxσi∈∆(A i)Eµ′i
[ui(σi,σ′

−i)]. For t ∈ N, let
bi,t : Στi

−i → [0,1]|A i | be given by bi,t(σ−i) := Eσ−i [1τi<tσ
∗
i (µi | yτi

i )], and pi,t : Στi
−i → [0,1] denote

pi,t(σ−i) :=Pσ−i (τi < t). Note that, for every t′ ≥ t, bi,t ≤ bi,t′ and pi,t ≤ pi,t′ , ensuring pointwise
convergence to bi and 1, respectively. Further, both bi,t and pi,t are continuous.

Since pi,t → 1, by Dino’s theorem pi,t converges uniformly on Στi
−i. We then have ∥bi(σ−i)−

bi,t(σ−i)∥1 ≤ 1− i,t(σ−i), and bi,t also converges uniformly to bi |Στi
−i

: Στi
−i → [0,1]|A i |, ensuring

that, on Στi
−i, bi is continuous. To see that bi(σ−i) ∈ ∆(A i) for any σ−i ∈ Στi

−i, note that 1 ≥
∥bi(σ−i)∥1 ≥ ∥bi,t(σ−i)∥1 ≥ pi,t(σ−i)→ 1.

Proof of Remark 1. Let ∑
ℓ∈[1.. t]δyt

i,ℓ
/t =: yi

t ∈ ∆(A−i) denote the empirical frequency. When
µi has full support on ∆(A−i), then there is φ : R++ → R++ such that infσ−i∈∆(A−i)µ(Bϵ(σ−i)) ≥
φ(ϵ). Then, by Diaconis and Freedman (1990), for every ϵ > 0, there is T such that for all t ≥ T ,
µi,t(Bϵ/2(yi

t))/(1−µi,t(Bϵ/2(yi
t)) ≥ 2−ϵ

ϵ
, which implies ∥µi,t −δyi

t∥LP ≤ ϵ. Immediately, for every
ϵ> 0, there is T such that for all t ≥ T ,

∥µi,t −µi,t+1∥LP ≤ ∥µi,t −δyi
t∥LP +∥µi,t+1 −δyi

t+1∥LP +∥δyi
t −δyi

t+1∥LP ≤ 2/3ϵ+2/t ≤ ϵ.
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As Vi is uniformly continuous (cf. Proposition 1), this implies ∃T i such that ∀t ≥ T , ∀yt+1
i ,

Vi(µi | yt+1
i )−Vi(µi | yt

i )≤ ci =⇒ Eµi [Vi(µi | yt+1
i )−Vi(µi | yt

i ) | yt
i ]≤ ci =⇒ τi ≤ T i.

When the prior does not allow for correlation, µi = × j ̸=iµi j and each marginal µi j uniformly
accumulates around the empirical frequency projected on ∆(A j). As I is finite, one can similarly
obtain a uniform rate of convergence that depends only on t. It is then straightforward to adjust
the proof to obtain the result.

Proof of Proposition 2. Let A i = {0,1}, i ∈ I; denote the probability that player i chooses action
1 by σi. By manner of a continuous-time approximation as in Fudenberg and Levine (1998, Ch.
2), the dynamic system can be written as σ̇i = bi(σ j)−σi, i, j ∈ I , i ̸= j. The Jacobian of the
dynamic system is given by (

−1 b′
i(σ j)

b′
j(σi) −1

)

and its eigenvalues are given by λ = −1±
√

b′
i(σ j)b′

j(σi), where differentiability of bi,b j is en-
sured by Theorem 4. If b′

i(σ j)b′
j(σi) ≤ 0, there is a unique σ such that bi(σ j) =σi and, since the

real parts of the eigenvalues of the Jacobian matrix are strictly negative, by the Jacobian con-
jecture on global asymptotic stability — proved to hold on the plane (Chen et al., 2001) — σ is
globally asymptotically stable.

In particular, if there is a unique Nash equilibrium, either one player has a dominant strategy
(and then b′

i = 0 for some player i) or neither does. If some player does not sample, i.e. τi = 0 for
some player i, then again b′

i = 0. If both players sample, we must then have b′
i(σ j)b′

j(σi)< 0. In
any of these cases, b′

i(σ j)b′
j(σi)≤ 0.

Proof of Remark 4. Let c′i ≥ ci and denote V ′
i and Vi the value functions associated with c′i and

ci, respectively. Since vi(µi) ≤ V ′
i (µi) ≤ Vi(µi), it is immediate that Vi(µi) = vi(µi) =⇒ V ′

i (µi) =
vi(µi). Let τ′i and τi the earliest optimal stopping times associated with c′i and ci, respectively.
Then{
ω ∈Ω

∣∣∣ τi(ω)≤ t
}
=

{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
Vi(µi | yt′

i (ω))= vi(µi | yt′
i (ω))

Vi(µi | yℓi (ω))> vi(µi | yℓi (ω)), ∀ℓ< t′

}

⊆
{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
V ′

i (µi | yt′
i (ω))= vi(µi | yt′

i (ω))

V ′
i (µi | yℓi (ω))> vi(µi | yℓi (ω)), ∀ℓ< t′

}
= {

ω ∈Ω : τ′i(ω)≤ t
}
.
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Proof of Lemma 2. Take any ai ∈ A i \ Ak
i . For δ≥ 0 define

Bδ(∆(Ak−1
−i )) := {σ−i ∈∆(A−i) | ∃σ′

−i ∈∆(Ak−1
−i ) : ∥σ−i −σ′

−i∥ ≤ δ}

and let

hk
i (δ) := max

σ−i∈Bδ(∆(Ak−1
−i ))

(
ui(ai,σ−i)− max

σ′
i∈∆(A i)

ui(σ′
i,σ−i)

)
.

Since ui is continuous and δ 7→ Bδ(∆(Ak−1
−i )) is a continuous, convex-, compact-, and nonempty-

valued correspondence, hk
i is continuous by Berge’s maximum theorem. As Bδ(∆(Ak−1

−i )) in-
creases in subset order with δ, hk

i is nondecreasing.

By definition of k-rationalizability, hk
i (0)< 0. This implies that there is δ′ > 0 such that, ∀δ≤ δ′,

hk
i (δ)≤ hk

i (0)/2< 0. Then, for any δ< δ′, and anyσ−i ∈ Bδ(∆(Ak−1
−i )), ui(ai,σ−i)−maxσ′

i∈∆(A i) ui(σ′
i,σ−i)≤

hk
i (0)/2 < 0. Finally, observe that maxσ−i∈∆(A−i)\∆(Ak−1

−i ) maxσi∈∆(A i) ui(ai,σ−i) − ui(σi,σ−i) <
2∥ui∥∞. Let ϵ<−hk

i (0)/(4∥ui∥∞−hk
i (0)) and µi(Bδ(∆(Ak−1

−i )))> 1−ϵ. It then follows that

Eµi [ui(ai,σ−i)]− max
σi∈∆(A i)

Eµi [ui(σi,σ−i)]≤µi(Bδ(∆(Ak−1
−i )))hk

i (0)/2+ (1−µi(Bδ(∆(Ak−1
−i ))))2∥ui∥∞

< (1−ϵ)hk
i (0)/2+ϵ2∥ui∥∞ < 0.

Proof of Lemma 3. By assumption, yt
i ∈∆(Ak−1

−i ). Since every player’s prior has full support, by
Diaconis and Freedman (1990), each player’s prior concentrates on an δ-ball around the empirical
frequency of at a uniform rate. This implies that, for any δ,ϵ > 0 there is a T such that, for all
t ≥ T and any yt

i ∈ Ak−1
−i , µi,t(Bδ(∆(Ak−1

−i )))≥µi,t(Bδ(δyt
i
))> 1−ϵ.

Auxiliary Results.

Lemma 7. For any ϵ > 0, ∃δ > 0 such that for any T ∈ N, ci > 0, Eµi [vi(δσ−i )]−Vi(µi) ≤ (1−
2exp(−2Tδ2))ϵ/4+8exp(−2Tδ2)∥ui∥∞+ ciT .

Proof. Let T̂i be the stopping time such that player i stops after T periods and let yT
i denote the

empirical frequency of yT
i , i.e. yT

i := ∑
t∈[1..T]δyi,t /T . Let âi : ∆(A−i) → A i be such that âi(µ′

i) ∈
argmaxEµ′i [ui(ai,σ−i)]. Since ui(ai(σ−i),σ−i) = maxai∈A i ui(ai,σ−i) is continuous by Berge’s
maximum theorem and uniformly so by Heine–Cantor theorem, let δ > 0 be such that for any
∥σ−i−σ′

−i∥ < δ=⇒ |ui(ai(σ−i),σ−i)−ui(ai(σ′
−i),σ

′
−i)|+|ui(ai(σ′

−i),σ−i)−ui(ai(σ′
−i),σ

′
−i)| < ϵ/4.

Since T̂i and âi(yT̂i
i ) are potentially suboptimal stopping time and choices for player i, Vi(µi) ≥
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Eµi [ui(âi(yT̂i
i ),σ−i)− ciT̂i]. For ci = k/(4T)> 0,

Eµi [vi(δσ−i )]−Vi(µi)≤ Eµi [ui(âi(σ−i),σ−i)−ui(âi(yT̂i ),σ−i)+ ciT̂i]

= Eµi [ui(âi(σ−i),σ−i)−ui(âi(yT̂i ), yT̂i
i )+ui(âi(yT̂i

i ), yT̂i
i )−ui(âi(yT̂i

i ),σ−i)]+ ciT

≤ (1−2exp(−2Tδ2))ϵ/4+8exp(−2Tδ2)∥ui∥∞+ ciT,

where the last inequality follows by the Dvoretzky–Kiefer–Wolfowitz–Massart inequality (Mas-
sart, 1990), which delivers that, for any δ> 0 and σ−i, Pσ−i (∥σ−i − yT

i ∥ > δ)< 2exp(−2Tδ2).

Proof of Lemma 4. I first prove the weaker statement:

Claim 5. Suppose that there is no action ai that is a best response to all distribution of opponents’

actions σ−i ∈ ∆(A−i). Then, for any full support prior µi ∈ ∆(A−i), there is a sampling cost ci > 0

such that the associated earliest optimal stopping time τi ≥ 1.

Proof. I start by showing that Eµi [vi(δσ−i )]− vi(µi) > 0. Since there is no action ai that is a
best response to all distribution of opponents’ actions σ−i ∈ ∆(A−i), for any µi with full sup-
port and any ai(µi) ∈ argmaxai∈A i

Eµi [ui(ai,σ−i)], there is σ′
−i ∈ ∆(A−i) such that vi(δσ′

−i
) =

maxai∈A i ui(ai,σ′
−i) > ui(ai(µi),σ′

−i). By continuity, there is an ϵ > 0 such that for all σ′′
−i ∈

Bϵ(σ′
−i), vi(δσ′′

−i
)−ui(ai(µi),σ′′

−i)≥ (vi(δ′σ−i
)−ui(ai(µi),σ′

−i))/2> 0. Hence, Eµi [vi(δσ−i )]−vi(µi)≥
µi(Bϵ(δσ′

−i
))(vi(δ′σ−i

)−ui(ai(µi),σ′
−i))/2> 0.

Next, we show that, if ci is low enough,Vi(µi)> vi(µi) (implying τi ≥ 1) by proving that Eµi [vi(δσ−i )]−
Vi(µi) < Eµi [vi(δσ−i )]− vi(µi) =: k. By Lemma 7, for any ϵ > 0, ∃δ > 0 such that for any T ∈ N,
ci > 0, Eµi [vi(δσ−i )]−Vi(µi) ≤ (1−2exp(−2Tδ2))ϵ/4+8exp(−2Tδ2)∥ui∥∞+ ciT . Letting ϵ = k,
ci = k/(4T), we have Eµi [vi(δσ−i )]−Vi(µi) ≤ k/2+ 8exp(−2Tδ2)∥ui∥∞. It is then straightfor-
ward to see that, for T large enough (and ci > 0 small enough), Eµi [vi(δσ−i )]−Vi(µi) < k =
Eµi [vi(δσ−i )]−vi(µi), proving the result.

Now consider all possible posteriors following any possible t realizations, {µi | yt
i , yt

i ∈∪t∈[1..T]Y t},
observing that this is a finite set. Given the nature of the information process, since the prior µi

has full support, so do the posterior beliefs. By the above claim, for each µi | yt
i , there is a cost

ci > 0 such that player i would find it optimal to acquire at least one more signal. Taking the
lowest of all such costs implies that under such cost, player i would deem it optimal to acquire
at least T signals, concluding the proof.
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Proof of Theorem 4. Label player i’s actions so that ui(1,σ−i)−ui(0,σ−i) is increasing in σ−i.

Proof of Theorem 4(i). I first prove a more general comparative statics result:

Proposition 7. Pσ−i (ai ∈ A∗
i (µi | yτi

i ) and τi ≤ t) is increasing with respect to ≥ai , and Pσ−i (ai ∉
A∗

i (µi | yτi
i ) and τi ≤ t) is decreasing with respect to ≥ai , for any t ∈N and σ−i ∈∆(A−i).

Proof. Let ũi ≥ai ui and denote the respective (i) value functions, (ii) earliest optimal stopping
times, (iii) optimal choices at given beliefs, and (iv) selections of optimal choices by (i) Ṽi and Vi,
(ii) τ̃i and τi, (iii) Ã∗

i and A∗
i , and (iv) σ̃∗

i and σ∗
i , respectively. With g := ũi(ai, ·)−ui(ai, ·), by

definition we obtain

Vi(µi)+Eµi [σ̃
∗
i (µi | yτ̃i

i )(ai)g(σ′
−i)] ≥ Ṽi(µi) ≥ Vi(µi)+Eµi [σ

∗
i (µi | yτi

i )(ai)g(σ′
−i)] ≥ Vi(µi)

Lemma8. Vi(µi)= Eµi [ui(ai,σ′
−i)]=⇒ Ṽi(µi)= Eµi [ũi(ai,σ′

−i)] and, for a′
i ̸= ai Ṽi(µi)= Eµi [ũi(a′

i,σ
′
−i)]=⇒

Vi(µi)= Eµi [ui(a′
i,σ

′
−i)].

Proof. Since Eµi [σ̃
∗
i (µi | yτ̃i

i )(ai)g(σ′
−i)]≤ Eµi [g(σ′

−i)], ifVi(µi)= Eµi [ui(ai,σ′
−i)], then Eµi [ũi(ai,σ′

−i)]=
Eµi [ui(ai,σ′

−i)]+Eµi [g(σ′
−i)]≥Vi(µi)+Eµi [σ̃

∗
i (µi | yτ̃i

i )(ai)g(σ′
−i)]≥ Ṽi(µi)≥ Eµi [ũi(ai,σ′

−i)]. More-
over, if Ṽi(µi)= Eµi [ũi(a′

i,σ
′
−i)]= Eµi [ui(a′

i,σ
′
−i)], then Eµi [ui(a′

i,σ
′
−i)]= Ṽi(µi)≥Vi(µi)≥ Eµi [ui(a′

i,σ
′
−i)].

Note that, by the contrapositive of Lemma 8, Ṽi(µi)> Eµi [ũi(ai,σ′
−i)]=⇒Vi(µi)> Eµi [ui(ai,σ′

−i)]

and Vi(µi)> Eµi [ui(a′
i,σ

′
−i)]=⇒ Ṽi(µi)> Eµi [ũi(a′

i,σ
′
−i)] for a′

i ̸= ai. This implies{
ω ∈Ω

∣∣∣ τi(ω)≤ t and ai ∈ A∗
i (µi | yτi

i (ω))
}

=
{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
Vi(µi | yt′

i (ω))= Eµi [ui(ai,σ′
−i) | yt′

i (ω)]

Vi(µi | yℓi (ω))> Eµi [ui(a′
i,σ

′
−i) | yt′

i (ω)], ∀ℓ< t′,∀a′
i

}

⊆
{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
Ṽi(µi | yt′

i (ω))= Eµi [ũi(ai,σ′
−i) | yt′

i (ω)]

Ṽi(µi | yℓi (ω))> Eµi [ui(a′
i,σ

′
−i) | yt′

i (ω)], ∀ℓ< t′,∀a′
i ̸= ai

}

=
{
ω ∈Ω

∣∣∣ τ̃i(ω)≤ t and ai ∈ Ã∗
i (µi | yτ̃i

i (ω))
}
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and {
ω ∈Ω

∣∣∣ τ̃i(ω)≤ t and ai ∉ Ã∗
i (µi | yτ̃i

i (ω))
}

=
{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
Ṽi(µi | yt′

i (ω))= ṽi(µi | yt′
i (ω))> Eµi [ũi(ai,σ′

−i) | yt′
i (ω)]

Ṽi(µi | yℓi (ω))> Eµi [ui(a′
i,σ

′
−i) | yt′

i (ω)], ∀ℓ< t′,∀a′
i

}

⊆
{
ω ∈Ω

∣∣∣∣ ∃t′ ≤ t :
Vi(µi | yt′

i (ω))= vi(µi | yt′
i (ω))> Eµi [ui(ai,σ′

−i) | yt′
i (ω)]

Vi(µi | yℓi (ω))> Eµi [ui(ai,σ′
−i) | yt′

i (ω)], ∀ℓ< t′

}

=
{
ω ∈Ω

∣∣∣ τi(ω)≤ t and ai ∉ A∗
i (µi | yτi

i (ω))
}

.

The above, togetherwith Lemma 5—which is proved independently fromTheorem 4(i) — delivers
the result. I note Proposition 7 further implies

Corollary 1. Pσ−i (ai ∈ (resp. ∉)A∗
i (µi | yτi

i ) | τi ≤ t) is increasing (resp. decreasing) with respect to

≥ai , ∀σ−i ∈∆(A−i) and t ∈N.

Proof of Theorem 4(ii). For ai ∈ {0,1}, define (i) uai
i (a′

i,σ−i) := ui(a′
i,σ−i)−ui(1−ai,σ−i), (ii)

vai
i (µi) := maxa′

i∈A i Eµi [u
ai
i (a′

i,σ−i)], and (iii) V ai
i (µi) := supti∈Ti

Eµi [v
ai
i (µi | yti

i )− ci · ti]. Note
that, by definition, uai

i (1− ai,σ−i) = 0. Moreover, vai
i (µi) = vi(µi)−Eµi [ui(1− ai,σ−i)], which

also implies that V ai
i (µi)=Vi(µi)−Eµi [ui(1−ai,σ−i)]. A useful property of V ai

i is as follows:

Lemma 9. For any µ′
i ≥SSD µi V 1

i (µ′
i)≥V 1

i (µi) and V 0
i (µ′

i)≤V 0
i (µi).

Proof. LetBai
i : C 0(∆(∆(A−i)))→C 0(∆(∆(A−i))) be such thatBai

i (w)(µi) :=max{vai
i (µi),Eµi [w(µi |

yi)]− ci}. As argued in Section 2, V ai
i is a fixed-point of Bai

i . Moreover, by Remark 1, there is a
finite n ∈N, such that V ai

i = Bai
i

(n)(vai
i ), where Bai

i
(1) = Bai

i and, for n ≥ 1, Bai
i

(n+1) = Bai
i ◦Bai

i
(n).

Note that v1
i (resp. v0

i is increasing (resp. decreasing) in ≥SSD . If w ∈C 0(∆(∆(A−i))) is increasing
in ≥SSD , then so is B1

i (w) — a symmetric argument applies to B0
i . To see this, note that

B1
i (w)(µ′

i)=max{v1
i (µ′

i),Eµ′i [σ−i]w(µ′
i | 1)+Eµ′i [1−σ−i]w(µ′

i | 0)− ci}

≥max{v1
i (µi),Eµ′i [σ−i]w(µi | 1)+Eµ′i [1−σ−i]w(µi | 0)− ci}

≥max{v1
i (µi),Eµi [σ−i]w(µi | 1)+Eµi [1−σ−i]w(µi | 0)− ci}= B1

i (w)(µi),

where the first inequality follows frommonotonicity of v1
i with respect to≥SSD , by monotonicity

of w and the fact that µ′
i ≥SSD µi =⇒ µ′

i|yi ≥SSD µi|yi for yi ∈ {0,1}, and the second because
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Eµ′i
[σ−i]≥ Eµi [σ−i] (by FOSD) and, as can be shown, µi|1≥SSD µi|0, implying w(µi|1)≥ w(µi|0).

Lemma 9 implies:

Corollary 2. Let µ′
i ≥SSD µi. Vi(µ′

i | yt
i ) = Eµ′i [ui(0,σ−i) | yt

i ] =⇒ 0 = V 1
i (µ′

i | yt
i ) ≥ V 1

i (µi | yt
i ) ≥

0 =⇒ Vi(µi | yt
i ) = Eµi [ui(0,σ−i) | yt

i ] and Vi(µi | yt
i ) = Eµi [ui(1,σ−i) | yt

i ] =⇒ 0 = V 0
i (µi | yt

i ) ≥
V 0

i (µ′
i | yt

i )≥ 0=⇒Vi(µ′
i | yt

i )= Eµ′i [ui(1,σ−i) | yt
i ].

In order to conclude the proof of Theorem 4(ii), let τi and τ′i denote the earliest optimal stopping
times associatedwithµi andµ′

i. Then, byCorollary 2,
{
ω ∈Ω

∣∣∣ τi(ω)≤ t and 1 ∈ (resp. ∉)A∗
i (µi | yτi

i (ω))
}
⊆

(resp.⊇)
{
ω ∈Ω

∣∣∣ τ′i(ω)≤ t and 1 ∈ (resp. ∉)A∗
i (µ′

i | y
τ′i
i (ω))

}
.

Proof of Theorem 4(iii). Let

N :=
{

n ∈N2
0 | ∃yt

i : (i) t = n0 +n1, (ii)
∑

ℓ∈[1.. t]
yi,ℓ = n1, and (iii) ∀ℓ≤ t,Vi(µi | yℓi )> vi(µi | yℓi )

}
,

and, for j ∈ {0,1}, let N j := {n ∈N2
0 | n− ( j,1− j) ∈ N }. Note that, if n ∈ N j , then there is some

sequence yt
i satisfying t = n0 + n1,

∑
ℓ∈[1.. t] yi,ℓ = n1, and along which player i decides to keep

sampling every period (according to τi), i.e. Vi(µi | yℓi ) > vi(µi | yℓi ) for all ℓ < t, and decides to
stop at yt

i and take action j — a consequence of Lemma 5. Let Ti := supsupp{τi} (where supp is
defined with respect to µi). By Remark 1, Ti <∞ and thus, ∀n ∈N , n0+n1 < Ti and N is finite.
Below I implicitly rely on the fact that, if (n0,n1), (n′

0,n′
1) ∈ N j and n′

1− j > n1− j , then n′
j ≥ n j ,

which is implied by Corollary 2.

I recursively define the probability of stopping and choosing action 1. Define the asymmetric part
of a linear order on N given by n▷n′ if and only if n′

1 > n1 or n′
1 = n1 and n′

0 > n0. Let p : N ×
[0,1]→ [0,1] be given by p(n;σ−i) :=σ−i if n+(0,1) ∈N1 and p(n;σ−i) :=σ−i p(n+(0,1);σ−i)+
(1−σ−i)p(n+ (1,0);σ−i) if otherwise; p can be recursively defined on n ∈ N increasing with
respect to ▷. Extend p to n ∈ N j by letting p(n;σ−i) = j if n ∈ N j . Note that p((0,0);σ−i) =
Pσ−i (1= A i(µi | yτi

i ))= Eσ−i [σ
∗
i (µi | yτi

i )].

I now show by induction that, if (0,0) ∈ N , p((0,0);•) is C ∞ and strictly increasing. Note that
for n : n′▷n for all n′ ̸= n in N , n0+n1 = Ti−1 and p(n;σ−i)=σ−i is C ∞ and strictly increasing
in σ−i and 0= p(n+ (0,1);σ−i)< p(n+ (0,1);σ−i)= 1, ∀σ−i ∈ [0,1).

Suppose that, for all n′ ∈ N : n▷ n′, p(n′;•) is C ∞ and strictly increasing, and that p(n′ +
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(1,0);•) < p(n′ + (0,1);•). As p(n;σ−i) = σ−i p(n + (0,1);σ−i)+ (1−σ−i)p(n + (1,0);σ−i) and
n▷ n+ (1,0),n+ (0,1), then p(n+ (0,1);•) and p(n+ (1,0);•) are C ∞, strictly increasing, and
satisfy p(n+ (1,0);•) < p(n+ (0,1);•). Then p(n;•) ∈C ∞ and ∂

∂σ−i
p(n;σ−i) = p(n+ (0,1);σ−i)−

p(n+ (1,0);σ−i)+σ−i
∂

∂σ−i
p(n+ (0,1);σ−i)+ (1−σ−i) ∂

∂σ−i
p(n+ (1,0);σ−i)> 0 for all σ−i ∈ [0,1).

To obtain that Pσ−i (1 = A∗
i (µi | yτi

i ) and τi ≤ t) = Eσ−i [σ
∗
i (µi | yτi

i )1τi≤t] is also C ∞ and strictly
increasing inσ−i ∈ [0,1) for t ≥ n1(0), it is necessary to restrictN . Define n1(m) := n1 if (m,n1) ∈
N1 and letN t := {n ∈N | n0+n1(n0)≤ t}, N t

j := {n | n−(1− j, j) ∈N }. Let pt : N ×[0,1]→ [0,1]

be given by pt(n;σ−i) :=σ−i if n+(0,1) ∈N t
1 and pt(n;σ−i) :=σ−i p(n+(0,1);σ−i)+(1−σ−i)p(n+

(1,0);σ−i) if otherwise. Extend pt to n ∈ N t
j by letting pt(n;σ−i) = j if n ∈ N t

j . An analogous
inductive argument applied to pt delivers the result. For t < n1(0), Pσ−i (1= A∗

i (µi | yτi
i ) and τi ≤

t)= 0, for all σ−i ∈ [0,1].

Proof of Lemma 5. Label player i’s actions so that ui(1,σ−i)−ui(0,σ−i) is increasing in σ−i.
If, (i) ui(1,σ−i)−ui(0,σ−i)≤ 0 ∀σ−i or (ii) ui(1,σ−i)−ui(0,σ−i)≥ 0 ∀σ−i, then τi = 0. Suppose
then that τi > 0 and note a−i = argmaxai∈A i

ui(ai,a−i). Let Vi(µi) > vi(µi) and Vi(µi | a−i) =
Eµi [ui(1− a−i,σ−i) | a−i] and observe that, from Lemma 9, 0 = V a−i

i (µi | a−i) ≥ V a−i
i (µi) ≥ 0,

which implies Vi(µi)= Eµi [ui(1−a−i,σ−i)]≤ vi(µi), a contradiction.

Proof of Proposition 3. Note that in a binary action game there are multiple unique Nash
equilibria if and only if for any i ∈ I , ui(1,1)−ui(0,1),ui(0,0)−ui(1,0) > 0. This implies that,
for both players, both actions are undominated and so, by Lemma 4, players sample at least once
whenever the sampling costs are sufficiently low. By Lemma 5, if σ−i = 1 (=0) and τi > 0, then
Eσ−i [σ

∗
i (µi | yτi

i )]= 1 (=0). Hence, (0,0) and (1,1) are both Nash equilibria and sequential sampling
equilibria.

Recall that, by assumption, ui(1,σ−i)−ui(0,σ−i) is strictly monotone. If there is a unique Nash
equilibrium, either (i) both players have aweakly dominant action; (ii) one player has both actions
undominated, and the other has a weakly dominant action; or (iii) both players have undomi-
nated actions. In (i), uniqueness of a sequential sampling equilibrium follows as both players
always choose their weakly dominant action. In (ii), the player with the weakly dominant ac-
tion chooses it with probability 1, and the opponent, whenever they sample at least once, by
Lemma 5, will choose the best response to the weakly dominant action with probability 1, thus
entailing a unique sequential sampling equilibrium. In (iii), uniqueness of a Nash equilibrium
implies a payoff structure akin to a matching pennies game: one player, i, wants to match the
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other, i.e. ui(1,σ j)−ui(0,σ j) is strictly increasing, and their opponent j seeks to mismatch, i.e.
u j(1,σi)−u j(0,σi) is strictly decreasing. Consequently, by Theorem 4, σ j 7→ bi(σ j)= Eσ j [σ

∗
i (µi |

yτi
i )] ∈ [0,1] is increasing, and σi 7→ b j(σi) = Eσi [σ

∗
j (µ j | yτ j

j )] ∈ [0,1] is decreasing, both are con-
tinuous, and therefore their graph has a unique intersection. Lemma 5 clarifies that the sequential
sampling equilibrium is unaffected by the selection of tie-breaking σ∗

i , σ
∗
j .

Proof of Proposition 4. Let B(σ−i, t) to denote a Beta distribution with parameters α,β ≥ 0,
such that t = α+β> 0 and σ−i = α/t, with the convention that B(1, t) and B(0, t) correspond to
Dirac measures on 1 and 0, respectively. Label player i’s actions so that ui(1,σ−i)−ui(0,σ−i) is
increasing in σ−i.

Let V ai
i be as defined in the proof of Lemma 9. I show the following properties of V ai

i :

Lemma 10. V 1
i (B(σ−i, t)) (resp. V 0

i (B(σ−i, t))) is (1) increasing (resp. decreasing) in σ−i; (2) convex

in σ−i; (3) decreasing in t; (4) continuous in (σ−i, t).

Proof. (1) follows immediately from Lemma 9, since for σ−i >σ′
−i, B(σ−i, t)≥SSD B(σ′

−i, t).

For (2), note that V 1
i (B(σ−i, t))=V 0

i (B(σ−i, t))+ui(1,σ−i)−ui(0,σ−i), and thus it suffices to show
convexity of V 1

i (B(σ−i, t)) in σ−i. Let z(σ−i, t) be a random variable that delivers 1
t+1 (tσ−i +1)

with probability σ−i, and 1
t+1 (tσ−i+0) with probability 1−σ−i. Note that, for any w : [0,1]×R++

that is increasing and convex in the first argument, for any σ−i ≥σ′
−i, λ ∈ (0,1), and σ′′

−i :=λσ−i+
(1−λ)σ′

−i, straightforward algebra shows that E[w(z(σ′′
−i, t)]≤λE[w(z(σ−i, t)]+(1−λ)E[w(z(σ′

−i, t)].

I observe that, by definition, v1
i (B(σ−i, t))=maxai∈A i ui(ai,σ−i)−ui(0,σ−i), which is increasing

and convex in σ−i and invariant with respect to t.

Now I show that if w(B(σ−i, t)) is increasing and convex in σ−i, so is B1
i (w)(B(σ−i, t)):

B1
i (w)(B(σ′′

−i, t))=max
{
v1

i (B(σ′′
−i, t)) , E[w(z(σ′′

−i, t+1))]− ci
}

≤max{λv1
i (B(σ−i, t))+ (1−λ)v1

i (B(σ′
−i, t)) , λE[w(z(σ−i, t+1))]+ (1−λ)E[w(z(σ′

−i, t+1))]− ci}

≤λB1
i (w)(B(σ−i, t))+ (1−λ)B1

i (w)(B(σ′
−i, t)).

By similar arguments as in Lemma 9—V 1
i is a fixed point ofB1

i which can be obtained by applying
the n-th composition of B1

i with itself to v1
i — we have that V 1

i (B(σ−i, t)) is convex in σ−i, and
thus so is Vi(B(σ−i, t)).

For (3), note that E[z(σ−i, t)] = σ−i and that, for t < t′, z(σ−i, t) is a mean-preserving spread of
z(σ−i, t′); hence for any convex function f , E[ f (z(σ−i, t))]≥ E[ f (z(σ−i, t′))]. Take any w such that
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w(B(σ−i, t)) is convex in σ−i and decreasing in t. Then, for any t′ > t,

Bi(w)(B(σ−i, t′)=max
{
vi(B(σ−i, t′)) , E[w(B(z(σ−i, t′), t′))]− ci

}
=max

{
vi(B(σ−i, t)) , E[w(B(z(σ−i, t′), t′))]− ci

}≤max
{
vi(B(σ−i, t)) , E[w(B(z(σ−i, t′), t))]− ci

}
≤max {vi(B(σ−i, t)) , E[w(B(z(σ−i, t), t))]− ci}= Bi(w)(B(σ−i, t)).

By the same argument as before, Vi(B(σ−i, t)) is then decreasing in t.

Finally, (4) follows immediately from the fact that for any (σn
−i, tn)→ (σ−i, t), B(σn

−i, tn)→ B(σ−i, t)

(with respect to ∥·∥LP ), and therefore by Proposition 1, Vi(B(σ−i, t)) is continuous in (σ−i, t).

By Corollary 2, ifVi(B(σ−i, t))= ui(ai,σ−i) for ai = 1 (resp. ai = 0), thenVi(B(σ′
−i, t))= ui(ai,σ′

−i)

for any σ′
−i ≥ σ−i (resp. ≤), since B(σ′

−i, t) ≥SSD B(σ−i, t). Define σ−i(t) := min{σ−i ∈ [0,1] |
Vi(B(σ−i, t))= ui(1,σ−i)} and σ−i(t) :=max{σ−i ∈ [0,1] |Vi(B(σ−i, t))= ui(0,σ−i)}.

That σ−i(t) is continuous and decreasing in t follows from continuity of Vi(B(σ−i, t)) in (σ−i, t),
continuity of ui(1,σ−i) in σ−i, and the fact that Vi(B(σ−i, t)) is decreasing in t and ui(1,σ−i)−
ui(0,σ−i) is increasing in σ−i. An analogous argument applies to show that σ−i(t) is continuous
and increasing in t.

Finally, I show that both these functions converge to σ̃−i. To see this, note that for µi given by
B(σ−i, t), simple algebra shows that Eµi [vi(µi | yi)]−vi(µi)= E[vi(z(σ−i, t))]−vi(σ−i) is maximized
for any t at σ−i = σ̃−i : σ̃−iui(1,1)+ (1− σ̃−i)ui(1,0) = σ̃−iui(0,1)+ (1− σ̃−i)ui(0,0), with maxi-
mum value 1

t+1 (ui(1,1)−ui(0,1)+ui(0,0)−ui(1,0))(1−σ̃−i)σ̃−i. Therefore, it is always optimal to
keep sampling at belief B(σ̃−i, t) if t < T := (ui(1,1)−ui(0,1)+ui(0,0)−ui(1,0))(1−σ̃−i)σ̃−i/ci−1.
From here, one can deduce that τi ≤ T for any Beta prior and that σ−i(t) > σ̃−i > σ−i(t) for all
t < T and σ−i(t)= σ̃−i =σ−i(t), for all t ≥ T .

Proof of Theorem 5. I prove the result when priors allow for correlation; adjusting the proof
to accommodate the case in which they do not is tedious but straightforward.

Let Σ∗
i (µi) := argmaxσi∈∆(A i)Eµi [ui(σi,σ−i)] denote the set of maximizers at belief µi.

I first prove that if a sequence of probability measures µm
i ∈∆(∆(A−i)) weak∗ converges to δσ−i

and ai ∈ A i is not a best response to σ−i, then for any sequence of distributions σm
i ∈ Σ∗

i (µm
i ),

σm
i (ai) → 0. Note that Eµi [ui(σi,σ−i)] is jointly continuous in (σi,µi) with respect to the prod-

uct metric, where ∆(A i) is endowed with the standard Euclidean metric and ∆(∆(A−i)) with the
Lévy-Prokhorov metric. Then, by Berge’s maximum theorem, Σ∗

i is upper-hemicontinuous and
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compact-valued. Supposing that σm
i (ai) does not converge to zero, implies that for any conver-

gent subsequence of σm
i , its limit assigns strictly positive probability to ai being chosen, while

also belonging to Σ∗
i (δσ−i ), a contradiction.

Now take any sequence of profiles of action distributions {σn}n as in the statement of the theorem
and let {σm}m be a convergent subsequence of {σn}n with limit σk. Suppose that σk

i is not a best
response to σk

−i. This implies that ∃ai ∈ A i such that σk
i (ai) ≥ δ > 0 for some δ > 0 and ai is

not a best response to σk
−i. By continuity of ui, note that if ai is not a best response to σk

−i,
then it is not a best response to any σ−i ∈ Bϵ(σk

−i) for small enough ϵ > 0. By convergence of
σm, we then obtain that for all large enough m, ai is not a best response to σm

−i and σ
m
i (ai) ≥

δ/2. That is, Eσm
−i

[σ∗
i (µi | y

τm
i

i )(ai)] ≥ δ/2 ∀ large enough m, from which we deduce Pσm
−i

(σ∗
i (µi |

y
τm

i
i )(ai) ≥ δ/4) ≥ δ/4. In turn, from the above, this implies that there must be ϵ > 0 such that
Pσm

−i
(∥µi | y

τm
i

i −δσm
−i
∥LP ≥ ϵ) ≥ δ/4. I now prove that this cannot be the case, that is, I show that

limm→∞Pσk
−i

(∥µi | yi
τm

i −δσk
−i
∥LP > ϵ)= 0.

It would be natural to expect that, with sampling costs going to zero, optimal stopping time grows
unboundedly and, by the law of large numbers, players learn the true distribution of actions of
their opponents, best respond to it, and sequential sampling equilibrium converges to a Nash
equilibrium. But, conditional on stopping, the set of signals are neither independent or identically
distributed, so we cannot apply the law of large number directly. We then need to take a detour.

Denote player i’s the associated earliest optimal stopping time by τm
i and their value function

(which depends on cm
i ) as V m

i . From Lemma 4, there is {Tm}m such that τm
i ≥ Tm and Tm ↑∞.

By Diaconis and Freedman (1990), there is ϵ(t) nonincreasing and such that ϵ(t)→ 0 as t →∞ such
that ∥µi | yt

i −δyi
t∥LP ≤ ϵ(t) uniformly over sequences of t observations, yt

i ∈ Yi. Since, taking
yi,ℓ ∼σ−i, ∥δyi

t−δσ−i∥LP = ∥yi
t−σ−i∥ is a (bounded) supermartingale with respect to σ−i, by the

optional stopping theorem, for τi ≥ t, Eσ−i [∥δyi
τi −δσ−i∥LP ]≤ Eσ−i [∥δyi

t−δσ−i∥LP ]. Hence, for any
σ−i, Eσ−i [∥µi | yi

τm
i −δσ−i∥LP ] ≤ Eσ−i [∥δyi

τm
i
−δσ−i∥LP | yTm

i ]+ ϵ(Tm) ≤ Eσ−i [∥δyi
Tm −δσ−i∥LP ]+

ϵ(Tm)≤ Eσ−i [∥yi
Tm −σ−i∥]+ϵ(Tm).

Let xm := Eσm
−i

[∥yi
Tm −σm

−i∥] ∈ [0,2]. Suppose that {xm}m does not converge to 0. Take any con-
vergent subsequence xℓ→ γ> 0. For all large enough ℓ, xℓ ≥ γ/2. That is, Eσℓ−i

[∥yi
Tℓ−σℓ−i∥]≥ γ/2,

implying that Pσℓ−i
(∥yi

Tℓ−σℓ−i∥ ≥ γ/4)≥ γ/4, as otherwise Eσℓ−i
[∥yi

Tℓ−σℓ−i∥]≤ (1−γ/4)γ/4+γ/4≤
γ/4 < γ/2. However, by the Dvoretzky–Kiefer–Wolfowitz–Massart inequality (Massart, 1990)
Pσℓ−i

(∥yi
Tℓ −σℓ−i∥ ≥ γ/4)≤ 2exp(−Tℓγ2/8)→ 0, a contradiction.
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We conclude that limm→∞Eσm
−i

[∥µi | yi
τm

i −δσm
−i
∥LP ]≤ Eσm

−i
[∥yi

Tm −σm
−i∥]+ϵ(Tm)→ 0.

Proof of Proposition 6. By Diaconis and Freedman (1990), for any µi, there is Ti <∞ such that
∀t ≥ Ti, Eµi [σ

′
−i | at

−i] ∈ Bϵi (δa−i ). Take T :=maxi∈I Ti. By Lemma 4, there is c such that, τi ≥ T

for every player i for which ai is not always a best response (where c may depend on µ). Hence,
for any µ there is an N such that ∀n ≥ N , a is a sequential sampling equilibrium of 〈Γ,µ, cn〉.
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Online Appendix

Appendix B. General Information Structures
In this section, I extend sequential sampling equilibrium to accommodate analogy partitions and
more general information structures. For brevity, I’ll focus on the case in which players’ beliefs
allows for correlation.

B.1. Existence of a Sequential Sampling Equilibrium

Let us simplify the notation in our baseline setup: Yi := A−i, Pi := ∆(Yi), µi ∈ ∆(Pi) with full
support, and ui : A i ×Pi →R, a continuous function.

An analogy partition for player i can be represented by a surjective function f i : Yi → Zi, where
|Zi| < |Yi| <∞. Naturally, it defines a garbling: instead of observing yi, the player has access to
coarser information f i(yi). More generally, one can consider |Zi| × |Yi| stochastic matrices Bi,
where Bi(z, y) ∈ [0,1] and ∑

z∈Z Bi(z, y)= 1, and such that Bi has rank |Zi| < |Yi|.22

Let Q i := ∆(Zi) and νi be the pushforward measure on Q i given µi and Bi, where for every
measurable set S ⊆ Q i, νi(S) := µi({pi ∈ Pi | Bi pi =∈ S}). We assume that the player now has
access to iid draws from a fixed Bi pi,0 ∈ Q i. It is straightforward to adjust the definition of the
optimal stopping problem, expand the definition of an extended game with the additional primi-
tives {πi}i∈I , where πi denotes the information structure defined by (Bi, Zi), and have sequential
sampling equilibrium accommodate such more general information structures.

I provide the following sufficient condition for existence of a sequential sampling equilibrium:

Theorem 6. Let G := 〈Γ,µ, c,π〉 be an extended game such that for every player i, µi admits a

continuous density, and rank(Bi)= |Zi| < |A−i|. Then G admits a sequential sampling equilibrium.

Proof. Let JBi := det(BiBT
i ), which is strictly positive, as rank(Bi)= |Zi|. For convenience, define

πi : Pi →Q i as πi(pi) := Bi pi. Denote by gµi the density of µi. Denoting λn the n-dimensional
22Allowing for |Zi| = |Yi| is possible, but makes the proofs more cumbersome.
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Lebesgue measure, by the coarea formula (see Evans and Gariepy, 2015, Theorem 3.10) we have

Eµi [ui(ai, pi) | zt
i]=

∫
Pi

∏
ℓ∈[1..t]

(Bi pi)(zt
i,ℓ)ui(ai, pi)gµi (pi)dλ|Yi |−1(pi)

=
∫

Q i

∏
ℓ∈[1..t]

qi(zt
i,ℓ)

∫
π−1

i (qi)
ui(ai, pi)gµi (pi)JBi

−1/2dλ|Yi |−|Zi |(pi)dλ|Zi |−1(qi).

Define
ui(ai, qi) :=

∫
π−1

i (qi)
ui(ai, pi)gµi (pi)dλ|Yi |−|Zi |(pi)JBi

−1/2.

I will now show the following:

Lemma 11. ui(ai, qi) is continuous in qi.

Proof. I first show that π−1
i is a continuous correspondence.

Let K(Pi) denote the set of nonempty, compact, and convex subsets of Pi. Take any qi,n → qi

and pi,n ∈π−1
i (qi,n) converging to pi and note that Bi pi = limn Bi pi,n = limn qi,n = qi, and thus

π−1
i is upper-hemicontinuous (uhc).

To show that it is lower-hemicontinuous (lhc) take any open setU ⊆ Pi such thatU∩π−1
i (qi) ̸= ;.

This implies that there is pi ∈ int(U ∩π−1
i (qi)) and ϵ > 0 such that Bϵ(pi) ⊂ U ∩π−1

i (qi). As πi

is a linear mapping, then by the open mapping theorem (Rudin, 1973, Theorem 2.11), πi(Bϵ(pi))

is open and, therefore, ∃δ > 0 such that Bδ(qi) ⊆ πi(Bϵ(pi)). Consequently, ∀q′
i ∈ Bδ(qi), ; ̸=

π−1
i (q′

i)∩Bϵ(pi)⊆π−1
i (q′

i)∩U .

I remark that π−1
i is not only continuous, but also compact- and convex-valued correspondence,

from Q i to Pi. When restricted to πi(Pi), it is also nonempty, and thus then π−1
i :πi(Pi)→ K(Pi)

is continuous with respect to the Hausdorff metric (see Aliprantis and Border, 2006, Theorem
7.15).

Let h : Pi → π−1
i (qi) be such that h(pi) := argminp′

i∈π−1
i (qi) ∥pi − p′

i∥∞. By continuity of π−1
i , for

any ϵ, there is an N such that ∀n ≥ N , π−1
i (qi,n)⊂ Bϵ(π−1

i (qi)). Hence, for large n, for any point
in π−1

i (qi,n), there is a point in π−1
i (qi) that is at most ϵ away. As u(ai, pi)gµi (pi) is continu-

ous in pi and, by Heine-Cantor theorem, uniformly so (Pi is compact). Hence, for any q′
i close

enough to qi, the difference in the payoff function will be well-approximated by the the differ-
ence in measure (up to a constant scaling factor), |ui(ai, q′

i)− ui(ai, qi)| ≈ |λ|Yi |−|Zi |(π−1
i (q′

i))−
λ|Yi |−|Zi |(π−1

i (qi))|.
In the sequel, I show that the measure is continuous in qi. Take any sequence (qi,n)n ⊆πi(Pi) (a
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compact set) satisfying qi,n → qi. As π−1
i is continuous, and, in particular, upper hemicontinuous,

limsup
n

λ|Yi |−|Zi |(π−1
i (qi,n))≤λ|Yi |−|Zi |(π−1

i (qi)),

since for any open set containing π−1
i (qi), it will contain π−1

i (qi,n) for qi,n sufficiently close to
qi.

We now argue that the above inequality holds with equality. To see this, fix an arbitrary ϵ > 0

and take a collection of points on the boundary of π−1
i (q) such that any two points are not closer

than ϵ/2 and not farther away than ϵ > 0. This implies that we have a finite collection of such
points. As π−1

i is lhc, there is a δ> 0 such that for every q′
i ∈ Bδ(qi), π−1

i (q′
i) contains a point in

an ϵ/4 neighborhood of every point in our collection, and by convexity, their convex hull. This
implies that we can approximate arbitrarily well the interior of π−1(qi) taking any n sufficiently
large; i.e. there is a γ(ϵ) > 0 such that λ|Yi |−|Zi |(π−1

i (qi))−γ(ϵ) ≤ λ|Yi |−|Zi |(π−1
i (q′

i)), with γ(ϵ) → 0

as ϵ→ 0.

Hence, as qi,n → qi, for any qi,n ̸= qi, λ|Yi |−|Zi |(π−1
i (qi,n))→λ|Yi |−|Zi |(π−1

i (qi)).

We can then redefine the problem by considering νi to be uniform on Q i and take ui(ai, qi) as
the utility function.

Redefining

• vi :∆(Q i)→R as vi(ν′i) :=maxai∈A i Eνi [ui(ai, qi)];

• Vi :∆(Q i)→R as Vi(νi) := supτ′∈Ti
Eνi [vi(νi | zτ

′
i − ciτi];

• τi(ω) := inf{t |Vi(νi | zt
i(ω))= vi(νi | zt

i(ω))};

• bi(pi) := Eπi(pi)[σ
∗
i (zτi

i )], for some fixed zt
i 7→σ∗

i (zt
i) ∈ argmaxσi∈∆(A i)Eνi [ui(ai, qi) | zt

i].

we obtain — by analogous arguments to Proposition 1 — that Vi is continuous and, by Berk (1966),
that νi,t weak∗ converges to Bi pi, pi-a.s., when zi,t ∼ πi(pi), for all t. Therefore, τi is finite pi-
a.s., for any pi ∈ Pi. Finally, an analogous version of Lemma 1 applies and bi is continuous in
pi and maps to ∆(A i). Hence, by essentially the same arguments as in Theorem 1, a sequential
sampling equilibrium exists.

In the above, we restricted to the case in which |Zi| < |Yi|. If instead rank(Bi) = |Zi| = |Yi|, we
have the following:
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Proposition 8. Let G := 〈Γ,µ, c,B, Z〉 be an extended game such that for every player i, rank(Bi)=
|Zi| = |A−i|. Then G admits a sequential sampling equilibrium.

Proof. Note that now Bi is invertible and πi(pi) := Bi pi is bijective when restricting its domain
to πi(Pi). Hence, πi admits a continuous inverse (note it is a linear mapping). Since for any
pi ∈ ∆(A−i), and µi has full support, πi(pi) is in the support of the pushforward measure νi :=
πi#µi ∈ ∆(Q i). Thus, for any pi, by Berk (1966), νi,t weak∗ converges to a Dirac on πi(pi).
Moreover, if νi ∈ ∆(Q i) is the pushforward measure given µi ∈ ∆(Pi) and πi : Pi → Q i, we now
also have that µi is νi’s pushforward measure given π−1

i : Q i → Pi. Then, weak∗convergence of
νi,t to δqi implies weak∗ convergence of the µi,t to δπ−1

i (qi). Uniform continuity of Vi :∆(Pi)→R

(as originally defined on the main text) delivers existence of an equilibrium as in Theorem 1.

Naturally, all the above can also be extended to Bayesian games.

B.2. Relation to Analogy-Based Expectation Equilibrium

Finally, I discuss convergence to analogy-based expectation equilibria — see Jehiel (2021) for a
survey. In line with the literature, I consider payoffs that are linear in the distribution of actions.

This solution concept when applied to normal-form games (including Bayesian games) can be
readily translate to our setup: σ is an analogy-based expectation equilibrium if, for each player
i ∈ I ,

(1) qi(zi)=∑
a−i∈ f −1

i (zi)σ−i(a−i) for every zi ∈ Zi;

(2) ui(ai, zi) :=∑
a−i∈ f −1

i (zi)
1

| f −1
i (zi)|ui(ai,a−i); and

(3) σi ∈ argmaxσ′
i∈∆(A i)Eqi ui(ai, zi).

Recalling that f i is a surjective mapping from A−i to Zi, condition (1) states that each player i

bundles difference action profiles (or players, or types, contingencies) a−i into the same ‘analogy
class’ zi. Condition (2) can be read as a simplification device by player i: the player cannot
distinguish across the different a−i within the same analogy class zi, they consider the average
behavior, as if the probability of each a−i within the same analogy class were the same. Then
(condition (3)), they best respond to the expected payoff given the actual distribution over analogy
classes, but assuming that, within the analogy class, distribution over contingencies is uniform.

In the above setup, this is achieved whenever µi is uniform. The result follows from arguments
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{Player M chooses a} {Player C chooses a}
OLS Logit OLS Logit
(1) (2) (3) (4)

δM 0.230∗∗∗ 0.949∗∗∗ -0.772∗∗∗ -3.430∗∗∗

(0.041) (0.169) (0.036) (0.197)
Intercept 0.329∗∗∗ -0.702∗∗∗ 0.842∗∗∗ 1.522∗∗∗

(0.018) (0.079) (0.017) (0.090)
(Pseudo) R2 0.02 0.01 0.20 0.15
Observations 1782 1782 1806 1806
Heteroskedasticity-robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 1: Payoffs and Choices: Own- and Opponent-Payoff Choice Effect

Notes: The table exhibits the association between player M’s payoff to action a and the frequency with
which subjects in each role choose action a. δM parametrizes player M’s payoff to action a. The games in
question are generalized matching pennies games as given in Figure 1, for γC = 1 (and scaled by 20). The
sample includes data from rounds in which there is no belief elicitation. The data is from Friedman and
Ward (2022).

analogous to those in the proof of Theorem 5, but with a crucial simplification: the linearity
of payoffs in distributions, the posterior means pin-down the set of best responses. And, upon
stopping, Eµi [q

′
i | zτi

i ] = τi
τi+|A−i | zi

τi + 1
τi+|A−i | . Since, for any player i for which no action is al-

ways a best response, there is a lower bound to the stopping time τi ≥ Tn, that grows unbound-
edly as sampling costs vanish, cn

i → 0 (Lemma 4), by a similar application of the optional stop-
ping theorem as in the proof of Theorem 5, Eqi

[∥∥∥Eµi [q
′
i | z

τm
i

i ]− qi

∥∥∥]
≤ Eqi

[∥∥Eµi [q
′
i | zTm

i ]− qi
∥∥]≤

Tm

Tm+|A−i |Eqi [∥zi
Tm − qi∥]+2 1

Tm+|A−i | . Then, by the law of large numbers, Eqi [∥zi
Tm − qi∥] → 0.

This provides a shorter route to show that players’ posterior means converge to the underlying
true distribution.

Appendix C. Experimental Data and Analysis Details
In this appendix, I provide details on the experimental data used along with additional analysis.
A total of 164 subjects were recruited for sessions run in the Columbia Experimental Laboratory
in the Social Sciences (CELSS) to play matching pennies games as the one depicted in Figure 1.
Subjects are randomly and anonymously matched, but their roles are fixed throughout. Player
M’s payoff to action a, δM , took one of six values (here rescaled by a factor of 20 for convenience):
4, 2, 1/2, 1/4, 1/10, and 1/20.
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Distance to Indifference
Player M Player C Both

(1) (2) (3)
Log Decision Time -3.682∗∗∗ -2.021∗∗ -2.961∗∗∗

(1.225) (0.881) (0.790)
Intercept 42.314∗∗∗ 45.365∗∗∗ 48.185∗∗∗

(4.181) (2.670) (2.435)

Fixed Effects Game Game Role × Game
R-Squared 0.08 0.27 0.18
Observations 1620 1680 3300
Heteroskedasticity-robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 2: Decision Time and Reported Beliefs: Time-Revealed Preference Intensity

Notes: The table presents regression results on the relation between log decision times (in seconds) and
the distance between reported beliefs to indifference points with data from Friedman and Ward (2022).
Reported beliefs refer to the elicited beliefs about the probability the opponents would play action a, and
the indifference point refers to the posterior mean that would make the player indifferent between taking
either action. The games in question are generalized matching pennies games as given in Figure 1, for
γC = 1 (and scaled by 20). δM parametrizes player M’s payoff to action a. Game (as indexed by δM) and
role and game fixed effects are used where indicated. Columns (1) and (2) only use data for subjects in the
roles of player M and C, respectively; the right-most column uses both. The data is from Friedman and
Ward (2022).

The experiment consisted of two stages. In the first stage, actions elicited and each game is played
twice. In the second stage, each game is played 5 times and either both actions and beliefs about
the probability that the opponent chooses action a are elicited or only actions are elicited. Beliefs
here refer to point estimates reported by the subjects, neglecting any strategic uncertainty. In
other words, belief reports would correspond to posterior means in our framework. Elicitation of
actions and beliefs is incentive-compatible and robust to risk attitudes and game payoffs corre-
spond to probability points towards prizes of $10. Throughout, no feedback was provided, game
order was randomized and, importantly for our purposes, decision times are recorded. Other
details on the experimental design can be found in Friedman and Ward (2022).

There are some important caveats to note. First, beliefs elicited in the second stage refer to op-
ponent’s actions from the first stage. This, together with the fact that elicitation of actions and
beliefs is sequential instead of simultaneous, with beliefs being elicited first, may raise concerns
of whether reported beliefs are a good proxy for the beliefs that subjects hold when taking an
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Figure 4: Opponent Payoff and Beliefs

Notes: The figure compares the distribution of beliefs in generalized matching pennies games as given in
Figure 1, for γC = 1 (and scaled by 20). The figure exhibits the empirical CDF of reported (mean) beliefs
about the probability with which subjects in the role of player C believe their opponent (in the role of
player M) will take action a. Different lines correspond to games in which the player M has different
payoffs to action a; δM parametrizes player M’s payoff to action a. The data is from Friedman and Ward
(2022).

action. Second, while decision time was recorded, subjects were forced to wait a minimum of 10
seconds before reporting their beliefs. As the subjects’ decision times will be used as a proxy to
test sequential sampling equilibrium’s predictions for stopping times, the forced minimum de-
cision time may undermine the exercise. Finally, the authors highlight there being evidence of
“no-feedback learning” as the same subject plays the same gamemultiple times. This is especially
worrying when comparing instances where only actions are elicited with those where both ac-
tions and beliefs are. In order to avoid issues due to experience or learning, and focus on initial
response as much as possible, I will focus on choice data when beliefs are not elicited.

Table 1 documents the own- and opponent-payoff choice effects mentioned on Section 3.2: as
player M’s payoffs to action a increase, subjects in that tend to choose the action more often
and action b less often, while the opposite is true for subjects in the opponent’s role, player C.
Table 2 provides support for the collapsing boundaries result presented in Section ??: a negative
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Player C Beliefs
σ
τC
M | δHigh

M ≥FOSD σ
τC
M | δLow

M
High Low KS-Statistic
(1) (2) (3)
4 2 0.33∗∗∗

2 1/2 0.76∗∗∗

1/2 1/4 0.40∗∗∗

1/4 1/10 0.23∗∗∗

1/10 1/20 0.23∗∗∗
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 3: Opponent Payoff and Beliefs: FOSD Tests

Notes: The table exhibits the results of two-sample Kolmogorov-Smirnov tests for first-order stochastic
dominance of the distribution of reported beliefs by subjects in the role of player C in games with different
values of δM , High (col (1)) and Low (col (2)). Column (3) presents the test statistic, with number of
observations (n,m) = (280,280). δM parametrizes player M’s payoff to action a. The games in question
are generalized matching pennies games as given in Figure 1, for γC = 1 (and scaled by 20). The data is
from Friedman and Ward (2022).

association between the distance of subjects’ reported beliefs to their indifference point and the
decision time. Related to this result, the main text discussed a first-order stochastic dominance
shift of beliefs for player C as δM (player M’s payoffs to action a) increases; Figure 4 exhibits
such lawful relation. Appropriate statistical tests are given in Table 3.

Appendix D. Misspecified Priors
As in finite dimensional spaces, the Bayesian learning is consistent for any distribution if and only
if the prior has full support (Freedman, 1963), Proposition 1 uncovers an important consequence
of Bayesian learning for optimal stopping: Not only is the decision-makers’ optimal stopping time
finite with probability one, for any true distribution of their samples, it is also bounded uniformly
across all distributions of samples. This effectively transforms the optimal stopping problem
from infinite to finite horizon, allowing for a solution to be obtained by backward recursion,
simplifying the problem significantly.

The intuition underlying the result is that if the prior has full support, the posterior accumulates
around the empirical mean. Then, one can guarantee a bound on the rate at which the posterior
accumulates around the empirical mean, depending on the number of observations but not on
the sample path itself (Diaconis and Freedman, 1990). With this, it is possible to bound the gains
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in expected payoff of sampling further regardless of the realized sample path and show that there
is a number of observations after which the cost of an additional observation dwarfs the expected
gain, regardless of realizations. Hence, one concludes that the decision-maker necessarily stops
after such number of samples and we can find an explicit upper bound for the stopping time that
depends only on the prior µi, payoffs ui, and sampling cost ci.

This stands in contrast to the canonical problem in Arrow et al. (1949) where the prior has finite
support, and optimal stopping time is not bounded.23 Further, it stands in sharp contrast to the
case in which beliefs are misspecified.

I now provide an example in which misspecification leads to a player never stopping with prob-
ability 1 (with respect to the true distribution of opponents’ actions), and sequential sampling
equilibrium fails to exist.

Let Γ be a two-player game in which player i’s opponent has three possible actions, a, b, and
c, and always chooses c (e.g. because c is dominant, or because their sampling cost is too high
and c is uniquely optimal under their prior). Denote σ−i = (σ−i(a),σ−i(b),σ−i(c)) ∈ ∆({a,b, c}).
Suppose player i’s prior beliefs about σ−i, µi, are such that player i assigns probability 1/2 to
(1/2,1/6,1/3) and probability 1/2 to (1/6,1/2,1/3). Player i can choose either a or b and player i’s
payoffs are given by ui(ai,a−i)= 1 if ai = a−i, and 0 if otherwise. Then, if yt

i is such that yi,ℓ = c

for all ℓ ∈ [1 .. t], µi | yt
i = µi. Under their prior, vi(µi) = 1/4, vi(µi | a) = vi(µi | b) = 3/4, and

vi(µi | c) = vi(µi) = 1/4, hence Eµi [vi(µi | yi)] = 2
3

3
4 + 1

3
1
4 = 7

12 . Note that, a necessary condition
for player i to stop is that Eµi [vi(µi | yi)]− vi(µi) ≤ ci. But, since at any sequential sampling
equilibrium player i’s opponent chooses c with probability 1, we have that µi | yt

i = µi and, for
any ci < 1/3, we always obtain Eµi [vi(µi | yi)]− vi(µi) = 1

3 > ci. Therefore, since σ−i(c) = 1,
Pσ−i (τi =∞)= 1.

23Similarly, optimal stopping time is also not bounded in the continuous-time version of the canonical problem, with
Gaussian noise, be it with (Moscarini and Smith, 1963) or without experimentation concerns (Chernoff, 1961). In
some cases with finite support prior, however, stopping time can be bounded, as in the case with Poisson arrival
of conclusive information, but not when the decision-maker can choose from different information sources (Che
and Mierendorff, 2019).
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