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Abstract

This paper introduces an endogenous network of payment chains into a busi-

ness cycle model. Agents order production in bilateral relations. Some payments

are executed immediately. Other payments, chained payments, are delayed un-

til other payments are executed. Because production starts only after orders are

paid, chained payments induce production delays. In equilibrium, agents choose

the amount of chained payments given interest rates and access to internal funds

or credit lines. This choice determines the payment-chain network and aggregate

total-factor productivity (TFP). The paper characterizes equilibrium dynamics and

their innate inefficiencies. Agents internalize the direct costs of their payment de-

lays, but do not internalize the costs provoked on others. This externality produces

novel policy insights and rationalizes permanent reductions in TFP under excessive

debt.
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Says A: I could use some of B’s goods; but I have no cash to pay for them until someone with cash walks in here!

Says B: I could buy some of C’s goods, but I’ve no cash to do it ’till someone with cash walks in here.

From the book Stamp Scrip, Irving Fisher, 1933

1. Introduction

During financial crises, there are visible statistical declines in credit variables. Though

harder to measure, there is also a general perception that the seamless flow of trans-

actions of normal times, slows down during crises. In ways that are yet to be better

understood, there is also a concern that productive resources remain idle when agents

have to wait longer to be paid and take longer to pay.

This paper formalizes the idea of payments chains and studies their implications in

the context of financial crises. Providing a theory of payments-chain crises is impor-

tant. Since the onset of modern business cycle analysis, economists have argued that

TFP should be interpreted as the outcome of credit-market conditions (e.g., Summers,

1986). This view is even more salient in the context of international financial crises.

Economic contractions during these crises are predominantly driven by large declines

in total factor productivity (TFP). This feature remains puzzling to many models given

the muted responses of labor observed during these episodes.1 The payments-chain

crises in this paper offers an alternative theory to explain this co-movement.

To model payments-chain disruptions and their effects on production, I introduce

a payments-chain production network, in Section 2. A payments-chain network pro-

vides an explicit connection between the timing of economic transactions and the tim-

ing of production. In this network, production is organized through random bilateral

relations where customers place production orders. Some orders, spot orders, are paid

upfront and their production begins immediately. Other orders, chained orders, are

paid after other orders are paid. Since funds are transferred with delay, chained orders

induce production delays.

1See for example Meza and Quintin (2007), Mendoza (2010), Oberfield (2013), or Karabarbounis et al.
(2021), which find large TFP declines during the Chilean banking crisis of the early eighties, the Mexican,
the East Asian sudden-stop crises of the mid nineties, in the recent Greek crisis. These studies, in turn,
cite many other examples. The puzzling co-movement between TFP, capital utilization, and labor flows
was first noted by Meza and Quintin (2005).
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A payment-chain network is a collection of payment chains that encompass the

universe of economic transactions. Each payment chain is a sequence of linked trans-

actions. The first payment of each chain is spot and, thus, executed with funds exter-

nal to the network. All subsequent payments are chained and, thus, executed with the

funds from the previous transaction in its payment chain. An interpretation is that spot

orders are paid with internal savings or working-capital lines whereas chained orders

represent a form of trade credit.

An important feature is that the later the position in a payment chain, the longer

the production delay of a given order. The length-distribution of payment chains in

the network is characterized by the ratio of chained orders to total orders. Aggregating

across all chains observable average TFP is,

A (µ; δ) =
δ − δµ
µ− δµ

ln

(
1− δµ
1− µ

)
< 1,

where µ is the ratio of chained to total orders and δ is a parameter that captures pay-

ment delays.

The payment-chain network of Section 2 is a stand-alone production block portable

to other applications. In the second part of the paper, I pursue an application: I study

the implications for financial crises. To that end, Section 3 embeds the payment-chain

network into a deterministic business-cycle model. In this model, a payment-chain

network is formed every period. There is a natural borrower and a natural saver which,

for simplicity, I model as households. The saver always has savings to place spot orders.

By contrast, the borrower carries outstanding debt. The borrower can obtain funds to

place spot order through credit lines. However, her credit lines fall with her level of

outstanding debt. When debt limits her access to funds, she can still place chained or-

ders. Placing chained orders is privately costly, as less goods are produced for a chained

order given an amount of expenditures. Nevertheless, borrowers may place chained

orders to achieve a desired level of consumption. Critically, borrowers internalize the

private cost of chained orders, but do not their effects on TFP.

The formula for TFP A clearly showcases how credit conditions translate into de-

clines in TFP. When credit lines are limited, the fraction of chained orders µ increases.

Observable TFP falls because labor inputs remain idle even though the labor supply is
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inelastic. Hence, observable TFP is entirely explained by non-observable utilization.

In the environment, the evolution of debt impacts TFP through its effects on credit

lines. In turn, TFP influences the desire to accumulate debt. For low debt levels, the

economy is in a steady state without delays. For moderate debt levels, the economy

experiences a temporary payment-chain crisis with some production delays. For such

moderate debt levels, crises are temporary because borrowers have incentives to repay

debts to increase their access to their spot payment facilities in the future and, thereby,

order production at lower costs. When indebtedness is excessive, the economy fea-

tures hysteresis. Hysteresis occurs when the benefits of deleveraging, lower future pro-

duction costs, require an excessive sacrifice of current consumption. Under this debt

overhang, the economy remains permanently disrupted by delays.

I derive policy implications in Section 4. In particular, I study a Ramsey planner

that can tax labor income, financial income, and expenditures but cannot distinguish

expenditure types. This Ramsey planner implements the solution to a planner prob-

lem that directly chooses private debt respecting financial constraints and internalizes

the effects of chained orders on TFP.2 The exercise is meant to show that transitions

toward steady states without disruptions are inefficient. The sources of inefficiency

are two sided: savers spend too little via spot orders and borrowers spend excessively

via chained orders. Because the inefficiency is two-sided, in a transition, debt may be

excessively high or low, relative to the social optimum.

In that section, I also revisit fiscal multipliers. When all orders are spot, all forms of

government spending are a waste. However, government spending can produce posi-

tive multipliers during a payments-chain crisis. A novel insight is that multipliers are

positive only if the government purchases goods via spot orders. If government expen-

ditures are chained, they are also a waste. The reason for positive multipliers is not

aggregate demand stimulus under nominal rigidities, the conventional motivation be-

hind fiscal policy. Rather, government expenditures stimulate output by speeding up

payments, a monetary reinterpretation of fiscal policy.

2The planner can implement an efficient transition using a mix of capital-income taxes and labor
taxes. Similarly, the planner also designs taxes to reduce debt and abandon the payments-chain hys-
teresis region.
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Literature Review. The literature on financial crises is vast. This paper connects with

theories that underscore the sharp declines in aggregate TFP. The link between finan-

cial crisis and TFP is not at all obvious because financial crises can manifest through

increased marginal costs (e.g., labor wedges), not productivity. One branch of the lit-

erature explain declines in aggregate TFP through increased misallocation—see Pratap

and Urrutia (2012) or Oberfield (2013). However, a common finding is that heterogene-

ity can only partially explain TFP declines once models are disciplined with data on in-

put use and heterogeneity. Here, the channel is utilization. Other studies also explain

declines in TFP as worse financial conditions increase the cost of utilizing capital—see

Meza and Quintin (2007). The mechanism here is different: financial conditions im-

pact TFP through the slow down of payments.

Beyond the focus on financial crises, the paper falls in the cross-roads of several

areas. Namely, the monetary-payments literature, the economic-networks literature,

and the literature on aggregate-demand externalities. The issue of how payments in-

struments affect production is a classic theme in monetary economics: Lucas and

Stokey (1987) analyzes a stochastic cash-in-advance economy; Kiyotaki and Wright

(1989) studies trade with indivisible tokens; Lagos and Wright (2005) a model with di-

visible money and explicit trading arrangements.3 Recent work focuses on how the

distribution, and not the instruments per se, affect production—see Lippi et al. (2015),

Rocheteau et al. (2016), and Brunnermeier and Sannikov (2017). In common with this

literature, the distribution of funding affects allocations. The main distinction is that I

focus on delays in sequential payments.4

Sequential payments appear in many other studies. The payment-chain network

is inspired by the credit chain model in Kiyotaki and Moore (1997). The contribu-

tion relative to Kiyotaki and Moore (1997) is to present a network of transactions that

I then embed into a standard business-cycle model with endogenous payment deci-

sions. Other models of sequential payments include Townsend (1980) which studies

sequence of payments with spatial separation, Freeman (1996) and Green (1999) which

3See Shi (1997a); Lagos et al. (2011); Lagos and Rocheteau (2009); Li et al. (2012); Nosal and Rocheteau
(2011); Rocheteau (2011) for many other directions in that area.

4The paper tangentially relates to Bianchi and Bigio (2022) and Piazzesi and Schneider (2018) where
implicit payment-flows induce liquidity premia. The payment-chain network here induces explicit pay-
ment flows.
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study sequential transactions in an overlapping generation environments, La’O (2015)

which studies a circular flow of transactions, or Guerrieri and Lorenzoni (2009) which

studies sequential transactions in a Lagos and Wright-type environment. Recent work

by, Hardy et al. (2022) and Bocola (2022) contrast payments funded externally against

trade credit.5 Relative to these papers, there are two distinctions: here, transactions are

formed in a network and the network is endogenous to expenditure-savings decisions.

The importance of this body of theoretical work is substantiated with a body of empir-

ical evidence found in a number of recent papers: Boissay and Gropp (2007), Jacobsen

(2015), Barrot (2016), and Costello (2020) among many others.

With respect to the economic networks literature, the paper connects with models

with economic networks. The contribution with that literature is modest, as network

formation is not strategic. By contrast, in Oberfield (2018), a network formed through

strategic partnerships. In Kopytov et al. (2022) and Elliott et al. (2022) firms form strate-

gic links, being aware of possible supply-chain break downs. Here, the network is ran-

domly formed, but the distribution of chains is endogenous to financial decisions. Like

in Elliott et al. (2014), Alvarez and Barlevy (2021) and Taschereau-Dumouchel (2022),

there are also network externalities. In those models, externalities occur when individ-

ual defaults provoke subsequent defaults. Here, externalities occurs through payment

delays.6

Finally, the paper connects with models of aggregate demand externalities. An early

model of these externalities is Diamond (1982) where, via search externalities, con-

sumption decisions affect output. An extension, Diamond (1990), deals with credit.

In most of the literature, demand externalities result from nominal rigidities. There’s

been a recent interest in coupling nominal rigidities with financial constraints—for ex-

ample, Eggertsson and Krugman (2012) and Guerrieri and Lorenzoni (2017). Recent

papers, have further introduced sequential transactions into environments with nom-

inal rigidities—for example, Woodford (2022) and Guerrieri et al. (2022). In those mod-

els, demand externalities occur when agents cut back any form of expenditures. The

nature of demand externalities here is different. In particular, the type of expenditures

5See also Biais and Gollier (1997).
6Bigio and La’O (2013) considers the propagation of financial shocks through a production network.

In that paper, propagation occurs through the misallocation of inputs. Here, there is no such misalloca-
tion but production delays.
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by the private or public sector matters: spot orders may stimulate output but chained

orders depress it. The demand externalities provoked by the slowdown of payments is

part of a classic narrative. Almost a century apart, the opening quotation taken from

Fisher (1933) and the renowned “baby sitting co-op” analogy of Krugman (1998) belong

to that same narrative. The rest of the paper is an attempt to provide an analysis.

2. Payment-Chains and Productivity

This section presents the payment-chain network. I then embed it into a dynamic

business-cycle model.

Bilateral Relations. Production is organized through bilateral agreements in which a

customer orders a product from an agent that owns a production unit. The agreement

is exclusive in that only the agent placing the order can derive utility from its produc-

tion and production units are exclusively dedicated to producing for a specific client.7

As examples of such relations, we can think of a home renovation project, a medical

service, the manufacturing of a engineered product with a specific blueprint, or the

commission of a piece of art.

There are two types of orders, spot and chained orders. Spot orders are paid im-

mediately. Chained orders are paid after the client receives a payment from another

transaction. There are N production units. In turn, there are N s spot orders and Nx

chained orders. In this section, I assume that there are equal amounts of production

units and orders, N = N s + Nx. In the section that follows, I work with a limit for

N → ∞ and obtain prices that guarantee that this relation holds as a market-clearing

condition. Each production unit is assigned an identifier, i ∈ N = {1, 2, . . . , N}. Like-

wise, each order is assigned a unique identifier, i ∈ N . I use N s and N x to denote the

set of identifiers of spot and chained orders respectively.8 Also, I work with the assump-

tion that each order involves the same paid amount, a condition that is explained in the

7The identity of the agents in these agreements is not important at this stage, but it explicit in the fol-
lowing section. Furthermore, although the product is exclusive to the bilateral relation, products ordered
by the same agent in different relations may be perfect substitutes.

8Naturally, N s and N x form a partition of N , ∅ = N s ∩ N x and N = N s ∪ N x, and the number of
elements is Ns = #N s, Nx = #N x.
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following section. I discuss the interpretation spot and chained orders in the following

section where I introduce financial decisions.

I define two relations that together define the payment-chain network. First, P :

N → N , is a one-to-one assignment from an order to a production unit. By assump-

tion i 6= P (i). The interpretation is that P (i) is the unit that produces order i. The

assignment P is entirely random: any unit can be assigned to any order with equal

probability. Second, a chained income-expenditure relation associates a chained or-

der to a production unit. This relation is the identity function defined on N x. The

interpretation is that order i uses the revenues of production unit i if it happens that

i ∈ N x. The idea is that although order i is not externally funded, the customer that

places order i owns production unit i and hence, will be paid from order j = P− (i) .

The assumption that the income-expenditure relation is the identity is innocuous.9

To anticipate how the two relations induce a payment-chain network, consider pro-

duction unit j assigned to order i, P (i) = j. The client placing order i must pay for j′s

production. This creates a payment link from i to j. In turn, if order j is spot, j ∈ N s, the

funds paid in order i are not used in further payments. However, if order j is chained,

the funds are used again to pay unit k = P (j). In other words, when, j ∈ N x, there is a

flow of payments from i to j, and from j to k. If k ∈ N x, again, the same funds are used

to pay unit P (k), and so on. The chain of payments goes on until a final order in the

chain is placed on some production unit i not associated with a chained order. Since

every order is paired with a production unit, the economy features an entire network

of transactions, composed of a collection of payment chains.

The payments-chain network determines production. The production of orders oc-

curs within a unit time interval. Each order starts at some time τ ∈ [0, 1]. Once produc-

tion starts, it does not stop. Production is linear in time: if production of starts at τ ,

production is 1− τ goods.

If every order were to start immediately production would be maximal. This does

not occur in general because of two frictions. These frictions make the payments-chain

9Formally, we can define the chained income-expenditure relation X as the identity function onN x,
that is X : N x → N x such that X (i) = i. The idea is that i ∈ N x obtains funds from production unit,
X (i) = i. Indeed, the identity function X (i) can be replaced by any injective function X : N x → N
so that production units and associated chained orders do not have the same identifiers. Changing
identifiers does not alter the equilibrium.
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network consequential because production times depend on the location in network.

The frictions follow the spirit of Kiyotaki and Moore (1997). The first friction is that pro-

duction cannot start unless there is a proof of funds. If the order is spot, by definition,

the client has funds and can prove that. By contrast, chained orders can prove funds

after the payment of the order that is its source of funds. Proof of funds is required

to deter fraudulent behavior: without proof of funds, clients could promise payments

that they know will never occur. Since production is customized, this would lead to an

ex-post renegotiation at disadvantageous terms to the producer.

If funds could be transferred instantaneously, the production of all orders would

start immediately. All that would be needed is each spot order to make an initial pay-

ment, and funds would reach each chained order instantaneously. In that were the

case, the payment-chain network would be inconsequential. The second friction, lim-

ited commitment, provokes a delay in the transfer of funds. The idea is that after the

customer proofs funds to start an order, the funds are released only after the fraction

1− δ of order’s output is inspected. Without inspection, the producer could produce a

good for somebody else (or himself) after being paid. Since there is no way to verify in a

court the customization of a product, the inspection is necessary to this moral hazard.

Placing these frictions together, the greater the number of chained orders in a chain,

the more payment delays, and the longer the times with production units remaining

idle. This feature leads to interesting predictions between TFP and the payments chain

network. To produce concrete results, I first formalize the definition of the payments-

chain network. This definition is convenient to study the distribution of payment-

chain lengths in the grand payments-chain network, which I then use to derive TFP.

Payments-Chain Network. A sequence of payments with funds defines a payments

chain. Obviously, every chain must start with a spot order, followed by chained or-

ders that use the funds that originate with the spot order. The number of subsequent

chained orders is the chain length. A payments-chain network is the collection of all

payment chains, representing the universe of transactions during the production inter-

val. Armed with the production and expenditure-income relations, I employ a formal

definition from the networks literature.
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Definition 1. A payments-chain networkK is an acyclical directed network with nodes

N = {1, 2, ..., N} and linksV = {(i, j) |P (i) = j, j ∈ N x},K = (N ,V). A payments-chain

of length n is a finite sequence of nodes {ik}nk=0 such that the sequence starts with some

i0 ∈ N s and ∀k ∈ {1, . . . , n}, P (ik−1) = ik with ik ∈ N x. By convention, if i ∈ N s and

j = P (i) 6∈ N x, then i and j define a chain of length zero.

The nodes corresponding to the payments-chain network represent both orders

and production units. Links represent the sources of funds. Because production is

bilateral, there is either one or no links stemming out of each node. A directed link

from i to j indicates that i orders from production unit j and that j is a chained order,

P (i) = j ∈ N x. Hence the source of funds of order j are the funds paid for in order i. In

turn, if a node does not receive a link, it represents a spot order. Furthermore, are di-

rected toward order j = P (i), order j is also spot in which case i and j for a zero-length

chain. The assumption that the network is acyclical guarantees that each transaction

has source of funds; there are no cycles composed of only chained links. In general,

any (longest) path of links defines a payments chain. The collection of payment chains

is encoded in the payments-chain network.

Examples. Let me present an example. SetN = {1, 2, . . . , 8} and let the subset of spot

orders be N s = {1, 3, 7}. Also, define the production relation as follows: let {in}n∈N =

{1, 5, 7, 4, 6, 2, 3, 8} such that in+1 = P (in) and i1 = P (iN).10Thus, the links in this payments-

chain network are V = {(1, 5) , (7, 4) , (4, 6) , (6, 2) , (3, 8)}.
There are several graphs associated to the payment-chain network of this example.

The left panel of Figure 1 depicts the chained income-expenditure relation. In that

panel, I split each node into counterparts: the production units {un} and production

orders {on} for nodes, n ∈ {1, 2, ..., 8}. The links represent the flow of funds from pro-

duction units to their corresponding chained orders, defined by the chained income-

expenditure relation.

The middle panel adds the links to the flow of payments for production, corre-

sponding to P . That is, the links in that panel add the payments production units.

Adding the links of the chained income-expenditure and production relations allows

10With this information, we know that order 1 orders from production unit 5, order 5 from unit 7, and
so on, ending with 8 ordering from unit 1. We also know that 1 is a spot, 5 is chained, 7 is spot, and so on.
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us to trace funds. Notice that the links from orders to production units with the same

color, share an original source of funds.

The right panel depicts the actual payments-chain network. The network features

three chains. A first chain is from 1 to 5 and is of length of one. A new chain starts at 7,

and links nodes 7, 4, 6 and 2. Since 4, 6 and 2 are chained orders, the length is 3 for that

chain. The last chain links 3 with 8 and is of length 1. The example does not include

chains of length zero, but these would be represented by unlinked nodes.
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(b) Network in detail
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(c) Payments-Chain Network

Figure 1: Components of the Payments-Chain Network

Average TFP. I now derive the distribution of payments chain lengths, as the number

of transactions increases,N →∞. In doing so, I keep the ratio µ ≡ Nx/N constant. The

fraction plays a critical role: with it, we can obtain a discrete probability distribution

G (n;µ) for the length of payment chains in the network. To derive the distribution,

recall that the production relation is random. Hence, as N → ∞, any node has a link

directed toward it if it is chained. This occurs with probability µ. A node does not

receive a link if it is spot, which happens with probability 1 − µ. Furthermore, recall

that each chained order is funded and thus belongs to specific payment chain which, in

turn, starts with a specific spot order. Thus, there is a one-to-one relation between each

payment chain and a spot order. Hence, there N s chains in total, which we can also

index by i ∈ N s. If chain i forms a chain of length zero, it must be that P (i) ∈ N s. This,
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happens with probability 1 − µ if P (i) is drawn entirely randomly—each production

link indeed occurs with equal probability. Likewise, chain i is of length 1 if P (i) ∈ N x

but P (P (i)) 6∈ N x. This happens with probability µ× (1− µ). In a chain of length two,

there are two consecutive chained orders followed by a spot order. This occurs with

probability µ2 (1− µ). Proceeding by induction, we arrive at the following:

Proposition 1. Let n ∈ {0, 1, 2, . . .} be the length of a payment chain in the payment-

chain network. Then, n is a random variable with probability mass function (p.m.f.)

G (n;µ) where G (n;µ) is the geometric p.m.f. with parameter µ, that is, G (n;µ) =

(1− µ)µn.

We use this distribution to solve for production in the network. For that, we first

derive the production vector of a chain of arbitrary length. In a chain of length zero,

there is one order whose production begins immediately.

In a chain of length 1, the production of the first order begins immediately, but there

is a delay in the second order. For the second order, the funds are received after 1 − δ
of the production of the first order is finished. This happens at time τ = 1 − δ. Hence,

this leaves only δ time to produce the second order in the chain. For the second order

production is δ of which the 1 − δ fraction must be inspected. If there is a third order

in the chain, the transfer of funds occurs (1− δ) δ time after the first transfer at 1 − δ.

Adding these consecutive delays, the production of the third order can only start by

(1− δ) + δ (1− δ) = 1− δ2. This leaves δ2 time to produce that third order.

We can deduce a pattern of delays by forward induction.11 In a chain of length n,

the corresponding production in the n+ 1 consecutive orders is {1, δ, δ2, . . . , δn}. Using

the distribution of chain lengths, we obtain the following result.

Of course, if the chain is of length 0, production begins immediately.

Proposition 2. (Output per worker): Given µ and δ, the average output corresponding

to chained orders converges to:

A (µ; δ) =
1− µ
µ

δ

1− δ
ln

(
1− δµ
1− µ

)
< 1. (1)

11If the k-th node initiates production at time 1 − δk−1, the delay from its inspection is (1− δ) δk−1,
which added to previous delays leads to a transfer of funds only by time 1− δk−1 + (1− δ) δk−1 = 1− δk.
This, leaves δk time for production to the subsequent unit. Since we computed the delay for k = 1, 2, . . ..
the productions in a chain of length n are

{
1, δ, δ2, . . . , δn

}
.
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as N →∞. A is strictly concave, decreasing, and satisfies

lim
µ→0
A (µ; δ) = δ and lim

µ→1
A (µ; δ) = 0 and lim

δ→0
A (µ; δ) = 0 and lim

δ→1
A (µ; δ) = 1.

Average output is Y (µ) = (1− µ) + µA (µ) ≤ 1.

This theorem is key as it presents a formula for output. To obtain output, I first com-

pute the average production of chained orders, A (µ; δ).12 We can think of A as a mea-

sure of average of total factor productivity (TFP) of production in charge of chained or-

ders. Hence, with abuse of terminology, I refer toA simply as TFP.A is strictly concave

and decreasing in µ and has well behaved limits.13 Total output Y (µ; δ) is constructed

by noting there are (1− µ) spot orders for which production is 1 and µ for chained or-

ders whose average production isA. Output inherits the properties of TFP.

Clearly, payment delays enter in the formula for A because they make resources

idle when payments are delayed. Hence, TFP here is entirely driven by utilization and

is purely observable productivity. As an illustration, the left panel of Figure 2 plots the

distributions of chain lengths, corresponding to two values of µ. As µ increases, the dis-

tribution shifts mass to chains of greater length. The right panel graphsA as a function

of µ, for two values of δ. Notice how productivity falls as the fraction µ increases. Also,

the lower δ, the greater the delays and, hence, the lower TFP.

The main insight so far is that TFP losses result from the delay in payments. It is

12To obtain output, I first compute the average production of chained orders in a n-length chain,(
n−1

∑n
i=1 δ

i
)

. With the average production of each chained orders, I can compute the expected value of
production in chains with at least one chained order. Integrating across all possible lengths, we obtain
A (µ; δ), the average production for chained orders. For that, I use the discrete probability (1− µ)µn/µ.
This is the distribution of chain length conditioned on n > 0, obtained from G (n;µ). Integrating across
all possible lengths, we obtainA (µ; δ), the average production for chained orders.

13With respect to the limits of A, as µ → 1 the chains of chained orders become larger and larger but
the per-order production decreases to zero, since the additional production of chained order decreases
exponentially. On the other hand, when µ → 0 the chain length tends to 1 and thus its per-worker
productivity tends to δ because production will be delayed by at most one period. In turn, when δ → 0
the required amount of production inspection to transfer funds tends to 1 and the production related
to the chained order has no time left to build so the per-order production is zero. Conversely if δ → 1,
one could think chained orders as spot ones since they can obtain funds immediately, naturally per-
order production tends to one since time left to build does so for each worker. Interestingly, A (µ; δ)
resembles an entropy function, but I am unaware of any connections between a geometric distribution,
a discounted sequence and entropy measures.
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Figure 2: Chain-Length Distributions and TFP

Note: Left panel graphsG (n) for µ = {0.6, 0.7}. Right panelA (µ) for δ = {0.5, 0.9}.

worth clarifying the sources of these losses. Unlike search models, there is no conges-

tion externalities: orders do not crowd out each other because the assignment is one to

one. Furthermore, the fact prices do not vary with the chain length also has nothing to

do with the TFP losses: payments are transfers without implication for production. The

source of TFP losses the delays in production caused by the deferment of payments.

The economy is at full capacity when if all transactions are spot. However, TFP losses

are magnified by the random assignment of orders. Holding fixed the number of spot

orders, if payment chains could be reorganized to be of the same length, the economy

would still feature TFP losses, but less so than with under random assignment because

of Jensen’s inequality.

Discussion: Reduction of Economic Complexity. The payments-chain network here

is simplified to convey the main message. In practice, economies involve much more

complexity than exhibited here: Transactions differ by size and are coupled in more

intricate production networks. Moreover, I deliberately made assumptions so that pro-

duction ends in finite time, so that the payment-chain network can be introduced into

a business cycle model that I can characterize. Furthermore, in reality, agents may find

ways to negotiate transactions prices, features I do not allow. Studying these dimen-

sions makes the problem more realistic, but would complicate the analysis unneces-
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sarily.14 Despite its simplicity and crude assumptions, the payments-chain network

illustrates the effects of delays in payment chains. A virtue is that with this, we can

obtain a mapping from a financial quantity, µ, to observable TFP. Because µ depends

on agent decisions in the following section, this allows us to study policy exercises im-

mune to the Lucas critique.

A final note is that I do not allow for order withdrawals. To allow withdrawals, we

could find an endogenous threshold production that would trigger the withdrawal pro-

vided that we obtain a relative price for funds and production, as I do in the following

section. In that case, the production in a chain would drop to zero for orders above a

given position. An analogue, but more complicated, formula to TFP (1) can be derived

for the case where endogenous withdrawals are allowed.

3. Payment-Chains in a Business-Cycle Model

I now incorporate the payments-chain network into a business cycle setting. I take the

previous results as inputs.

3.1 Environment

Timing. The horizon is infinite. Expenditure and savings decisions are programmed

at integer dates, t = {0, 1, 2, ...}. Production happens within the time interval between

integer dates, through the payments-chain network of the previous section. It is no

longer necessary to refer to the time interval of production; it is understood to happen

within dates. There is perfect foresight, but I study transitions that can be reinterpreted

as an unanticipated shock. The numeraire is units of production, which in this appli-

cation are labor units.

Demographics. The economy is populated by two representative households. One

is a working-class household (workers) that inelastically supplies labor, but has neg-

14Statistical physics handles similar levels of complexity when studying the dynamics of interacting
particles, so possibly, such methods can be used in this environment. In particular, statistical physics
offers tools to calculate statistical properties of complex phenemona. I believe these tools will be even-
tually used in economics.
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ative financial wealth. The other is a financial wealthy household (savers) that does

not produce. Each household consumes goods by placing production orders in the

payments-chain network. I use superscripts s and w to distinguish saver and worker

decisions when necessary.

Income, Expenditures, Transactions, and Prices. Production and consumption de-

pend on the expenditure mix between spot and chained orders by both households.

The worker household is endowed with N labor units. As in the previous section, a la-

bor unit is assigned to a single order. I normalize payment per labor unit to 1/N so that

total labor income is normalized to one.

I work with the limit as N→∞. As I increase the number of orders, I let the pro-

duction of each labor unit scale with 1/N , keeping the maximal feasible production

equal to 1. Implicitly, households place a large number of orders. Aggregating across

all those orders, the risk in the quantity of goods obtained in different orders is diver-

sified as N → ∞. This assumption is akin to the classic “big-family” assumption that

appears in, for example, Lucas and Stokey (1987) and Shi (1997b).

In the previous section, I implicitly assumed that all production units are paid the

same, regardless of their production. A motivation for this assumption is pairwise

stability—see ? for a definition. Pairwise stability requires agents to accept the links

in a network at the moment of placing orders—without knowledge of the location in

the network. To accept an order, labor units must earn the same because, otherwise,

they would sever links and and a new network would have be form. In tun, to place an

order, households must be happy to do so, anticipating the average amount of goods

obtained by placing placing spot and chained orders respectively. This is the case in

this section.

At any t, both households choose amounts of spot orders. To place spot orders,

households must posses funds. Savers do not have production units, so they can only

make spot payments. Hence, for the rest of the paper, it is understood that the saver’s

period consumptionCs is purchased by making spot payments. By contrast, the worker

household chooses amounts of spot and chained orders. The total of goods purchased

by workers is Cw

Cw = Sw +Xw, (2)
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where Sw and Xw are her purchased amounts of spot and chained goods. As above,

each chained order must be backed by a specific labor income unit.

By placing spot and chained orders, summing across households, there is a total of

S spot goods and X chained goods produced. Total (adding the expenditures of both

households) expenditures in spot and chained orders are Es and Ex, respectively. In

equilibrium, total income must equal total expenditures soEx +Es = 1. Therefore, the

ratio of chained expenditures to total expenditures is µ = Ex and, thus, Es = 1− µ.

In the previous section, I worked with integer amounts of production units and or-

ders, and imposed the countability condition, N = N s + Nx. Here, expenditures are

chosen freely by households, so this condition is no necessarily met. To reconcile both

approaches, we can count the number of spot and chained orders with a floor and ceil-

ing function, N s = bEs
t /Nc, , Nx = dEx

t /Ne, given expenditure choices. As long as

Ex + Es = 1, the countability condition is satisfied. Moreover, any inconsistencies be-

tween the expenditure choices and the amount of goods bought froun rounding errors

vanish as N→∞.

Now, recall that total output depends on µ. Since for each spot order there is one

unit of output, Es = S = 1 − µ. Thus, using Theorem 2 we have that µA (µ) = X.

If we substitute µ = Ex into this relation, we find that Ex = A−1 (µ)X. Because the

number of orders tends to infinity, we can treat q (µ) ≡ A−1 (µ) as a price of chained

goods per unit of chained expenditure. I use this this auxiliary price, to define a worker

expenditure bundle:

Sw + q (µ)Xw = Ew. (3)

where Ew are the workers expenditures.

Savers. The saver’s period utility is log (·). He maximizes discounted lifetime utility

over the sequence {Cs
t }. Savers begin each t with real deposits, Dt, their only source of

wealth. Deposits earn an equilibrium returnRt. GivenDt, savers choose future savings,

Dt+1, and current expenditures.

Problem 1. (Saver’s Problem): Given D0 and {Rt+1}t≥0,
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max
{Cst }t≥0

∑
t≥0

βt log (Cs
t ) ,

subject to the budget constraint, R−1
t+1Dt+1 + Cs

t = Dt, ∀t ≥0.

Workers. Worker and saver preferences are identical. Different from savers, workers

begin each t with debt, Bt, and choose between current expenditures and future debt

Bt+1. The choiceBt+1 is limited by a natural debt limit, B̄ = 1/(1− β). Because they are

in debt, , to make spot expenditures, the worker must borrow intra-period. Namely, she

comes with Bt, but at the start of the period her debt increases to Bt + Swt . Intra-period

debt carries no interest and its repayment is always feasible—labor income always ex-

ceeds worker expenditures.15 By the end of the period, intra-period is either paid or

add to the balanceBt+1, depending on her expenditures. Critically, intra-period debt is

limited by a time-varying spot-borrowing line (SBL), B̃t which caps spot transactions:

Swt ≤ S̄t ≡ max
{
B̃t −Bt, 0

}
. (4)

An interpretation of B̃t is that it is a credit line that caps the amount of intra-period

borrowing by S̄t, as further discussed below.

To circumvent the SBL, the worker can place chained orders. However, chained

orders are costlier because q ≥ 1. Obviously, if the worker has little intra-period bor-

rowing capacity, she has to make these costly expenditures.

Problem 2. (Workers’s Problem): Given B0 and
{
Rt+1, B̃t

}
t≥0

,

max
{Swt ,Xw

t }t≥0

∑
t≥0

βt log (Cw
t ) ,

subject to the budget constraint, Bt+Ew
t =R−1

t+1Bt+1+1, ∀t ≥0, to the expenditure mix (3)

and total consumption (2), to the intra- and inter-period constraints (4), and to the nat-

ural debt limit Bt ≤ B̄.

15In equilibrium given the presence of savers, Swt < E.
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Market Clearing. Clearing in the asset market requires:

Dt = Bt, (5)

Since savers do not possess production units, they always maintain positive savings,

Dt > 0. Thus, without loss of generality, I work under the assumption that the worker

is always in debt. Hence, and from now on, I no longer make reference to Dt, and use

Bt to represent both saver deposit and worker debt. Given the consumption choices of

both households, {Xw
t , S

w
t , C

s
t }, the goods-market clearing condition is:

Cs
t + Swt +Xw

t = Y (µt) . (6)

Adding both household’s budget constraints yields an income-expenditure identity:

Cs
t + Swt + qtX

w
t = 1, (7)

that I exploit below.

Definition 2. Given a sequence of
{
B̃t

}
t≥0

, a sequence {Bt, C
s
t , S

w
t , X

w
t , Rt, qt}t≥0 is a

symmetric competitive equilibrium if:

1. Given {Rt, qt}t≥0, {Bt, S
w
t , X

w
t }t≥0 solves the worker’s problem and {Bt, C

s
t }t≥0 solves

the saver’s problem.

2. Markets clear; (5) and (6) are satisfied.

In equilibrium,the ratio of chained expenditures satisfies the following payments

identity:

µt = q (µt) ·Xw
t . (8)

3.2 Characterization

Solution to household problems. The solution to the saver’s problem is typical of log

utility and goes without proof.
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Proposition 3. Given B0, the solution to the saver’s problem is:

Cs
t = (1− β)Bt and Bt+1 = Rt+1βBt ∀t ≥0. (9)

The worker’s problem is more complicated as she must decide between spot and

chained expenditures. Given total expenditures Ew
t , since qt ≥ 1, cost minimization

requires her to spend spot as much as the SBL allows. Thus, givenEw
t , spot and chained

expenditures are respectively:

Swt = min
{
S̄t, E

w
t

}
(10)

and

Xw
t =

(
Ew
t −min

{
S̄t, E

w
t

})
/qt. (11)

Given this optimal split, I invoke the principal of optimality to cast the worker’s prob-

lem into a Bellman equation:

Problem 3. (Workers’s Problem): Given B0 and
{
B̃t, Rt+1, qt

}
t≥0

, workers choose a se-

quence of debt holdings {Bt+1}t≥0 which follow from the solution to:

V w
t (B) = max

B′≤B̄
log (Sw +Xw) + βV w

t+1 (B′) (12)

where Sw andXw are given by (10) and (11), respectively, and total expenditures byEw =

B′R−1
t+1 + 1−B.

The Bellman equation reformulates the worker’s problem as an expenditure-savings

problem. The solution yields expenditures which, together with the optimal expendi-

ture split, determine spot and chained consumption. The time index in the the value

function reflects the time dependence onRt+1, qt, and B̃t. The Bellman equation repre-

sentation allows to understand the implications of payment-chain networks for business-

cycle dynamics.

The following Lemma identifies threshold points that are key to the characteriza-

tion.
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Lemma 1. Threshold points. Define the efficiency threshold, B?
t+1 ≡ Rt+1

(
B̃t − 1

)
.

Then, Swt+1 = 0 if and only if Bt+1 > B̃t+1. In addition, Xw
t > 0 if and only if Bt+1 > B?

t+1.

Proof. The Lemma is immediate. If Bt+1 > B̃t+1 , the worker cannot spend spot. In

turn, Bt+1 > Rt+1

(
B̃t − 1

)
happens if and only ifEw

t = Bt+1/Rt+1−Bt + 1 > B̃t−Bt. In

that case, the worker spends sufficiently high that his chosen expenditure Ew
t requires

him to spend on some chained orders.

It is convenient to define some relevant objects that result from these threshold

points.

Definition 3. (Marginal Prices and Marginal inflation):

I. Average Price. The average goods price per unit of worker expenditure isQt ≡ Ew
t /C

w
t .

II. Marginal Prices and Marginal Inflation. Given B′, the price of the good at t bought

with a marginal increase in B′ is:

q̃Et (B′) ≡ 1 + (qt − 1) · I[B′≥B?t+1]
,

the price of the good purchased at t+ 1 after a marginal decrease in B′ is

q̃Bt+1 (B′) ≡ 1 + (qt+1 − 1) · I[B′≥B̃t+1].

Marginal inflation is Πt+1 (B′) ≡ q̃Bt+1 (B′) /q̃Et (B′), a continuous function ofB′ except at

discontinuity points
{
B?
t+1, B̃t+1

}
.

The average price of goods for the worker is the ratio of her expenditures to the

quantity of goods bought with those expenditures. Marginal prices have the following

interpretation: If at t the worker spends in chained goods, the reduction in her debt is

financed with a reduction in chained expenditures. Otherwise, if she does not spend on

chained goods, a reduction in her debt is financed with a reduction in spot goods. Since

the price of chained goods is qt and the price of spot goods is 1, the worker sacrifices

1/q̃Et units of consumption per unit of debt reduction. Likewise, if she spends spot at

t+1, any past savings can translate into spot expenditure at t+1. Otherwise, if she only

spends in chained goods at t+ 1, any past savings translate into chained expenditures.
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Hence, the worker can buy 1/q̃Bt+1 additional goods by reducing her debt at t on the

margin. Marginal inflation is the ratio of marginal prices, a definition that enters in the

following generalized Euler equation.

Proposition 4. (Workers’s First-Order Condition): Fix a sequence
{
B̃t, Rt+1, qt

}
t≥0

such

that B̃t is an increasing and βRt+1 ≤ 1. Then, any solution {Bt+1}t≥0 to the worker’s

problem satisfies the following generalized Euler equation:

Ew
t+1

Ew
t

Qt

Qt+1

= β
Rt+1

Πt+1 (Bt+1)
if Bt+1 6= B?

t+1 (13)

and

βqtRt+1 ≥
Ew
t+1

Ew
t

≥ βRt+1 if Bt+1 = B?
t+1.

The Euler equation has a clear interpretation: The left-hand side is the usual marginal

rates of substitution between t and t + 1 consumption.16 The right-hand side cap-

tures the usual relation between discounting and rate of return, βRt+1, but deflated by

marginal inflation. Marginal inflation is the ratio of the relevant prices that the deliver

marginal utilities at t and ˙t+ 1, respectively q̃et and q̃st+1. In an optimal solution, under

the assumptions presented in the proposition, this generalized Euler equation holds

exactly except at the discontinuity point B?
t+1. The inequalities that are satisfied when

Bt+1 = B?
t+1 correspond to an optimality condition based of a sub-differential: the con-

dition says that increasing debt is optimal to the left of B?
t+1 but not to the right.17

The Euler equation is necessary, but not sufficient in this model. The reason is that

the objective function in the worker’s problem, (12), is not concave in B′. This is intro-

duces further challenges to characterize a solution because multiple (finite) sequences

of Bt+1 may satisfy the worker’s Euler equation.

The stationary solution to the worker’s problem reveals interesting properties.

Proposition 5. (Stationary Worker’s Problem): Fix B̃t = Bss and Rt = β−1 and let B̃ss >

1. Then, a solution to the worker’s problem satisfies:

I. If B0 ≤ B?
(

1/β, B̃ss

)
, then Bt = B0 ∀t.

16The ratio of expenditures to average prices, is the ratio of marginal utilities under log preferences.
17There is also a discontinuity in the Euler equation at Bt+1 = B̃t+1, but the corresponding sub-

differential does not yield an optimality condition.
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II. There exists a threshold Bh > Bss such that:

� If B0 > Bh, then Bt → B?
(

1/β, B̃ss

)
in finite time

� If B0 ≤ Bh, then Bt = B0 ∀t.

The threshold Bh and the convergent sequence is given in the proof.

The proposition showcases a property of the worker’s problem that has important

implication in general equilibrium. To illustrate the Proposition, Figure 3 plots a nu-

merical solution of the stationary version of the worker’s Bellman equation, under the

case where Rt+1 = β−1 and a that B̃t = B̃ss > 0. In the figure, I also includes the value

functions when B̃t = 0 and B̃t =∞, which I denote by V̄ and V respectively.

Notice that for debt levels belowB?, V is exactly on top of V̄ . Once debt is below that

threshold, the worker consumes a constant amount of spot consumption permanently

and this gives the same value as if the SBL was irrelevant. When debt is above a thresh-

old Bh, the value function overlaps V . Once debt is above that threshold, the worker

consumes constant a amount of chained consumption permanently and this gives the

same value as if the SBL was zero. Thus, for high debt levels, even though the worker

can save to eventually enjoy better prices, he has no incentives to do so, because the

benefits of deleveraging come to fare in the future. We can verify this through the mid-

dle panel of the figure that depicts the savings function.18 Debt stays put when debt is

really high or very low. For moderate debt levels, there is deleveraging Bt+1 < Bt and,

furthermore, we can observe that fore a rang of values, Bt reaches B?. In this model

saving away from financial constraints happens if constraints are not too tight. I re-

turn to this figure property after I characterize the equilibrium dynamics: it leads to

important normative implications.

Equilibrium Dynamics: From Sequential to a Functional Representation. From now,

I analyze the equilibrium dynamics of Bt. Despite that B̃t is an arbitrary sequence, the

equilibrium is recursive with state variable Bt × B̃t × B̃t+1 ∈ [0, B̄]3.19 Let me present

18The right panel presents the optimal expenditures. As we can observe from the figure, the expendi-
ture mix changes as debt levels cross threshold.

19This means that we have a relationship between a sequence and a recursive formulation: a variable

mt, can be expressed as an equilibrium function, m : [0, B̄]3 → R+ such that mt = m
(
Bt, B̃t, B̃t+1

)
.
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Note: Figures are calculated using value function iteration: β = 0.9, q = 2.5and B̃ = 0.2 · B̄.

some of the equilibrium functions we encountered by this point. From (9), (7), and

(10), we have:

Cs (B) = (1− β)B, Ew (B) = 1− (1− β)B, (14)

and

and Sw
(
B, B̃

)
= min

{
S̄
(
B, B̃

)
, Ew (B)

}
.

Several other equilibrium functions are deduced from these functions directly, µ =

Ew − Sw, q ≡ A−1 (µ), Xw ≡ µ/q, Q ≡ Ew/Cw, and, finally, Cw ≡ Sw +Xw.

The only endogenous argument of the state is Bt. Thus, we need a map B from the

current state to its future value, B′ = B
(
B, B̃, B̃′

)
. If we obtain that map, the equilib-

rium rate will satisfy Rt+1 = R
(
Bt, B̃t, B̃t+1

)
whereR

(
B, B̃, B̃′

)
≡ β−1B

(
B, B̃, B̃′

)
/B,

following the saver’s optimal rule. With that equilibrium function, we can define the

threshold function B?
(
B, B̃, B̃′

)
≡ R

(
B, B̃, B̃′

)
·
(
B̃ − 1

)
. I solve for B below, after

defining a functional representation for the equilibrium prices:

Π
(
B′;B, B̃, B̃′

)
≡ q̃B

(
B′; B̃′

)
/q̃E

(
B′;B, B̃, B̃′

)
,

where

q̃E
(
B′;B, B̃, B̃′

)
≡ 1 +

(
q
(
B, B̃

)
− 1
)
· I[B′≥B?(B,B̃,B̃′)]

Hence, from now I use m to represent the function that maps the state into its equilibrium value mt. I
also adopt the convention of using m′ to refer to mt+1.
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and

q̃B
(
B′; B̃′

)
≡ 1 +

(
q
(
B′, B̃′

)
− 1
)
· I[B′≥B̃′].

To obtain an equilibrium, we need to obtain B. To that end, I combine the worker

and saver Euler equations, (13) and (9), and substitute out Rt+1 and using the equilib-

rium worker expenditures (14), to obtain an equilibrium condition B′:

B

1− (1− β)B
·Q
(
B, B̃

)
︸ ︷︷ ︸

≡E(B′;B,B̃,B̃′)

=
B′

1− (1− β)B′

Q
(
B′, B̃′

)
Π
(
B′;B, B̃, B̃′

)
︸ ︷︷ ︸

≡E ′(B′;B,B̃,B̃′)

. (15)

Thus, any Bt+1 must be a solution B′ the equation above. The left hand side and

right hand sides define functions equations E
(
B′;B, B̃, B̃′

)
and E ′

(
B′;B, B̃, B̃′

)
that,

at equality, define an aggregate Euler equation. Because Q is discontinuous, there may

be multiple solutions B′ to that equation. The following result tells us which solution

B′ is consistent with the symmetric competitive equilibrium and, thus, defines B.

Proposition 6. (Equilibrium Rates and Expenditures): Consider a weakly monotone in-

creasing sequence of spot borrowing lines B̃t → B̃ss. For any B0 < Bh
(
B̃ss

)
, if an equi-

librium exits, then Bt+1 = B
(
Bt, B̃t, B̃t+1

)
where

B
(
B, B̃, B̃′

)
= max

{
B?
(
B̃
)
, arg min

B′

{
E
(
B′;B, B̃, B̃′

)
= E ′

(
B′;B, B̃, B̃′

)}}
.

Proposition 6 is key. With it, we can describe the equilibrium dynamics through

a sequence of corollaries. Implicitly, the proposition yields an algorithm to compute

equilibria.20

Steady States. I use the ss subscript to denote steady states. In principle, workers

could make both spot and chained expenditures in steady state.However, from the

saver’s problem we know that in steady state, R = β−1. Coupled with the worker’s

20Starting from, B0, the sequence of debt generated in equilibrium is given by B
(
B, B̃, B̃′

)
, which is

the smallest solution B′ to the equation E
(
B′;B, B̃, B̃′

)
= E ′

(
B′;B, B̃, B̃′

)
. For each B, we obtain B′

and update the state accordingly.
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marginal inflation must also equals one which can only occur if the worker makes one

type of expenditure—recall Proposition 4. Thus, in steady state the worker makes either

only spot expenditures or only chained expenditures. I define an undisrupted steady

state as a steady state with only spot expenditures, and hence, Y = 1. In turn, a steady

states with below-capacity output, Y < 1 are disrupted steady state. The following

corollary presents a condition that guarantees that the economy is in an undisrupted

steady state.

Corollary 1. Fix B̃t = B̃ss. For any B̃ss > 0, the economy is in an undisrupted steady

state for any Bt ≤ B?
(

1/β, B̃ss

)
.

IfBt ≤ B?
(

1/β, B̃ss

)
the worker can borrow (intra-is that period) more than his cur-

rent income net of interests (at the steady state rate β−1). If that is is the case, the econ-

omy is in an undisrupted steady state. Observe that if B̃ss ≤ 1, then B?
(

1/β, B̃ss

)
> 0

in which case, no undisrupted steady state exists.

Convergence Toward an Undisrupted Steady State. Next, I describe domain of at-

traction toward undisrupted steady states. I turn to its counterpart, conditions un-

der which it remains in a disrupted steady state after. The domain of attraction to-

ward undisrupted steady states is the region for which the equation E
(
B′;B, B̃, B̃′

)
=

E ′
(
B′;B, B̃, B̃′

)
has a solution where B′ < B. This region has an upper bound:

B∗
(
B̃
)
≡ B̃/

(
Cw
(
B̃, B̃

)
+ Cs

(
B̃
))
≥ B̃.

This inequality follows from total consumption being less than total expenditures. We

have the following.

Corollary 2. Let B̃t = B̃ss ∀t. For anyB0 < B∗
(
B̃ss

)
,Bt+1 < Bt ifBt ∈

(
B?(β−1, B̃ss), B

∗(B̃ss)
)

and Bt+1 = Bt if Bt ≤ B?(β−1, B̃ss, B̃ss). If, in addition, B̃ss > 1 the economy converges

toward an undisrupted steady state in finite time (and approaches zero debt if B̃ss ≤ 1).

Corollary 2 describes the domain of attraction toward undisrupted steady states. If

workers hold debt between B̃ andB∗
(
B̃
)

they repay debt their debts.21 The deleverage

21Indeed, they will delever at the rateR < β−1 consistent with the condition in Proposition 4. In this
region, equation (15) may have two solutions, but only the lowest value of B′ is optimal.
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will continue until she reaches some steady state debt onceB′ ≤ B?
(
B̃ss

)
. An implica-

tion is that in the domain of attraction of undisrupted steady states, production delays

are temporary.

To illustrate the implications from Corollary 2, Figure 4 describes a transition to-

ward an undisrupted steady state. The figure plots different debt levels in the x-axis,

holding B̃ fixed. The solid blue and dashed gray curves plot the functions E and E ′ cor-

respondingly. The arrows in the figure trace the path of debt generated in equilibrium,

following the sequence of solutions toB′ implicit in Proposition 6. The left panel shows

that for initial conditions where B0 > B∗
(
B̃ss

)
, the economy fails to converge. In that

region, the only solution to E = E ′ happens atB′ = B. The middle panel plots the equi-

librium interest rate, R
(
B, B̃, B̃′

)
.22 The right panel highlights a gray area in the phase

diagram, this is the area of hysteresis that I describe below.

Whereas Figure 4 presents the phase diagram for a fixed value of B̃ss, we can com-

bine Proposition 6 and Corollary 2 to describe transitions when B̃t is not at steady state.

We can interpret this path as the dynamics that follow a credit crunch. As long as

B0 ≤ B∗
(
B̃ss

)
and B̃ss > 1, the economy converges to an undisrupted steady state

as explained in the following proposition.

Proposition 7. (Credit-Crunch Transtions): Consider an increasing sequence
{
B̃t

}
cor-

responding to a credit crunch with three phases: (a) for t ≤ Te, the economy is in the

extreme phase where B̃t ≤ B0; (b) for t ≤ Tr the economy is in a recovery phase where

B̃t ∈
[
B0, B̃ss

]
; (c) for t > Tr, the economy is in its normal phase where B̃t = B̃ss. We

have the following:

I. Extreme Phase, t ≤ Te − 1: Bt = B0, and Rt = 1/β and the worker consumes only

chained goods.

II. Smoothing Phase, t = Te: the worker accumulates debt, Rt > 1/β, St = 0 and Xt is

higher than the previous value.

III. Recovery Phase, t ∈ {Te, . . . , Tr − 1}: the path of debt and interest rates is ambiguous,

but there is consumption of both goods St, Xt > 0.

22Note that there are regions of relevance that depend on the cases in the function. The discontinuity
arises due to the indicators. The solution is obtained by replacing the market clearing condition into the
the worker’s Euler equation.
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Note: Figures are calculated using the formulas in proposition 6 for β = 0.9, and B̃ = 0.2 · B̄.

IV. Repayment Phase, t = Tr: the worker repays debt, Rt < 1/β and Xt is lower than its

previous value.

V. Steady-State Phase, t ≥ Tr + 1: Bt = Bss,Rt = 1/β and the worker consumes only spot

goods.

Along the transition B0 > Bss.

There are different phases in a transition. In its extreme phase, TFP is at its lowest

because workers only spend by making chained orders and debt remains constant. In

the smoothing phase, workers anticipate that they will be able to spend on spot goods

in the subsequent period. To smooth consumption, they increase current chained ex-

penditures taking in more debt. During the recovery phase, workers trade-off con-

sumption smoothing and against paying off debt to increase their credit lines and spend

spot. The repayment phase is the last period with positive chained expenditures. Even-

tually, the economy converges to a steady state with less debt than at the start of the

transition. Figure 5 presents an example of a transition where the different phases that

correspond to Proposition 7 are evident.

Debt-Overhang and Hysteresis of Payment-Chain Crises. Up to this point, I only

considered undisrupted steady states. In now turn to the study of hysteresis in payments-

chain crises. Hysteresis is provoked when there is debt overhang.

Corollary 3. (Hysteresis): Let B̃t = B̃ss ∀t. For Bt ≥ Bh
(
B̃ss

)
, the economy is perma-

nently in a disrupted steady state.
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Figure 5: Efficient and Competitive Transition after a Smooth Credit Crunch.

Note: This figure reports a numerical example of a credit crunch episode. I consider two possibilities, I violent and a smooth
transition.

Hysteresis occurs when workers have so much debt that the required sacrifice in

terms of current consumption does not compensate the benefits relaxing constraints

in the future to make spot orders.23 Recall from Figure 3 that for sufficiently high debt

levels, the worker’s value function yields the same value as if B̃t = 0 forever. This means

that the economy experiences a debt overhang, she could save to make spot consump-

tion, assuming the rate is Rt+1 = β−1. Of course, in general equilibrium, the rate is

endogenous. Figure 4 depicts the region of hysteresis in the gray area, and shows that

the hysteresis region, equilibrium rates are indeed, Rt+1 = β−1.24

If debt starts in hysteresis region, it never falls. Excessive debt hampers the ability

to make payments quickly, and the economy may ends up in a permanent state of be-

low capacity production. With deterministic dynamics, hysteresis cannot be reached

from other states. In a more general setting, hysteresis can be induced by shocks that

provoke excess pptimism or low discount factors. This debt overhang rationalizes sev-

eral verbal descriptions of the Japanese lost decades or Europe after the Great Financial

Crisis. The scenario showcases an extreme episode where there are clear productivity

losses that could be avoided. In the following section, I formalize this sense of social

23An obvious case occurs when B̃ss = 0. In that case, there are no incentives to deleverage. But even
for B̃ss > 0, we have the following proposition.

24For that rate, the only solution to the equilibrium condition E = E ′ happens at B′ = B.
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inefficiency and analyze policy remedies.

I should note that the the domain of attraction of undisrupted steady states and

hysteresis are disconnected. This implies that between B∗
(
B̃ss

)
and Bh

(
B̃ss

)
, a sym-

metric competitive equilibrium does not exist. I do not explore other forms of equilib-

ria.25

Discussion: Interpretation of Financial Frictions in the Model. For savers, it is clear

that their spot payments represent the use of cash. For workers, an interpretation of

max
{
B̃t −Bt, 0

}
is: funds drawn from a “business credit line.” This is because Swt are

business related payments that can be made only if we have a liquid liability line avail-

able. Hence, spot payments by the worker can be thought of as credit card lines, over-

draft facility programs or directly as supply chain finance facilities.26 In turn, chained

payments can be though of as account receivables that remain outstanding. In prac-

tice, for many account receivables, the product is not yet delivered or produced, until a

fraction of the payment is anticipated. This is the sense in which they provoke delays.

Related to the point above, the SBL here is different from the standard hard debt

limits studied in most macro finance models. There’s a economic motivation behind

it: if a bank wants to cut back on credit, it can tighten credit lines, but will necessarily

force client to repay debt principals. If loan repayment is suddenly forced, it can trigger

default in which case it may lead to costly underwritings for banks. In such cases, it is

more convenient for the bank to role over debt than to force repayments.

Finally, it is worth discussing the misallocation of funding. As a result of the big fam-

ily assumption, the worker will receive labor income flows while there are still pending

chained orders. This happens because the worker may receive payment on orders that

are not chained before it receives payments that are pledged to chained expenditures

that have not cleared. The big family assumption is present to avoid a distribuiton of

25Note that in this middle region, at an individual level, workers would want to delever as seen in
Figure 3. In general equilibrium, this would imply a rate below β−1, for which there are no solutions to
equation (15), as shown in Figure 4. The economy may possibly feature sunspot equilibria; a situation I
do not consider in this paper.

26Other examples of facilities are Business Credit Lines, Standby Letters of Credit and Supplier Finance
Programs. Under a Supplier Finance Program, the buyer wants to pay later whereas suppliers request
cash. Supplier Finance enables suppliers to be paid by banks against the receivables. Descriptions of
these programs are offered by some of the largest financial institutions: J.P. Morgan Supplier Finance
Facility or Citibank Supplier Finance Facility.

https://www.jpmorgan.com/solutions/treasury-payments/trade-and-working-capital/supply-chain-finance-working-capital/aw?source=wp_pa_ga_scf15b0522&jp_cmp=ci/Supply+Chain+Finance_Non+Brand_Phrase_Global+Trade_SEM_Global_NA_Standard_NA/sea/p63199101800/Supply+Chain+Finance&gclid=Cj0KCQjworiXBhDJARIsAMuzAuybNlEEvKAgX3zqbyNnMh-4VBCxNZbadijD0Em89sACG8W4HL_v8qIaAtJtEALw_wcB&gclsrc=aw.dsJ
https://www.jpmorgan.com/solutions/treasury-payments/trade-and-working-capital/supply-chain-finance-working-capital/aw?source=wp_pa_ga_scf15b0522&jp_cmp=ci/Supply+Chain+Finance_Non+Brand_Phrase_Global+Trade_SEM_Global_NA_Standard_NA/sea/p63199101800/Supply+Chain+Finance&gclid=Cj0KCQjworiXBhDJARIsAMuzAuybNlEEvKAgX3zqbyNnMh-4VBCxNZbadijD0Em89sACG8W4HL_v8qIaAtJtEALw_wcB&gclsrc=aw.dsJ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwioq9-PwLP5AhXPJ0QIHfFGAPgQFnoECAQQAQ&url=https%3A%2F%2Fwww.citibank.com%2Ftts%2Fsolutions%2Ftrade-finance%2Fassets%2Fdocs%2FCiti-Supplier-Finance.pdf&usg=AOvVaw1_2YXZWe6lQrzFXMnG2bnK
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ex-post outcomes, while keeping the simplicity of the TFP function derived earlier. I

should note that chained orders would still induce delays even if within the worker

could not pledged income to accelerate the payment of chained orders.27 Hence, the

assumption that some funds remain idle, change the exact functional form of the TFP

function, but not it’s essence.

4. Policy Implications

4.1 Constrained Inefficiency

In Section 3, we expressed the chained expenditure ratio as a function of debt levels.

Earlier, in Section 2 we found that higher chained expenditure ratios lead to longer

payments chains which provoke declines in observed TFP. Those losses result from the

poor organization of payments chains, given a level of chained expenditures. Ideally, a

planner would reorganize payments so that each chain is of equal length, but govern-

ments do not have that power. What governments can do is influence the decisions to

spend by different agents. This section studies policies that alter expenditure-savings

decisions, respecting the transactions technology and the financial constraint.28 The

spirit of the exercise is not normative. Rather, the purpose is to clarify the sources of

constrained inefficiency of the competitive equilibrium .

Ideal Pareto Weights. To study constrained inefficiency, I consider a transition of a

competitive equilibrium that reaches an undisrupted steady-state debt-level Bss start-

ing fromB0. I study a Ramsey Planner problem with Pareto weights on workers θ which

delivers the same steady-state debt level of the competitive equilibrium:

1− (1− β)Bss

(1− β)Bss

=
θ

1− θ
. (16)

27For the case where chained orders can be paid with any incoming payment, the chain length distri-
bution can again be derived analytically. In that case, for Nx > Ns, the minimal chain length would be
zero, the maximal chain length dNx/Nse, and the probability distribution uniform among chains with
n ≤ bNx/Nsc. For Nx ≤ Ns, the minimal chain is zero with probability Ns −Nx and the maximal chain
length 1.

28Traffic regulation is a useful analogy: government’s cannot assign drivers into different lanes, but
they can tax vehicles.
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Since the economy is efficient in an undisrupted steady state, any difference between

the transition path of debt in a planner and competitive equilibrium solutions uncovers

an inefficiency only along transitions.

The Ramsey Problem. Consider a sequence of debt taxes
{
τ kt
}

, labor taxes
{
τ `t
}
, and

expenditure taxes {τ ct }. The Ramsey problem is:

Problem 4. (Ramsey Problem): Given B0 and
{
B̃t

}
:

max
{τkt+1,τ

c
t ,τ

`
t+1}t≥0

∑
t≥0

βt [(1− θ) log (Cs
t ) + θ log (Cw

t )] ,

subject to the (modified) saver budget constraint and optimality:

(
1 + τ kt+1

)
R−1
t+1Bt+1 + (1 + τ ct )Cs

t = Bt, ∀t ≥0,

to the (modified) worker budget constraint and optimality:

Bt + (1 + τ ct )Ew
t = R−1

t+1Bt+1 + 1− τ `t , ∀t ≥0,

to the government’s budget constraint:

τ kt+1R
−1
t+1Bt+1 + τ ct (Cs

t + Ew
t ) + τ `t+1 = 0, ∀t ≥0,

and the structure of transactions: (i) optimal expenditures (10-11), (ii) total consump-

tion (2), (iii) the optimality conditions of the worker and saver problems, (iv) the pay-

ments constraints (8), and (v) the shadow price, qt = A (µt)
−1.

This Ramsey planner distorts the competitive equilibrium by using credit, labor,

and expenditure taxes. This planner cannot distinguish between the two expenditure

forms but takes into account the agents’ optimal behavior, their constraints, market

clearing, respects the transactions technology, and satisfies the budget balance condi-

tion.
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The Primal Problem. I solve the Ramsey problem by solving an equivalent primal

problem.

Proposition 8. (Solution to Ramsey): The allocations induced by a solution to the Ram-

sey Problem are the same allocations as the solution to the following Primal Planner

Problem:

Problem 5. (Primal Planner):Taking
{
B̃t

}
as given:

max
{Bt}t≥0

∑
t≥0

βtP
(
Bt, B̃t

)

where

P
(
B, B̃

)
≡ (1− θ) log (Cs (B)) + θ log

(
Sw
(
B, B̃

)
+Xw

(
B, B̃

))
.

Let
{
Bp
t+1

}
t≥0

be a solution to the Primal Planner Problem. The solution to the Ram-

sey Problem can be implemented setting (1 + τ c0) = Bp
0/B0 and a sequence of debt taxes

that satisfies a formula given in the proof. Any sequence of labor and subsequent expen-

diture taxes that satisfies the budget solvency condition implements the Primal problem.

The main insight from this proposition is that the Ramsey problem can be solved

by solving a more relaxed Primal Problem where a planner directly chooses the path

of debt. Indeed, the constraint set in the Primal Problem includes the constraint set

of the original Ramsey problem.29 Hence, if a solution to the primal can be imple-

mented with taxes, it solves the optimal Ramsey program. The proposition shows that

an implementation exists. In the implementation, capital taxes and a period-zero ex-

penditure tax are needed by the Ramsey planner to distort the evolution of debt and

replicate the Primal solution. This implementation is possible because saver expendi-

tures are invariant to capital taxes so net-of-tax interest rates determines the evolution

of debt.30 Understanding the path of debt chosen by the Planner is critical to under-

29This is immediate since market clearing in the asset market and the budget balance, implies, by
Walras’s law, that the resource constraint holds.

30Under log utility, debt determines the savers’ expenditures through the (1− β) rule of log utility.
Since worker income is one, and income equals expenditures, once saver expenditures are given, worker
expenditures are given. But once worker expenditures are known, the composition of their expenditures
is known, through expenditure minimization. When labor taxes are used to balance the budget, expen-
diture taxes are redundant. The expenditure tax is needed at time zero to control Bp0 . If I were to restrict
τ c0 = 0, the Primal Planner would be modified only in that B0 would be taken as given.
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stand the inefficiencies of this environment.

Proposition 9. (Solution of the Primal Problem): The solution to the Primal Planner

Problem Bt = Bp
(
B̃t

)
where Bp is the solution to:

Po
(
B̃
)

= max
B∈[0,B̄]

P
(
B, B̃

)
.

Bp and Po satisfy the following properties:

I. Efficient Allocation. For B̃ ≥ 1+θβ
1−β , the planner’s problem is unconstrained: Po

(
B̃
)

=

Po
(
B̄
)
, Bp = Bss, and there are no chained expenditures and TFP is maximal, Xw =

0, A = 1.

II. Inefficient Allocations. For B̃ < 1+θβ
1−β , the planner always distorts social insurance.

The planner may or may not distort TFP and may feature Bp > Bss or Bp < Bss depend-

ing on the thresholds
{
B̃i, B̃s

}
characterized in the Appendix.

II.a. Inefficient Insurance | Productive Efficiency. For B̃ ∈
[
B̃i, 1+θβ

1−β

)
, the planner’s

problem is constrained: Po
(
B̃
)
< Po

(
B̄
)

. The planner distorts expenditures Bp =

B?
(
B̃
)
< Bss. However, there are no chained expenditures and TFP is maximal, Xw =

0, A = 1.

II.b. Inefficient Insurance and Inefficient Production | Complementary Case. If

B̃s < B̃i, then B̃ ∈
[
B̃s, B̃i

)
, the planner’s problem is constrained: Po

(
B̃
)
< Po

(
B̄
)

.

The planner distorts expenditures and Bp < B?
(
B̃
)

is the unique solution to:

1− (1− β)B

(1− β)B
=

θ

1− θ

Q
(
B, B̃

)
q
(
B, B̃

)
q

(
B, B̃

)
− β

(
1 + εAµ

(
µ
(
B, B̃

)))
1− β

 . (17)

Moreover, the solution satisfies Xw, Sw > 0 and TFP is inefficient, A < 1. A marginal

decrease in debt at Bp increases efficiency.
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II.c. Inefficient Insurance and Inefficient Production | Conflicting Case. For B̃ ∈[
0, B̃s

]
, we have that Bp is the unique solution to:

1− (1− β)B

(1− β)B
=

θ

(1− θ)
(
1 + εAµ (1− (1− β)B)

)
. (18)

Moreover, for this debt level Sw
(
B, B̃

)
= 0 and the solution is the same as when B̃ = 0.

A marginal decrease in debt at Bp decreases efficiency.

The solution to the Primal is interesting in-itself because it reveals novel economic

insights. First, the Planner can choose a sequence of debt on behalf of agents. Once

the planner chooses a level of debt, because of log utility, saver expenditures are deter-

mined. Since total income is 1, and total income equals total expenditures, the choice

of B determines the worker expenditures. Since production is static and only depends

on the expenditure mix, the Primal Problem is solved as a sequence of static problems.

Thus, the problem can be entirely formulated in terms of a choice of B, given B̃.

If the SBL is above the threshold, B̃ ≥ 1+θβ
1−β , the planner setsB = Bss, and production

is efficient. Furthermore, condition (16) is satisfied: meaning that the ratio of marginal

utilities equals the ratio of Pareto weights, a notion of unconstrained efficient social

insurance.

If the SBL is below the efficiency threshold, the planner faces a trade-off between so-

cial insurance and productive efficiency, a common trade-off in macroeconomics. The

novel aspect of the theory is that the planner has two ways to increase productive effi-

ciency: one option is for the planner to choose debt below the SBL, B < B̃. Below the

SBL, any reduction in debt translates, on the margin, into more spot consumption by

the worker and, thus, increases efficiency. Alternatively, the planner can choose above

the SBL, B < B̃. Above the SBL, any increase in debt, translates on the margin, into

more spot consumption by the saver. All in all, the planner can increase efficiency on

the margin, either by distributing wealth toward the worker if B < B̃ or by distributing

wealth toward the saver if B > B̃. Because of this ambivalent nature of efficiency, the

Planner’s objective function P
(
B, B̃

)
is not concave in B. The nature of the Planner’s

solution changes as the SBL becomes tighter.

I use Figure 6 to describe the economics behind the planner’s solution. The left
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panel plotsBp for different values of B̃. When the SBL is moderately tight, B̃ ∈ [B̃i, 1+θβ
1−β ),

the Planner does not provoke productive inefficiency—TFP is 1. However, sinceB?
(
B̃
)
<

Bss, productive efficiency can only be achieved setting Bp = B?
(
B̃
)

. The planner

trades-off social insurance and redistributes wealth toward the worker to guarantee

productive efficiency. The Planner’s solution is at a corner because the derivative of

his objective is discontinuous at B?
(
B̃
)

. This discontinuity follows from A (0) < 1, a

feature of the payments-chain network structure: even when the chained expenditure

ratio is zero, and individual chained expenditure experiences a delay.

When the SBL is further tight, B̃ ∈
[
B̃s, B̃i

)
, the Planner is willing to accept some

productive inefficiency. To guarantee productive efficiency, for those levels of the SBL,

the planner would have to redistribute even more wealth to the worker, at the ex-

pense of saver’s consumption. In that region, that trade-off is not worth it and thus

B?
(
B̃
)
< Bp < B̃. However, still in this area redistributing wealth to the agent fac-

ing the constraint complements productive efficiency. Recall that the Planner has to

balance productive efficiency with social insurance, as given by equation (17).

When the SBL below falls to an extreme value, B̃ < B̃s, the nature of the plan-

ner’s solution changes dramatically. Increasing productive efficiency by redistributing

wealth to the worker would require debt levels below B̃, but at those low levels of the

SBL, that would require an even greater sacrifice of saver consumption. At that point,

the planner switches strategy: it begins to redistribute wealth away from the worker,

the agent that is constrained. The planner gives up on generating productive efficiency

inducing spot expenditures by the worker. Rather, it makes the worker only spend in

chained goods, but takes wealth away from her to make the saver spend spot. Once the

worker only spends spot, the SBL becomes irrelevant, so the planner chooses a con-

stant debt level in this region. This debt level is higher than the unconstrained ideal

debt level Bss given by Equation (18).

The ambivalent nature of the Planner’s problem is germane to nature the payment-

chain crises. In typical models with pecuniary externalities, a planner will want to

rebalance wealth toward the financially constrained agent to induce productive effi-

ciency. Thus, social insurance and productive efficiency reinforce each other. Here, for

extremely low values of the SBL, the planner may switch to a policy where social insur-
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ance and efficiency are in conflict. The middle and right panels of Figure 6 illustrate

how the planner changes strategy. In the middle panel, the planner prefers a value of

debt where social insurance and efficiency compliment. The right panels shows how

he switches strategy as the SBL is tighter.

(a) Planner Debt Choice

Planner

(b) P
(
B, B̃

)
(moderate B̃)

Planner

(c) P
(
B, B̃

)
(tight B̃)

Figure 6: Primal Planner Solution

Note: Figures are calculated using value function iteration: β = 0.9, q = 2.5and B̃ = 0.2 · B̄.

Competitive Equilibrium vs. Efficient Transitions: An illustration. To illustrate how

transitions are inefficient, Figure 5 overlays the planner solution to the competitive

equilibrium described earlier. During the extreme phase of the crisis, the planner redis-

tributes wealth toward savers to induce more spot expenditures. To do so, the planner

must subsidize savings. From the outset, the policy seems draconian: the planner taxes

the agent is suffering most, the worker, to subsidize savers. However, by making savers

wealthier, the planner induces them to make more spot expenditures. This increases

TFP, and actually, leads to an increase in worker consumption, despite the increase in
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labor taxes. This increase comes about through the reduction of the price of chained

consumption, which more than offsets the increment in labor taxes. A regressive pol-

icy from the outset, increases the welfare of both agents. During the recovery phase the

planner reverses the policy: it taxes savings to reduce debt. In doing so, the planner

allows the worker to make some spot expenditures. As the credit standards are further

relaxed, the planner increase debts slowly reaching the efficient steady state.

Though I considered the planner solution along a transition toward an undisrupted

steady state, we also know that the planner solution described in Proposition 9 would

not allow hysteresis in payments-chain crises.31 The exercise above showcases that

exiting the hysteresis region, may require policies that seem draconian from the outset.

4.2 Fiscal Policy and the Bocola Effect

Government Spending: Pay for stuff vs. Spending. I now consider government ex-

penditures. I distinguish between government expenditures paid spot or paid chained

to tax receipts. It turns out that the type of government expenditures matters dra-

matically. I call this effect, the Bocola effect of government expenditures, because

economist Luigi Bocola suggested this distinction. To my knowledge, this is the first

formal description of this effect.

To explain the Bocola effect in a simple way, I treat government expenditures as iso-

morphic to household expenditures. I label by Gs the spot government expenditures.

To spend spot, implicitly I assume that the government must also borrow intra-period.

In turn, the government can make chained expenditures, Gx. For that, I treat govern-

ments taxes as income units isomorphic to the labor income of households. For sim-

plicity, I assume that the government raises labor taxes and satisfies a balanced budget

at the end of the period. Furthermore, the resources used by both forms of expendi-

tures are wasted resources. I consider the following problem.

31Indeed, in the hysteresis region, Qt

qt
= 1, so Bt = Bt+1 is the only solution to the debt accumulation

equation of the competitive equilibrium, (15). In the planner’s solution, that equation is altered by the
term,

(
1− εqµ,t

)
> 1.
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Problem 6. (Government Problem with Expenditures): Given B0 = Bss and
{
B̃t

}
:

Pg0 = max
{τkt ,Gxt ,Gst}t≥0

∑
t≥0

βt [(1− θ) log (Cs
t ) + θ log (Cw

t )] ,

subject to the saver’s optimal behavior (9), a worker budget constraint:

Bt + Ew
t = R−1

t+1Bt+1 + 1− τ `t , ∀t ≥0

the worker’s optimal behavior (13), (10-11), and (2), a government budget-balance con-

straint with expenditures:

τ `t = Gx
t +Gs

t , ∀t ≥0,

and the ratio of chained expenditures relative to total expenditures:

µt = qtX
w
t +Gx

t and qt = A (µt)
−1 .

The problem is similar to the Ramsey problem other than for the government ex-

penditures and the exclusion of credit taxes. Instead of solving this problem, I com-

pute government multipliers, near no expenditures. These multipliers transparently

showcase how the payment time of government expenditures matters:

Proposition 10. (Infinitesimal Government Multiplies): Fix {Gx, Gs} = (0, 0). Consider

an unexpected marginal increase in government expenditures of type g ∈ {x, s} at time

t. We have that:
∂Pgt
∂Gg

=
θ

Cw︸︷︷︸
marginal ind. utility

× ∂Cw

∂Gg︸ ︷︷ ︸
multiplier

for g ∈ {x, s} .

The consumption responsesare:

∂Cw

∂Gx
=


−1 B < B?

(
B̃
)

−A (µ) B > B?
(
B̃
) , ∂Cw

∂Gs
=


−1 B < B?

(
B̃
)

−A (µ)
(
1 + εAµ

)
B > B?

(
B̃
)
.
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Finally, the output multipliers are:

∂Y
∂Gx

=


A (µ)

(
1 + εAµ

)
− 1 B < B?

(
B̃
)

0 B > B?
(
B̃
) , ∂Y

∂Gs
=


0 B < B?

(
B̃
)

1−A (µ)
(
1 + εAµ

)
B > B?

(
B̃
)
.

When B ≤ B?, production is efficient. For such low levels of debt, Proposition 10

shows that any form of government expenditures are a waste to society. First, either

form of government expenditure reduces worker expenditures one-for-one, leading to

a reduction in welfare.32 In terms of output, if the expenditure is spot, the multiplier is

zero as transfers spot expenditures from the private to the public sector. If in turn the

expenditures are chained, the income multiplier is negative because the government is

increasing productive inefficiency,
(
1−A (µ)

(
1 + εAµ

))
> 0.

In a payments-chain crisis, whenB > B?, the multipliers behave differently. Chained

expenditures, are again detrimental for welfare.33 They carry a zero output multiplier

because they transfer an inefficient source of expenditures from the private sector to

the public sector. By contrast, if the government spends spot, it provokes a positive

externality. This externality is captured by the elasticity εAµ . Spot government expen-

ditures also crowd-out worker chained expenditures but the income extracted from

workers are spent upfront. Ultimately, this reduces the average chain length and in-

creases TFP. In an deep crisis, spot government expenditures may even increase worker

consumption. In particular, this occurs when εAµ < −1, a condition that is shown to be

possible in the Appendix. In terms the output multiplier of spot expenditures, it is al-

ways positive in a payments chain crisis. This is because the government substitutes in-

efficient private expenditures for efficient public expenditures. Welfare increases pre-

cisely when the multiplier is above 1.

We learn a new lesson. In a payments-chain crisis, government expenditures can

have a positive benefits but only if paid upfront. The mechanics are different from

the arguments regarding aggregate demand stimulus. In this setting, a government

32The social cost of government expenditures are entirely born by workers because worker pay these
taxes, the evolution of debt is not distorted.

33Government expenditures crowd-out worker chained expenditures one-for-one so divided by 1/q,
this gives us the reduction in chained consumption of chained government expenditures.
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that subscribes to the idea that it can stimulate demand, simply by spending, would

unwillingly reduce welfare and have no effects on output. To have positive effects, the

government must spend by paying for things upfront during a payments-chain crisis.

Discussion: Fiscal Transfers, and Ricardian Equivalence. Because the labor is in-

elastic to labor taxes and saver expenditures are inelastic to capital taxation, the Ram-

sey planner problem is equivalent to one where we allow for transfers. The equivalence

holds, only if transfers cannot be used immediately for spot payments.

Regarding transfers, there are some distinctions with the taxes I considers. For ex-

ample, announcements of future transfers can have pervasive effectsin the midst of a

payments-chain crisis. The reason is that it may lead workers to spend more. If they

only make chain expenditures, this can reduce TFP. The model lacks Ricardian equiva-

lence.

5. Conclusion

The contribution of this paper is to propose a payments interpretation of financial

crises. The economic problem here is the inefficient timing of payments. This ineffi-

ciency causes delays in production and is a coordination failure aggravated by limited

funding. These inefficiencies are encoded inA. Whereas the policy recommendations

have a similar flavor to those in environments with demand externalities, the paper

shows that policies should be directed at accelerating payments.

In building the theory, I made two shortcuts. First, I assumed that all transactions

are bilateral and for the same amounts. In practice, payments are much more complex,

as is the nature of economic production. Second, I assumed that households produce.

In practice, payment chains are more relevant for firms. Developing payment-chain

networks with a richer variety of transactions and a business cycle model with firm

production is important to bring the model closer to reality. Nonetheless, I expect the

lessons here to hold in more general settings. I hope the paper prompts new ways to

think of financial crises and their remedies.
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A. Proofs of Section 2

A.1 Proof of Proposition 2

Part 1. Derivation of TFP. In the body of the paper, I showed that for a chain of three

orders, of which two are chained, the vector of production is {1, δ, δ2} . The following

induction argument generalizes: If the k-th node initiates production at time 1 − δk−1,

the delay from its inspection is (1− δ) δk−1, which added to previous delays leads to a

transfer of funds only by time 1 − δk−1 + (1− δ) δk−1 = 1 − δk. This, leaves δk time for

production to the subsequent unit. Since we computed the delay for k = 1, 2, . . .. the

productions in a chain of length n are {1, δ, δ2, . . . , δn}.
It follows that the average output for chained orders, that is excluding the output of

the spot order in the chain, in a payments-chain of length n is

ȳxn =
1

n

n∑
m=1

δm =
δ

n

(
1− δn

1− δ

)
.

Recall that a chained order will necessarily fall in a chain with length n ≥ 1. Thus,

the p.m.f of lengths conditional on this event is

Gx (n;µ) =
(1− µ)µn

µ
.

Next, we turn to our goal of finding the expected output of a chained order:

E [ȳx] =
∞∑
n=1

ȳxnG
x (n;µ) ,

=
∞∑
n=1

(1− µ)µn

µ
· δ
n

(
1− δn

1− δ

)
,

=
(1− µ)

µ
· δ

(1− δ)
·
∞∑
n=1

(
µn

n
− (δµ)n

n

)
,

=
1− µ
µ
· δ

1− δ
· ln
(

1− δµ
1− µ

)
,
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The last equality follows from:

∞∑
n=1

an−1 =
1

1− a
↔

∞∑
n=1

an

n
= ln

(
1

1− a

)

for |a| < 1, which can be shown by simply taking derivatives to both sides. A simple

weak law of large numbers yields the desired result. Recall that we can have spot iden-

tities i ∈ N s as unique identifiers for payment chains (spot orders for a one-to-one map

with chains). Let ` (i) be the length of the payment chain that starts with spot order i.

Given that for each i ∈ N s, ` (i) ∼ i.i.d. G (µ), then

A (µ; δ) ≡ plim
N→∞

1

N s

∑
i∈N s

yx`(i) = E [yx] .

In words, the average output among chained orders converges to E [yx] as the network

gets larger (N → ∞). Next, we derive expected output—the limit as N → ∞ is implic-

itly. The fraction of spot orders is (1− µ) . Production is 1 in their case. The fraction of

chained orders is µ, and they produce on averageA (µ). Thus, total output is:

Y (µ) = (1− µ) + µA (µ) .

Next, we obtain the derivative and limits of Y (µ) ,A (µ).

Part 2. Limits. We first consider the limit as µ→ 0:

lim
µ→0
A (µ; δ) =

δ

(1− δ)
lim
µ→0

(
1

µ
− 1

)
· ln
(

1− δµ
1− µ

)
= lim

µ→0

ln
(

1−δµ
1−µ

)
µ

.

The last term is the ratio of two variables that converge to zero. Using L’Hospital’s rule:

lim
µ→0

ln
(

1−δµ
1−µ

)
µ

=
δ

(1− δ)

limµ→0

(
1

1−µ −
δ

1−δµ

)
1

= δ.
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where I used

∂ ln
(

1−δµ
1−µ

)
∂µ

=
1− µ
1− δµ

(
1− δµ
1− µ

)(
1

1− µ
− δ

1− δµ

)
=

(
1

1− µ
− δ

1− δµ

)
.

For output, the limit is:

lim
µ→0
Y (µ; δ) = lim

µ→0
(1− µ) lim

µ→0

(
1 +

δ

1− δ
ln

(
1− δµ
1− µ

))
= 1.

Next, we consider the limit as µ→ 1:

lim
µ→1
A (µ; δ) =

δ

(1− δ)
lim
µ→1

(
1

µ
− 1

)
lim
µ→1

ln

(
1− δµ
1− µ

)
.

This is the product of numbers that go to 0 and infinity. Using L’Hospital’s rule:

lim
µ→1
A (µ; δ) =

limµ→1

(
− 1
µ2

)
limµ→1

(
1

1−µ −
δ

1−δµ

) = 0.

For output, the limit is:

lim
µ→1
Y (µ) = lim

µ→1
(1− µ) + lim

µ→1
µ lim
µ→1
Yx (µ) = 0.

Next, we consider the limit as limit as δ → 0:

lim
δ→0
A (µ; δ) =

(
1

µ
− 1

)
lim
δ→0

δ

(1− δ)
· lim
δ→0

ln

(
1− δµ
1− µ

)
= 0.

For output,

lim
δ→0
Y (µ) = (1− µ) + µ lim

δ→0
YxA (µ; δ) = (1− µ) .

Finally, we consider the limit as δ → 1:

lim
δ→1
A (µ; δ) =

(
1

µ
− 1

)
lim
δ→1

δ · lim
δ→1

1

(1− δ)
· lim
δ→1

ln

(
1− δµ
1− µ

)
.
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This derivative is of the ratio of two numbers that go to zero. Using L’Hospital’s rule:

lim
δ→1
A (µ; δ) =

(
1

µ
− 1

) limδ→1
1−µ
1−δµ

(
−µ
1−µ

)
−1

=

(
1− µ
µ

)(
µ

1− µ

)
= 1.

For output,

lim
δ→1
Y (µ) = (1− µ) + µ lim

δ→1
YxA (µ; δ) = 1.

This concludes the derivation of the limits of interest.

Part 3. Monotonicity. Next, we investigate the derivatives ofA and Y . We can write:

A (µ; δ) =

(
1

µ
− 1

)
· δ

(1− δ)
· ln
(

1− δµ
1− µ

)
.

Thus,

Aµ =
δ

(1− δ)

((
− 1

µ2

)
· ln
(

1− δµ
1− µ

)
+

(
1

µ
− 1

)(
−δ

1− δµ
+

1

1− µ

))
.

Factoring out−1/µ2:

Aµ = − δ

(1− δ)
1

µ2

(
ln

(
1− δµ
1− µ

)
− µ (1− µ)

(
−δ

1− δµ
+

1

1− µ

))
= − δ

(1− δ)
1

µ2

(
ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
.

To show that the derivative is negative, we need to show that the term in the paren-

thesis is positive. Or likewise that

ln (1− δµ)−
(
µ− δµ
1− δµ

)
> ln (1− µ) .

A concave function f (x) ≡ log (1− x) satisfies:

f (x) + f ′ (x) |y − x| > f (y) .
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Let x = δµ and y = µ. Because {δ, µ} < 1,

|y − x| = µ− δµ.

Thus, we have:

ln (1− δµ) +

(
− 1

1− δµ

)
(µ− δµ)︸ ︷︷ ︸

f ′(x)|y−x|

> ln (1− µ) .

which proves the desired inequality. Hence, Aµ < 0 for any µ > 0. At µ = 0, the

derivative is zero.

We also obtain that:

Yµ = −1 +µAµ +A = − (1−A)︸ ︷︷ ︸
>0

− δ

(1− δ)
1

µ

(ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
︸ ︷︷ ︸

>0

 for µ > 0.

The derivative is also zero at µ = 0.

Part 4. Concavity. Next we perform the convexity analysis. Aµµ is

δ

(1− δ)

[
2

1

µ3

(
ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
− 1

µ2

(
1

1− µ
− δ

1− δµ
− 1− δ

1− δµ
− µδ 1− δ

(1− δµ)2

)]

After some algebraic manipulations, the second term in parenthesis simplifies to:

1

1− µ
− δ

1− δµ
− 1− δ

1− δµ
− µδ 1− δ

(1− δµ)2 = µ
(δ − 1)2

(1− µ) (1− δµ)2 .

Thus:

Aµµ =
δ

(1− δ)
1

µ3

[
2 ln

(
1− δµ
1− µ

)
− 2µ

(
1− δ

1− δµ

)
− µ2 (1− δ)2

(1− µ) (1− δµ)2

]
.

We can add the second and third terms to obtain:

Aµµ =
δ

(1− δ)
1

µ3

[
ln

(
1− δµ
1− µ

)2

− µ
(

1− δ
1− δµ

)(
2− µ− 3δµ+ 2δµ2

(1− µ) (1− δµ)

)]
.
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This function is strictly concave if:

ln (1− δµ)2 < ln (1− µ)2 +
1

(1− µ)2

(
µ (1− µ) (1− δ)

(1− δµ)2

(
2− µ+ 2δµ2 − 3δµ

))
(19)

LetF (x) = ln (x). Set x0 = (1− µ)2 and x1 = (1− δµ)2 so that x0−x1 = −µ (1− δ) (2− µ (1 + δ)).

By strict concavity of ln (x) we have

ln (1− δµ)2 < ln (1− µ)2 − 1

(1− µ)2µ (1− δ) (2− µ (1 + δ))

so to prove thatAµµ is strictly negative, we need to prove that the right hand side of the

expression above is smaller than the condition needed for concavity, condition (19),

− 1

(1− µ)2µ (1− δ) (2− µ (1 + δ)) ≤ 1

(1− µ)2

(
µ (1− µ) (1− δ)

(1− δµ)2

(
2− µ+ 2δµ2 − 3δµ

))
.

Cancelling common terms and rearranging, this condition is equivalent to:

− (1− δµ)2 (2− µ− µδ) ≤ (1− µ)
(
2− µ+ 2δµ2 − 3δµ

)
. (20)

The term on the left is negative—and strictly negative for δ, µ < 1.34 Hence, the inequal-

ity above is verified as long as:

2 ≥ α (µ, δ) ≡ µ− 2δµ2 + 3δµ.

Hence, as long as

2 ≥ α∗ = max
{µ,δ}∈[0,1]2

α (µ, δ)

the condition for concavity holds for all {µ, δ} ∈ [0, 1]2. We study this max function. Fix

any µ. Since

δ
(
3µ− 2µ2

)
≥ 0,

34This follows immediately because µ and δ are fractions.
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the maximal value of α is achieved when δ = 1. Hence, the objective is

α∗ = max
{µ,δ}∈[0,1]2

α (µ, δ) = max
{µ}∈[0,1]

α (µ, 1) = max
{µ}∈[0,1]

4µ− 2µ2.

Maximizing the last expression over µ yields µ = 1 as a solution and α∗ = 2 as the value.

Hence, the inequality holds and guarantees (20). This suffices to prove concavity.

Next, we verify the concavity of total output. We have that Yµµ is

=Aµ + µAµµ

=− δ

(1− δ)
1

µ2

(
ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
+

δ

(1− δ)
2

µ2
µ

(
ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
− µ

µ2

(
1

1− µ
− δ

1− δµ
− 1− δ

1− δµ
− µδ 1− δ

(1− δµ)2

)
=Aµµ −

δ

(1− δ)
µ

µ3

(
ln

(
1− δµ
1− µ

)
− µ

(
1− δ

1− δµ

))
<0.

A.2 Related Results Used Elsewhere

Part 5. Inverse productivity. Now, we study the inverse of productivity. Let

q (µ; δ) = A−1 (µ; δ) .

Clearly, the function has the limits:

lim
µ→0

q (µ; δ) = δ−1 and lim
µ→1

q (µ; δ) =∞ and lim
δ→0

q (µ; δ) =∞ and lim
δ→1

q (µ; δ) = 1.

We also have that:

qµ = −Aµ
A2

> 0.

We use the limit of the derivative of this function:

qµ (µ) =

δ
(1−δ)

1
µ2

(
ln
(

1−δµ
1−µ

)
− µ

(
1−δ

1−δµ

))
(

(1−µ)
µ
· δ

(1−δ) · ln
(

1−δµ
1−µ

))2
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Next, we check the convexity of function:

qµµ = −Aµµ
A2

+
Aµ
A3

> 0.

Hence, q is convex in µ.

Part 6. Elasticity ofA. A useful object in later derivations is the elasticity ofA. Con-

sider the derivative of

A (µ)µ.

We have:

A′ (µ)µ+A (µ) = A (µ)
[
1 + εAµ

]
.

Recall that,

A (µ)µ = (1− µ)

(
δ

1− δ
ln

(
1− δµ
1− µ

))
.

Hence,

A′ (µ)µ+A (µ) =
δ

1− δ

(
− ln

(
1− δµ
1− µ

)
+ (1− µ)

(
−δ

1− δµ
+

1

1− µ

))
=

δ

1− δ

(
− ln

(
1− δµ
1− µ

)
+

(
1− δ

1− δµ

))
.

Hence, we obtain that:

[
1 + εAµ

]
=

δ
1−δ

(
− ln

(
1−δµ
1−µ

)
+
(

1−δ
1−δµ

))
A (µ)

=
µ

1− µ

 1−δ
1−δµ

ln
(

1−δµ
1−µ

) − 1

 .

We are interested in the sign of 1 + εAµ and its limits. We know εAµ < 0. Thus, the sign

of 1 + εAµ is the sign of: (
1− δ

1− δµ

)
− ln

(
1− δµ
1− µ

)
.
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The limits of the function that governs the sign are:

lim
µ→0

(
1− δ

1− δµ

)
− ln

(
1− δµ
1− µ

)
= (1− δ) > 0,

and

lim
µ→1

=

(
1− δ

1− δµ

)
− ln

(
1− δµ
1− µ

)
= −∞.

Since the function is continuous in µ, the sign is ambiguous.

Next, to establish monotonicity, notice that

δ
1− δ

(1− δµ)2 −
1− δ

(1− δµ) (1− µ)
= (1− δ)

(
−δ − 1 + δ (1− δµ)

(1− δµ)2 (1− µ)

)
= − (1− δ)

(
1 + δ2µ

(1− δµ)2 (1− µ)

)
< 0.

Hence, there’s a unique crossing point where the function 1 + εAµ is negative.

Finally, I compute relevant limits. Firs, we compute:

lim
µ→0

1 + εAµ = (1− δ) lim
µ→0

µ

ln
(

1−δµ
1−µ

) =
1− δ

limµ→0
1−µ
1−δµ

1−δµ
1−µ

(
−δ

1−δµ −
−1

1−µ

) = 1.

where the first equality are the surviving terms after taking limits, the second equality

follows from L’Hospital’s rule. For the limit µ→ 1, by L’Hospital’s rule:

lim
µ→1

1

1− µ

 1

ln
(

1−δµ
1−µ

)
 = lim

µ→1

− 1
1−µ2
1−δ

(1−δµ)(1−µ)

= lim
µ→1
− (1− δµ)

(1− µ) (1− δ)
.

Adding terms the missing term:

lim
µ→1

[
1 + εAµ

]
= lim

µ→1
− (1− δµ)

(1− µ) (1− δ)
− µ

1− µ

= lim
µ→1

−1 + 2δµ− µ
(1− µ) (1− δ)

= −2 lim
µ→1

1

(1− µ)

= −∞.
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We finally compute the elasticity. From

A′ (µ)

A (µ)
µ < 0,

we know that the elasticity εAµ is decreasing. Hence, 1 + εAµ starts at zero and falls con-

tinuously until diverging at µ→ 1.
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B. Proofs of Section 3

B.1 Preliminary Observations

We begin with a set of identities that are convenient to proof the main results.

Average Price: Definitions and Identities. Recall that the average price of a worker

as it’s expenditures relative to total consumption: Q ≡ Ew/Cw. I show below that the

saver’s expenditure isEs = (1− β)B. By the income expenditure identity, we have that:

Ew = 1− (1− β)B. (21)

Moreover, it is show that total consumption by the worker, given its optimal expendi-

tures, is given by:

Cw =
Ew − Sw

q
+ Sw =

Ew

q
−
(

1

q
− 1

)
Sw.

where

Sw = min
{

max
{

0, B̃ −B
}
, 1− (1− β)B

}
,

Xw = (Ew − Sw) /q.

Thus, we have that:

Q =

(
1

q
−
(

1

q
− 1

)
Sw

Ew

)−1

=

(
1

q

(
1− Sw

Ew

)
+
Sw

Ew

)−1

.

This implies thatQ is the harmonic mean of the price of goods, weighted by the expen-

diture share.

Also, we have that:

Q =
Ew − Sw

Cw
+

S

Cw
= q

Xw

Cw
+

S

Cw
.

Hence, Q is as well, the average price, weighted by the consumption shares.

Marginal Expenditure and Borrowing Prices. Next, I define two prices that enter in

marginal decisions. Namely, the prices at which the worker is trading-off consumption
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between periods due to an increase in borrowing. First, I define the marginal expendi-

ture price:

q̃et ≡ qtI[Bt≥B?(B̃t)] +
(

1− I[Bt≥B?(B̃t)]

)
.

The interpretation is that it is the price of the good that would be consumed on the mar-

gin with an additional unit of expenditures (increasing Bt+1/Rt+1 in the budget con-

straint). If B ≥ B?, it must be that all spot consumption possible, given the financial

resources, is spent35. If that is the case, any marginal expenditure is spent on chained

goods. Thus, price per marginal unit of consumption is qt. Otherwise (if B < B?), only

spot goods are consumed and the relevant price to evaluate marginal decisions is 1.

Next, I define the marginal borrowing price:

q̃bt+1 ≡ qt+1I[B̃t+1≤Bt+1] +
(

1− I[B̃t+1≤Bt+1]

)
.

If a marginal unit of borrowing is taken today, this translates to a marginal reduction in

expenditures in the future. Any marginal income expenditures in the future will first be

spent in spot goods, unless the agent is so constrained (B̃ ≤ B) that spot consumption

is not possible in which case marginal consumption is based on chained goods.

Analysis of the Marginal Expenditure Price. Next, we describe the behavior of q̃et in

equilibrium. We have that q̃et = q̃e
(
Bt, B̃t

)
where:

q̃e
(
B, B̃

)
≡ q

(
µ
(
B, B̃

))
I[B≥B?(B̃)] +

(
1− I[B≥B?(B̃)]

)
.

In this expression, I am using the fact that:

µ
(
B, B̃

)
= 1− (1− β)B −min

{
max

{
0, B̃ −B

}
, 1− (1− β)B

}
.

35From log utility we know that at B = B? the worker will not want to consume an additional unit but
nonetheless we define the price he would pay.
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Observe that

µ
(
B, B̃

)
=


0 B < B?

(
B̃
)
,

1 + βB − B̃ B ∈
[
B?
(
B̃
)
, B̃
]
,

1− (1− β)B B > B̃.

The function µ
(
B, B̃

)
is continuous, starts at zero and increases up to B = B̃, starting

from that point, the function is decreasing. The intuition is that as debt increases in

the middle region, any reduction in wealth reduces spot expenditures, but in net, gives

an increase in chained expenditures by market clearing. That is, the reduction in spot

expenditures is one for one with the reduction in total expenditures. Since qt is mono-

tone in µt, the function q̃e
(
B, B̃

)
must follow the same pattern in the interior of middle

region and in the last one. Also notice that when B < B?
(
B̃
)

, qe = 1. Next, we have

that since µ is continuous, µ goes to 0 from above as B ↓ B?
(
B̃
)

so we can write,

lim
B↓B?(B̃)

q̃e
(
B, B̃

)
= lim

µ↓0
q (µ) · 1 = δ−1

where I used the fact that limµ↓0A (µ) = δ. Hence, the function q̃e is discontinuous at

B = B? because limB↑B?(B̃) q̃
e = 1 6= δ−1, the function is also not monotonic. Then36

q̃e
(
B, B̃

)
=


1 B < B?

(
B̃
)

q B ∈
[
B?
(
B̃
)
, B̃
]

q B > B̃.

Next, we are interested in the behavior of Q
qe

, for reasons that become clear in the

main text. We have that for B < B?
(
B̃
)

, since q = 1, it must be that Q
qe

= 1. For B ≥ B̃

also qe = Q = q. Therefore, Q
qe

= 1. In the middle range of values, we have that:

Q

qe
=

1

q
· q(

1− Sw

Ew

)
+ q S

w

Ew

=
1(

1− Sw

Ew

)
+ q S

w

Ew

.

36In fact, the value of qe at B = B? will not be used since the function is discontinuous at that point
and optimality conditions will be characterized via the right and left limit. However, I choose to define it
according to the intuition presented lines above.
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Thus, we have the following formula:

Q

qe
=


1 B < B?

(
B̃
)

1

1−min{max{0,B̃−B},1−(1−β)B}
1−(1−β)B +q(µ(B,B̃))

min{max{0,B̃−B},1−(1−β)B}
1−(1−β)B

B ∈
[
B?
(
B̃
)
, B̃
]

1 B > B̃.

Since at B = B̃ we have Sw

Ew
= 0, the function is continuous at that point. However,

B ↓ B?
(
B̃
)

=⇒ Sw

Ew
↓ 1, and q ↓ δ−1 > 1,

at that point. Thus, Q
qe

= δ at B = B?
(
B̃
)

(and at its right limit) and Q/qe = 1 at the left

limit of this point. Namely, the function Q/qe is discontinuous at B?.

Analysis of the Marginal Borrowing Price. Next, we investigate the behavior of the

marginal borrowing price. Recall that this is the price of consumption at which the

worker trades-off future consumption when he borrows marginally. Let Bt+1 be the

debt level the worker chooses today for next period and B̃t+1 the next period’s SBL. We

have that q̃bt+1 = q̃b
(
Bt+1, B̃t+1

)
where:

q̃b
(
B, B̃

)
≡ q

(
µ
(
B, B̃

))
I[B≥B̃] +

(
1− I[B≥B̃]

)
.

Then,

q̃b
(
B, B̃

)
=


1 B < B?

(
B̃
)
,

1 B ∈
[
B?
(
B̃
)
, B̃
]
,

q B > B̃.

We have observed that for B = B?
(
B̃
)

, all consumption is spot and thus q = 1. How-

ever, at B = B̃, the function features a discontinuity since:

lim
B↓B̃

q̃b
(
B, B̃

)
= q

(
µ
(
B̃, B̃

))
= q

(
1− (1− β) B̃

)
> 1.
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Next we investigate the behavior of Q
qb

.

For any B < B?
(
B̃
)

, both qb and Q must equal 1, thus, Q
qb

= 1. Then, we have that

for B ∈
[
B?
(
B̃
)
, B̃
]

, it must the case that Q
qb

= Q because qb = 1. Finally, when B > B̃,

q̃b
(
B, B̃

)
= Q = q. Thus, we have:

Q

q̃b
=


1 B < B?

(
B̃
)
,

Q B ∈
[
B?
(
B̃
)
, B̃
]
,

1 B > B̃,

where

Q =

(
1

q

(
1− Sw

Ew

)
+
Sw

Ew

)−1

and limB↓B?(B̃) Q = 1.

Average Price Elasticity. Next, I derive the elasticity of the average price with respect

to total debt, in equilibrium—i.e., after replacing Ew = 1 − (1− β)B. This elasticity is

critical for the Ramsey policy analysis.

We have that the average price is the harmonic mean:

Q =
1

1
q

(
1− Sw

Ew

)
+ Sw

Ew

.

where both the price q, Ew, and Sw are functions of B.

Thus, we have that:

∂Q

∂B
= −Q ·

(
1− Sw

Ew

)
∂
∂B

[
1
q

]
−
(

1
q
− 1
)

∂
∂B

[
Sw

Ew

](
1
q

(
1− Sw

Ew

)
+ Sw

Ew

) .
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The numerator has two additional derivatives. The first one is:

∂

∂B

[
Sw

Ew

]
=


0 B < B?

(
B̃
)

[
B̃−B

1−(1−β)B

] (
(1−β)

1−(1−β)B
− 1

B̃−B

)
B ∈ [B?

(
B̃
)
, B̃)

0 B ≥ B̃

where the term in the intermediate region follows from:

∂

∂B

[
Sw

Ew

]
=
Sw

Ew

(
1

Sw
∂

∂B
[Sw]− 1

Ew

∂

∂B
[Ew]

)
,

but then for B ∈ [B?
(
B̃
)
, B̃)

∂

∂B
[Sw] = −1,

and
∂

∂B
[Ew] = − (1− β) .

Hence:
∂

∂B

[
Sw

Ew

]
=

[
B̃ −B

1− (1− β)B

](
(1− β)

1− (1− β)B
− 1

B̃ −B

)
< 0.

We evaluate the limits of this function. Clearly, at

∂

∂B

[
Sw

Ew

]∣∣∣∣
B↑B̃

= − 1

1− (1− β) B̃
< −1,

and at

∂

∂B

[
Sw

Ew

]∣∣∣∣
B↓B?

=
(1− β)

(
B̃ −B?

(
B̃
))

(
1− (1− β)B?

(
B̃
))2 −

1(
1− (1− β)B?

(
B̃
))

=
(1− β)

(
B̃ −B?

(
B̃
))
−
(

1− (1− β)B?
(
B̃
))

(
1− (1− β)B?

(
B̃
))2

=
(1− β) B̃ − 1(

1− (1− β)B?
(
B̃
))2

= −1.
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The last steps follows from the definition of B?. Hence, this derivative is discontin-

uous.

For the second derivative of interest, recall that:

∂

∂B
[q] =

∂

∂µ
[q] · ∂µ

∂B
,

and
∂µ

∂B
=

∂

∂B
[Ew]− ∂

∂B
[Sw]

since µ = qX = Ew − Sw. Then, we have that:

∂

∂B
[q] = qµµ

∂
∂B

[Ew]− ∂
∂B

[Sw]

Ew
.

We can express this as:

∂

∂B

[
q−1
]

=
1

q
εqµ

∂
∂B

[Ew]− ∂
∂B

[Sw]

Ew − Sw
.

Hence:

∂Q

∂B

1

Q
= −Q ·

{(
1− Sw

Ew

)
1

q
εqµ

∂
∂B

[Ew]− ∂
∂B

[Sw]

Ew − Sw
−
(

1

q
− 1

)
Sw

Ew

[
∂
∂B

[Sw]

Sw
−

∂
∂B

[Ew]

Ew

]}
.

B.2 Proof of Proposition 4 (Worker’s Euler equation)

Recall also the relation between the B̃t and B?
t+1:

B?
t+1 = Rt+1

(
B̃t − 1

)
.

The following Lemma is used to reduce the set of cases we have to deal with. Let B̃t be

an increasing sequence and βRt+1 ≤ 1 ∀t. Then, B?
t+1 ≥ B̃t+1. Assume by contradiction

that B?
t+1 ≥ B̃t+1. Substituting the expression for B?

t+1, we have that

Rt+1

(
B̃t − 1

)
= B?

t+1 ≥ B̃t+1 ≥ B̃t.
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Hence,

(1− 1/Rt+1) B̃t ≥ 1.

If indeed β ≤ R−1
t+1, the condition above implies that:

(1− β) B̃t ≥ 1.

However, this last inequality implies that:

B̃t ≥
1

1− β
= B̄.

This is a contradiction. I now derive the worker’s Euler equation, a necessary but not

sufficient condition for optimality. Recall that we can write the worker’s total expendi-

tures as a function of Bt+1:

Ew
t = 1−Bt +

Bt+1

Rt+1

.

Given her total expenditures, spot expenditures are:

Sw
(
Bt, B̃t, Bt+1

)
= min

{
max

{
B̃t −Bt, 0

}
, 1−Bt +

Bt+1

Rt+1

}
.

and her chained expenditures are:

qtX
w
t = Ew

t − Sw
(
Bt, B̃t, Bt+1

)
.

Adding both types of expenditures dividing by the price, the worker’s consumption

is:

Ct =
1−Bt + Bt+1

Rt+1
− Sw

(
Bt, B̃t

)
qt

+ Sw
(
Bt, B̃t, Bt+1

)
=

1−Bt + Bt+1

Rt+1

qt
+

(
1− 1

qt

)
min

{
max

{
B̃t −Bt, 0

}
, 1−Bt +

Bt+1

Rt+1

}
.

Now consider a sequence {Bt+1}t≥0. We obtain that the worker’s problem can be writ-
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ten entirely in terms of the worker’s debt level, without reference to his expenditures:

∑
t≥0

βt log (Ct) =
∑
t≥0

βt log


1−Bt + Bt+1

Rt+1

qt
+

(
1− 1

qt

)
min

{
max

{
B̃t −Bt, 0

}
, 1−Bt +

Bt+1

Rt+1

}
︸ ︷︷ ︸

Sw(Bt,B̃t,Bt+1)

 .

There are two kinks in the term Sw
(
Bt, B̃t, Bt+1

)
. These kinks occur at the threshold

points given in Lemma 1, the points
{
B̃t, B

?
t+1

}
. Since the control variable in this prob-

lem isBt+1, we have to consider the kinks. The first kink, B̃t+1, corresponds to the value

of Bt+1 to the left of that value, consumption in time t+ 1 features zero spot consump-

tion. The second kink, B?
t+1, corresponds to the level of debt Bt+1 from which to its

right, there is some chained consumption in time t .

Consider two consecutive periods in the worker’s optimal sequence:

log (Ct) + β log (Ct+1)

Define the function

Υt

(
Bt+1;Bo

t , B
o
t+2, B̃t, B̃t+1, Rt+1, qt

)
≡

log

(
1−Bot+

Bt+1
Rt+1

qt
+
(

1− 1
qt

)
min

{
max

{
B̃t −Bo

t , 0
}
, 1−Bo

t + Bt+1

Rt+1

})
+

β log

(
1−Bt+1+

Bot+2
Rt+2

qt+1
+
(

1− 1
qt+1

)
min

{
max

{
B̃t+1 −Bt+1, 0

}
, 1−Bt+1 +

Bot+2

Rt+2

})
.

The function Υt represents the value of utility at t and t + 1, considering the optimal

choices
{
Bo
t , B

o
t+2

}
, for an arbitrary level of debtBt+1. An optimal solution must satisfy:

log (Ct) + β log (Ct+1) = max
Bt+1

Υt

(
Bt+1;Bo

t , B
o
t+2, B̃t, B̃t+1, Rt+1, qt

)
.

Thus, we use a perturbation argument, with respect to Bt+1, to derive a generalized

Euler equation. In all pointsBt+1 ∈
(
0, B

)
other than the threshold points, the objective

is continuous, locally concave and differentiable in Bt+1. The kinks are in fact points of

no differentiability—because of a discontinuity of the derivative of Υt with respect to
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Bt+1.

Let’s consider the differentiability points first and then deal with the kinks. The

objective of the first terms is increasing in Bt+1. The objective of the second term is

decreasing. Thus, in the intervals determined by the kinks, marginal benefits and costs

of increasing Bt+1 cross at most at a single point. At the kinks, the derivatives feature

discontinuities, hence, multiple critical points may arise. I present the analysis of the

critical points.

I break the analysis into each of the following cases.

I. Let Bo
t ≥ B̃t.

I.a Bt+1 < B̃t+1, the derivative is:

Υ′t (Bt+1) =
1

Ct

1

qtRt+1

− β 1

Ct+1

,

regardless of whether Bt+1 > B?
t+1.

I.b Bt+1 > B̃t+1, the derivative of Υt with respect to Bt+1 is:

Υ′t (Bt+1) =
1

Ct

1

qtRt+1

− β 1

Ct+1

1

qt+1

I.a-I.b. Combining both case, observe that at B̃t+1 the following strict inequality holds

lim
B′↑B̃t+1

Υ′t (B′) < lim
B′↓B̃t+1

Υ′t (B′) (22)

From the right of B̃t+1, the value of forgone consumption at t+1 given an increase

in Bt+1 at t, is lower due to the higher price of consumption at t + 1. As a result,

if limit form the right of Υ′t ≤ 0 there is no critical point to the right of B̃t+1 and if

Υ′t ≥ 0 from the left then there is no critical point to the left of B̃t+1.

In summary, when Bo
t ≥ B̃t, and there is only consumption of chained

goods:

• IfB′ ∈
(

0, B̃t+1

)
is a local maximum, then Υ′t = 0. If furthermore limB′↓B̃t+1

Υ′t (B′) ≤
0 then only one possible value of Bt+1 satisfies the Euler equation.
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• IfB′ ∈
(
B̃t+1, B

)
is a local maximum, then Υ′t = 0. If furthermore limB′↑B̃t+1

Υ′t (B′) ≥
0 then only one possible value of Bt+1 satisfies the Euler equation.

• Since the objective is concave on both intervals, there’s only one possible solution

to B′.

• B = B̃t+1 is not a solution since this requires limB′↑B̃t+1
Υ′t (B′) ≥ 0 ≥ limB′↓B̃t+1

Υ′t (B′),

which contradicts (22).

Hence, we have shown the following Lemma. When Bt ≥ B̃t, Bt+1 satisfies the Euler

equation with equality:

Υ′t (Bt+1) = 0.

and Bt+t = B̃t+1 is not a solution.

II. Let Bo
t < B̃t in a solution to the worker’s problem. We know by the Lemma above

that B?
t+1 < B̃t+1. Hence, we ave the following cases:

II.a Bt+1 < B?
t+1 < B̃t+1, there is only spot consumption at t and some spot consump-

tion at t+ 1, hence the derivative of the objective is:

Υ′ (Bt+1) =
1

Ct
· 1

Rt+1

− β 1

Ct+1

.

II.b For Bt+1 ∈
(
B?
t+1, B̃t+1

)
there is some chained consumption at t and some spot

consumption at t+ 1, hence the derivative of the objective is:

Υ′t (Bt+1) =
1

qt

1

Ct
· 1

Rt+1

− β 1

Ct+1

.

II.c. For B?
t+1 < B̃t+1 < Bt+1 there is some chained consumption at t and no spot con-

sumption at t+ 1, hence the derivative of the objective is:

Υ′t (Bt+1) =
1

Ct
· 1

qt

1

Rt+1

− β 1

Ct+1

1

qt+1

.
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II.a.-II.c At then not differentiable points the following strict inequalities hold

lim
B′↑B?t+1

Υ′t (B′) > lim
B′↓B?t+1

Υ′t (B′)

and

lim
B′↑B̃t+1

Υ′t (B′) < lim
B′↓B̃t+1

Υ′t (B′) .

where the inequalities follow the same arguments as in case I.

• IfB ∈
(

0, B?
(
Rt+1, B̃t

))
is a solution then Υ′t (B) = 0. If furthermore limB′↑B?t+1

Υ′t (B′) ≤
0, then only possible value of Bt+1 satisfies the Euler equation.

• If B = B?
(
Rt+1, B̃t

)
is a solution then

lim
B′↑B?t+1

Υ′t (B′) ≥ 0 ≥ 0 lim
B′↓B?t+1

Υ′t (B′)

where at most one inequality is strict.

• IfB ∈
(
B?
(
Rt+1, B̃t

)
, B̃t+1

)
is a solution then Υ′t (B) = 0. If furthermore limB′↓B?t+1

Υ′t (B′) ≤
0, then only possible value of Bt+1 satisfies the Euler equation.

• B̃t+1 is not a solution as it yields a contradiction.

• If B ∈
(
B̃t+1, B

)
is a solution then Υ′t (B) = 0. If furthermore limB′↑B̃t+1

Υ′t (B′),

then only possible value of Bt+1 satisfies the Euler equation.

• Again, by concavity, we have a unique path in each case.

We shown the following When Bt < B̃t, Bt+1 either satisfies the Euler equation with

equality:

Υ′t (Bt+1) = 0.

or B′ = B?
t+1 if:

lim
B′↑B?t+1

Υ′t (B′) ≥ 0 ≥ lim
B′↓B?t+1

Υ′t (B′) .
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Necessity. Using the definition of Qt, we have:

1

Ct
· Πt+1 (Bt+1)

Rt+1

− β 1

Ct+1

=
Qt

Et
· Πt+1 (Bt+1)

Rt+1

− βQt+1

Et+1

.

The cases above, are captured by the term Πt+1 (Bt+1). Hence, the equation above yields

the sign of the derivative of the change in Bt+1. Moreover,

Υ′t (B′) ≥ 0→ Qt

Et
· 1

Rt+1

− β Qt

Ct+1

≥ 0→ Et+1

Et
· Qt

Qt+1

≥ β
Rt+1

Πt+1 (Bt+1)
.

and viceversa. Thus:

lim
B′↑B̃t+1

Υ′t (B′) ≥ 0→ Et+1

Et
≥ βRt+1

and

lim
B′↓B?t+1

Υ′t (B′) ≤ 0→ qtβRt+1 ≥
Et+1

Et

Collecting all the cases above and using the definition of Πt, we arrive at the I show in

the text.

Proposition 11. (Workers’s First-Order Condition): Fix a sequence
{
B̃t, Rt+1, qt

}
t≥0

such

that B̃t is an increasing and βRt+1 ≤ 1. Then, any solution {Bt+1}t≥0 to the worker’s

problem satisfies the following generalized Euler equation:

Ew
t+1

Ew
t

Qt

Qt+1

= β
Rt+1

Πt+1 (Bt+1)
if Bt+1 6= B?

t+1 (23)

and

qtβRt+1 ≥
Et+1

Et
≥ βRt+1 if Bt+1 = B?

t+1.

B.3 Euler Equation in the Stationary Problem

Consider the stationary problem of the worker where B̃t = B̃.
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B.4 Proof of Proposition 6

Let’s recall the main equation of the Proposition

B

1− (1− β)B
·Q
(
B, B̃

)
︸ ︷︷ ︸

≡E(B′;B,B̃,B̃′)

=
B′

1− (1− β)B′

Q
(
B′, B̃′

)
Π
(
B′;B, B̃, B̃′

)
︸ ︷︷ ︸

≡E ′(B′;B,B̃,B̃′)

.

First, I will show that for a subset of B > B̃′ there are two roots for the equation E = E ′.
The roots satisfy B′1 < B̃′ < B′2 and B′2 = B thus R = β−1 and q = q′. Then the proof

finishes noticing that because of the hysteresis result, for each B ∈
(
B̃′, Bh

)
the larger

root B′2 cannot be an individual optimum.

Let’s fix B̃, B̃′. Define B∗ > B̃ such that

E ′
(
B∗; B̃, B̃, B̃′

)
= lim

B′↑B̃′
E ′
(
B′; B̃, B̃, B̃′

)
B∗

1− (1− β)B∗
· q (1− (1− β)B∗) = lim

B′↑B̃′

B′

1− (1− β)B′
·

Q
(
B′, B̃′

)
Π
(
B′;B∗, B̃, B̃′

)
B∗ =

B̃′

1−(1−β)B̃′

q(1−(1−β)B̃′)
+ (1− β) B̃′

=
B̃′

Cw
(
B̃′, B̃′

)
+ Cs

(
B̃′
) > B̃′

This result comes because

lim
B′↑B̃′

Π
(
B′;B∗, B̃, B̃′

)
= (q (1− (1− β)B∗))−1 lim

B′↑B̃′
Q
(
B′, B̃′

)
= q

(
1− (1− β) B̃′

)
.

The graphical interpration of B∗ is found in the left panel of Figure 4. The inequality

holds because q > 1. Furthermore, this satisfies B∗ > B̃ as required since the SBL

sequence is weakly increasing.37 Now I will argue that for B ∈
(
B̃′, B∗

)
the equation

E = E ′ has two roots: one above B̃′ and one below. The one above is trivial since B =

B′ > B̃′ ≥ B̃ satisfies it. For the one below I use a simple continuity and monotonicity

37This is important because the relevant points to study are those for which the all chained equilibrium
is possible. These are the cases where B∗ > B̃′ ≥ B̃.
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argument. I will show that there is a unique B′ < B̃′ such that

E ′
(
B′; B̃, B̃, B̃′

)
= lim

B′↓B̃′
E ′
(
B′; B̃, B̃, B̃′

)
B′

1− (1− β)B′
·Q
(
B′, B̃′

)
=

B′

1− (1− β)B′
·

q
(

1− (1− β) B̃′
)

limB′↑B̃′ Π
(
B′; B̃, B̃, B̃′

)
B′

1− (1− β)B′
·Q
(
B′, B̃′

)
=

B̃′

1− (1− β) B̃′
·
q
(

1− (1− β) B̃′
)

q(1−(1−β)B̃′)
q(1−(1−β)B̃)

B′

1− (1− β)B′
·Q
(
B′, B̃′

)
=

B̃′

1− (1− β) B̃′
· q
(

1− (1− β) B̃
)
> 0

Lets call this B′, B and think of the interval
(
B̃′, B∗

)
. The interpretation of B is that it

is the small root for the debt level “B̃′ + ε”. Meaning, if B̃′ is the small root for B∗(the

end of the interval) then B is the small root for the start of the interval. Now, notice

that the RHS is a constant with respect to B̃′. To establish existence of B further notice

that the LHS tends to limB′↑B̃′ E ′
(
B′;B∗, B̃, B̃′

)
as B′ ↑ B̃′ (this was shown in the previ-

ous step) and this is larger than the RHS just by comparing magnitudes (B̃′ ≥ B̃ and

q (1− (1− β)B∗) > 1). Then notice that as B′ ↓ 0 the LHS goes to zero which is lower

than the RHS. By continuity of the LHS we can apply the intermediate value theorem

for existence. Uniqueness is granted since the LHS is increasing in B′. The fraction is

clearly increasing in B′, the average price too because as B′ ↑ B̃′ the share of chained

expenditure increases and also its price does so. This statement also uses the fact that

Q is the weighted harmonic mean of prices with expenditure weights. Since the LHS is

continuous and increasing it maps the interval
(
B, B̃′

)
onto

(
lim
B′↓B̃′

E ′
(
B′; B̃, B̃, B̃′

)
, lim
B′↑B∗

E ′
(
B′; B̃, B̃, B̃′

))
.

So (since E ′ is increasing and continuous) it covers all the image of
(
B̃′, B∗

)
. This

proves that for B ∈
(
B̃′, B∗

)
there exist two roots that solve E = E ′. One is B′2 = B > B̃′

and the other is a B′1 ∈
(
B, B̃′

)
.

To make affairs clearer, suppose that B∗ < Bh then for all B ∈
(
B̃′, B∗

)
the larger
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root B′ = B is not an equilibrium and there is a region
(
B∗, Bh

)
that does not have

a symmetric competitive equilibrium because the only root that solves equation (15)

provides allocations and prices that are not an equilibrium. Now suppose thatB∗ > Bh,

then for B ∈
(
B̃′, Bh

)
the larger root B′ = B is not an equilibrium and for B ∈

(
Bh, B

)
.

So summarizing both cases. For B0 < Bh
(
B̃0

)
, if a (symmetric competitive) equi-

librium exists then it is given by the smaller root of equation 15.

B.4.1 Proof of Corollary 1

At Bt ≤ B?
(
β−1, B̃ss

)
if R = β−1 then marginal and average prices are equal to 1. Then

it is evident that Bt+1 = Bt solves equation 15 and the expenditure is 1 − (1− β)Bt ≤
B̃ss −Bt by assumption. As a consequence, the steady state is non-disrupted.

B.4.2 Proof of Corollary 2

That Bt+1 < Bt if Bt ∈
(
B̃, B∗

(
B̃
))

is immediate from the result proved in Proposition

6 since we are choosing the smaller root and the larger root is Bt+1 = Bt. For Bt > B?

it is enough to show that βRt+1 < 1. This was done in step 3 of the proof of Proposition

6.

B.5 Proof of Proposition 7

TBA

B.6 Proof of Proposition 3

• Start from Euler equation. Argue that for B ≤ B̃ value of staying put is worse.

• Start from Stationary case...At this solution, the prices areR = β−1, q = q (1− (1− β)B) .

• Given prices R = β−1, q = q (1− (1− β)B) , the Euler equation is a necessary

condition for individually optimal sequences. I show that staying put violates the
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Euler equation for B ∈
(
B?, B̃

)
. The equation is

Ct+1 (B′)

Ct (B′)
= βR

qE (B′)

qB (B′)

and I assume that B′′ = B, the following to next period I also stay put. The ele-

ments are

Ct (B′) = B̃ −B +
1

q

(
1 + βB′ − B̃

)
Ct+1 (B′) = max

{
B̃ −B′, 0

}
+

1

q

[
1 + βB −B′ −max

{
B̃ −B′, 0

}]
qE (B′) = I [Bt+1 < B?] · 1 + I [Bt+1 ≥ B?] · q

qB (B′) = I
[
Bt+1 < B̃

]
· 1 + I

[
Bt+1 ≥ B̃

]
· q

and at B′ = B we have

Ct (B′) = B̃ −B +
1

q

(
1 + βB − B̃

)
Ct+1 (B′) = B̃ −B +

1

q

(
1 + βB − B̃

)
qE (B′) = q

qB (B′) = 1

so the Euler equation does not hold since

1 6= q.

• I want to find the sequence that arrives toB?. I will use the final conditionB′ = B?

and the Euler equation backwards in time. As a first step I show that the set of

values B that have optimal policy B′ = B? is the interval

B0 ≡
[
B?, B? +

(
1− 1

q

)(
B̃ −B?

)]

where B? = β−1
(
B̃ − 1

)
. To show this I evaluate the sub-differential counter-
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part of the Euler equation at point B′ = B?. The derivative from the left must be

nonnegative

lim
B′↑B?

C ′ (B′)

C (B′)
≥ 1

1

and the marginal prices are 1 sinceB′ < B? < B̃. We know that the optimal policy

once in B? is B? so B′′ = B? and consumptions at the limit satisfy

B̃ −B?

B̃ −B
≥ 1

soB ≥ B? andB? is the lower bound of the interval. The derivative from the right

must be nonpositive

lim
B′↓B?

C ′ (B′)

C (B′)
≤ q

1

and the marginal expenditure and borrowing price are q (since B′ > B?) and 1

(since B′ < B̃), respectively. So consumptions at the limit satisfy

B̃ −B?

B̃ −B
≤ q ⇐⇒ B ≤ B? +

(
1− 1

q

)(
B̃ −B?

)
.

• Recall that I want to characterize the optimal sequence arriving to B?. Let me

define B−1 ∈ B0, as shown above, at this point consumption C−1 satisfies

C−1 = B̃ −B−1

In general, in the region with B′ ∈
(
B?, B̃

)
the ratio of marginal prices is q then S

Ct+1

Ct
= q ⇐⇒ Ct =

1

q
Ct+1

so

C−t =
1

qt−1
C−1.
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and for each B−1 ∈ B0

1

qt−1
C−1 = C−t = B̃ −B−t︸ ︷︷ ︸

S

+
1

q

(
1 + βB−t+1 − B̃

)
︸ ︷︷ ︸

X

.

s.t. C−1 = B̃ −B−1, B−1 ∈ B0

This defines a difference equation for B−t with initial condition B−1 and non-

homogeneous term q−t+1C−1, by using the Euler equation backwards. So it de-

fines a whole sequence {B−t}. Writing the equation in terms of B−t and using

A = q−1

B−t = B̃ −At−1C−1 +A
(

1 + βB−t+1 − B̃
)
,

The coefficient of B−t+1 drives the dynamic and if Aβ < 1, then as −t → −∞ the

sequence converges

B−ss ≡
1

1−Aβ

(
B̃ (1−A) + 1

)
> B̃ ⇐⇒ q

1− β
> B̃

which is true since B̃ < B. This equation also implies that B−t > B−t+1 e.g. B0 <

B−1 < B−2 < · · · < B−t. To show this, I take the case t = 1 and t ≥ 2. First, explicit

B−t from the consumption expression and substitute t = 2,

B−t = B̃ −At−1C−1 +A
(

1 + βB−t+1 − B̃
)
,

B−2 −B−1 = B̃ −AC−1 +A
(

1 + βB−1 − B̃
)
−B−1

B−2 −B−1 = (1−A)
(
B̃ −B−1

)
+Aβ (B−1 −B?) > 0

where the third equality is found rearranging the second and using the expression

for C−1 and the relative position of B−1 with respect to B?.which is positive since
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C0 < 1 and B̃ > 1. For the case t ≥ 3 first assume that B−t+1 < B̃

B−t −B−t+1 = B̃ −At−1C−1 +A
(

1− B̃
)
− (1−Aβ)B−t+1

> B̃ −At−1C−1 +A−AB̃ − (1−Aβ) B̃

= −At−1C−1 +A+ (1−A− (1−Aβ)) B̃

= −At−1C−1 +A−A (1− β) B̃

= −At−1C−1 +A−A (1− β) B̃

> −At−1Cmax
−1 +A−A (1− β) B̃

= −At−1
(
B̃ −B?

)
+A−A (1− β) B̃

= −At−1β−1
(

1− (1− β) B̃
)

+A
(

1− (1− β) B̃
)

=
(
−At−1β−1 +A

) (
1− (1− β) B̃

)
=A

(
−At−2β−1 + 1

) (
1− (1− β) B̃

)
and this is positive if for t ≥ 3

−At−2β−1 + 1 > 0

At−2 < β

a sufficient condition is that δ < β . So the sequence is strictly increasing and

converging to a value larger than B̃, this implies that it reaches B̃ in finite time.

• Now, start from the debt level B > B̃ such that its debt policy is the debt level

B′ < B̃ that is the last point lower than B̃ in the sequence above. At this point

the marginal expenditure price is q (since consumption is all chained) and the

marginal borrowing price is 1 (since B′ < B̃) This means that I don’t need a new

Euler equation so the debt level that we should target for deleverage is the first

value of the sequence above that is larger than B̃, let’s call it Btarget

• Starting from that point the optimal deleverage to B? is the one characterized

exactly by the sequence presented. To specify the value call τ the known number

of periods to arrive from Btarget to B? then for this individual problem (at prices
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R = β−1 and q = q (1− (1− β)B) for some B ∈
(
B̃, Bh

)
)

V
(
Btarget

)
= log (C−τ ) + β log (C−τ+1) · · ·+ βτ−1 log (C−1) + βτV (B?) ,

V
(
Btarget

)
=

τ∑
t=1

βτ−t log (C−t) + βτV (B?) ,

V
(
Btarget

)
=

τ∑
t=1

βτ−t log

(
C0

qt

)
+ βτV (B?) ,

V
(
Btarget

)
=

τ∑
t=1

βτ−t
[
log
(
B̃ −B?

)
− t log q

]
+ βτV (B?) ,

V
(
Btarget

)
=

τ∑
t=1

βτ−t
[
log
(
B̃ −B?

)
− t log q

]
+ βτ

log
(
B̃ −B?

)
1− β

.

where B̃ −B? = 1− (1− β)B? by definition of B?.

• you can define a recursion in sets.

• Think more about the condition for Bh. Bh is such that V
(
Bh
)
≥ maxV (Btarget)

for some Btarget ∈
(
B̃, B

)
and some finite τ . With monotonicity it will be charac-

terize Bh nicely.

• With this I can identify exactly Bh.

• Index the sets by the upper and lower bound.

• Adapt the value equation for Targets that are n periods above B̃.

• Computationally we will get Bh. Analytically will we?

• For each τ ∈ N, B0 =
[
B?, B? +

(
1− 1

q

)(
B̃ −B?

)]
.

Start of hysteresis proof

In this proposition we want to show there is an interval
(
B̃, Bh

)
where the solution

to the Euler equation B′ = B (staying put) does not yield an individually optimal plan.

We propose a deleveraging strategy to B? that is optimal.

Because of consumption smoothing the worker will save and consume a constant

amount each period to arrive to debt level B?. Then the value of the deleveraging with
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this strategy is

V d (B) = max
E∈(0,1−(1−β)B)

{
log (E/q)

(
1− βτ(E)

1− β

)
+ βτ(E)V (B?)

}
. (24)

where τ (E) is the number of periods to arrive at B? and E is constrained in such set

because if E ≥ 1− (1− β)B then the worker is not saving to reduce its debt.

The first term is the present value of τ (E) periods spending E and the second term

is the continuation value after arriving at B?.

The problem is cast in a continuous set for expenditure,E ∈ (0, 1− (1− β)B). How-

ever, the worker can only choose natural numbers for the periods τ , this corresponds

to a discrete choice set for E. Nonetheless, the first order condition (FOC) gives us a

criteria to identify local maxima in the original discrete problem. The objective is de-

fined in an open interval and is differentiable; so we can use critical points (points of

derivative zero) and compare the closest integer value at the right and the left to find

the maximum of the discrete problem. I now focus in the continuous choice set prob-

lem.

For each B, the FOC with respect to E is

1

E (B)

1− βτ(E(B))

1− β
= − log β · βτ(E(B))τ ′ (E (B))

[
V (B?)− log (E (B) /q)

1− β

]
. (25)

where τ (E (B)) is obtained by a first-order difference equation resulting in38

τ (E (B)) = − 1

log β
log

(
1−E(B)

1−β −B?

1−E(B)
1−β −B

)
, and

τ ′ (E (B)) =
1

log β

1

1− β

(
1

1−E
1−β −B?

− 1
1−E
1−β −B

)
> 0.

The roadmap of the proof is as follows: For an interval
(
B̃, Bh

)
I will show the

existence and uniqueness of the solution, E (B), to the above problem and that this is a

38The difference equation is the classical solution to exponential growth

yt − yss = at (xt − xss) ⇐⇒
1− E (B)

1− β
− B̃ = β−τ(E(B))

(
1− E (B)

1− β
−B

)
.



34

profitable deviation from the all chained consumption equilibrium. For existence of the

critical point, I use the intermediate value theorem.

For uniqueness, I show that the objective is locally concave at any critical point and

that the critical value must be strictly above the chained value V (B) (the value as E ↑
1− (1− β)B).

The existence condition for E (B) will characterize the interval
(
B̃, Bh

)
for which

there is no hysteresis. The existence of the debt level where hysteresis starts, Bh, is given

by the intermediate value theorem. The uniqueness of this debt level will be obtained by

the strict concavity of the all chained value function V . Finally, the local strict concavity

of the problem shows that all values to the right of Bh are in hysteresis.

Let’s start with existence of E (B). For E ↓ 0, τ (E) and τ ′ (E) are finite then the limit

of the derivative in equation 25 takes the form of 39

lim
x↓0

a
1

x
− b log (x) + c

where a, b ∈ R++ and c ∈ R. By a result of algebra of limits we have that if

lim
x↓0

(
a

1

x
+ b log (x)− c

)
x = a > 0 (26)

then the limit exists and is +∞. This is the case since the limit limx↓0 x log (x) = 0 implies

the desired result. Thus for values of E close to zero the derivative is positive (the LHS

is larger).

Then as E ↑ 1− (1− β)B by substitution of the expressions above

lim
E↑1−(1−β)B

− log β · βτ(E(B))τ ′ (E (B)) =
1

1− β
1

B −B?
.

Substituting in equation (25) then the condition for the existence of a critical point is

39It is

1

E/q

1

q
· 1− βτ(0)

1− β︸ ︷︷ ︸
=a

+− log β

1− β
· βτ(0)τ ′ (0)︸ ︷︷ ︸
=b

log (E/q) + log β · βτ(0)τ ′ (0)V
(
B̃
)

︸ ︷︷ ︸
=c

.
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that ∀B ∈
(
B̃, Bh

)
,40

1

1− (1− β)B
<
V (B?)− V (B)

B −B?
. (28)

To establish uniqueness of the critical point I require a result about the local concavity

of the problem. Let’s denote the objective in equation 24 by U such that V d = maxE U .

The second derivative of U has 5 terms

=− 1

E (B)

1

E (B)

1− βτ(E(B))

1− β

+
1

1− β
1

E (B)
(−1) log β · βτ(E(B))τ ′ (E (B))

+ log β · τ ′ (E (B)) · log β · βτ(E(B))τ ′ (E (B))

[
V (B?)− log (E (B) /q)

1− β

]
+ log β · βτ(E(B))τ ′′ (E (B))

[
V (B?)− log (E (B) /q)

1− β

]
+ log β · βτ(E(B))τ ′ (E (B)) (−1)

1

1− β
1

E (B)

and since

τ ′′ (E) =
1

log β

1

(1− β)2

 1(
1−E
1−β −B?

)2 −
1(

1−E
1−β −B

)2

 > 0.

= τ ′ (E)
1

(1− β)

 1(
1−E
1−β −B?

) +
1(

1−E
1−β −B

)
 > 0

40Note that it is enough to look for sets that are open connected intervals i.e.
(
B̃, Bh

)
. This is true

because for strictly increasing continuous functions such as g (B) (below) the pre-image (the set of B’s)

of an open interval (0, V (B?)) is an open interval B ∈
(
B̃, Bh

)
0 < g (B) ≡ 1

1− (1− β)B
(B −B?) + V (B) < V (B?) . (27)

g is strictly increasing (has positive derivative) for all B because V B (B) = − 1
1−(1−β)B
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we have that the second derivative of U is equal to

− 1

E (B)
· 1

E (B)

(
1− βτ(E(B))

1− β

)
+ 2

1

E (B)

1− βτ(E(B))

1− β
(−1) log β · βτ(E(B))

1− βτ(E(B))
τ ′ (E (B))

+ (−1) log β · τ ′ (E (B)) · (−1) log β · βτ(E(B))τ ′ (E (B))

[
V (B?)− log (E (B) /q)

1− β

]

+ (−1)
1

(1− β)

 1(
1−E
1−β − B̃

) +
1(

1−E
1−β −B

)
 · (−1) log β · βτ(E(B))τ ′ (E) [V (B?)− . . .]

factorizing out 1
E(B)

(
1−βτ(E(B))

1−β

)
or, equivalently, the RHS of the FOC I obtain an expres-

sion with the same sign

− 1

E (B)

− 2 log β · βτ(E(B))

1− βτ(E(B))
τ ′ (E (B))

− log β · τ ′ (E (B))

− 1

(1− β)

 1(
1−E
1−β −B?

) +
1(

1−E
1−β −B

)
 ·

then let me call

1

f (X)
=

1− E
1− β

−X,

so the second derivative of U is has the same sign of

= − 1

E (B)
− log β · τ ′ (E (B))

1 + βτ(E(B))

1− βτ(E(B))
− 1

(1− β)
(f (B?) + f (B)) ,

= − 1

E (B)
− 1

1− β
(f (B?)− f (B))

f (B) + f (B?)

f (B)− f (B?)
− 1

(1− β)
(f (B?) + f (B)) ,

= − 1

E (B)
< 0

where the second equality is obtained using the expressions for τ ′ and τ and the func-
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tion f (·). The last inequality comes from E ∈ (0, 1− (1− β)B). Now, I will show

uniqueness and that the value at this point must be above the disrupted value.

Let’s denote the critical point of U as E0 and suppose that U (E0) is below V (B).

Since E0 is a strict local maximum then the function is decreasing to the right of E0

(negative derivative) but it must start increasing again (positive derivative) at some

point because asE ↑ 1−(1− β)B thenU (E) ↑ V (B). This change of sign in the deriva-

tive requires that there is another critical point that is a local minimum to the right of

E0. This is a contradiction since we just proved that all critical points are strict local

maximums. Thus I conclude that the value at E0 is larger than V (B) and uniqueness

follows from the same argument. Then E (B) is a global maximum.

Let’s prove that in fact such Bh exists. Again I use the intermediate value theorem,

so I prove that there are B satisfying (28) and B satisfying it with the reversed sign. We

will show that B̃ satisfies the condition with strict inequality (<), so the condition with

≤ is true for values above but close to B̃. The condition on B̃ is

1

1− (1− β) B̃
<
V (B?)− V (B̃)

B̃ −B?
.

Rewriting this inequality we will show

1

1− (1− β) B̃

(
B̃ −B?

)
< V (B?)− V (B̃).

Using the expression for B? = β−1
(
B̃ − 1

)
, the LHS is equal to β−1. The RHS is

V (B?)− V (B?) + V (B?)− V (B̃),

=
log q

1− β
+

1

1− β
log

(
1− (1− β)B?

1− (1− β) B̃

)
,

=
log q

1− β
+

1

1− β
log
(
β−1
)

=
log (β−1q)

1− β
,

where the second equality uses that V (B?) is undisrupted. Since β is close to 1 and
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since q > δ−1 > 1 we have41

β exp
(
β−1 − 1

)
≈ 1 < q,

exp
(
β−1 − 1

)
< β−1q,(

β−1 − 1
)
< log

(
β−1q

)
,

β−1 <
log (β−1q)

1− β
,

which we wanted to show. Now takeB ↑ B = 1/ (1− β) then since consumption goes to

zero we apply the same argument as in equation (26)42 and we have that the condition

holds with the reversed sign, the LHS goes to plus infinity. This establishes existence

and Bh is characterized by

1

1− (1− β)Bh
=
V
(
B̃
)
− V x

(
Bh
)

Bh − B̃
. (29)

Now, uniqueness follows because equation (29) can be rewritten as

g
(
Bh
)
≡ V B

(
Bh
) (
B? −Bh

)
+ V

(
Bh
)

= V (B?)

g′
(
Bh
)

= V BB

(
Bh
)︸ ︷︷ ︸

<0

(
B? −Bh

)︸ ︷︷ ︸
<0

−V B

(
Bh
)

+ V B

(
Bh
)

and by strict concavity of V , the LHS is a one-to-one mapping for Bh.

Finally, I prove that B’s to the right of Bh are in hysteresis. Suppose that there is a

B > Bh such that V d (B) > V (B) then I can draw two implications. First, that there

is a local maximum E ′ (a point where the derivative changes from positive to negative)

and that equation (28) holds with the reversed sign since B > Bh (i.e. the derivative

as E ↑ 1 − (1− β)B is positive). These two facts together imply that there is another

(critical) point, say,E ′′ > E ′which is a local minimum since the derivative must change

from negative to positive. This is a contradiction.

41Alternatively this could be written as a condition for the delay parameter β exp
(
β−1 − 1

)
< δ−1.

42Notice that the log of the limit argument appears because V (B) = log [(1− (1− β)B) /q]
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C. Proofs of Section 4

C.1 Proof of Proposition 8

The strategy of the proof is to show that any solution to the Ramsey Problem satisfies

the constraints in the Primal Problem (step 1), that solutions respect the optimal ex-

penditure rules, and, finally, that any solution to the Primal Problem can be induced by

a proper tax sequence
{
τ kt+1, τ

c
t , τ

`
t+1

}
t≥0

(step 2).

Step 1. The constraint set in Primal Problem contains constraints in Ramsey Prob-

lem. Take the household budget constraints and the government budget in the origi-

nal Ramsey Problem:

(
1 + τ kt+1

) Bt+1

Rt+1

+ (1 + τ ct )Cs
t = Bt, ∀t ≥0

Bt + (1 + τ ct ) (Swt + qtX
w
t ) =

Bt+1

Rt+1

+ 1− τ `t+1, ∀t ≥0

and

τ kt+1

Bt+1

Rt+1

+ τ ct (Cs
t + Cw

t ) + τ `t+1 = 0, ∀t ≥0.

If we add the first two constraints and cancel common terms, we obtain:

(1 + τ ct ) (Swt + qtX
w
t ) + τ kt+1

Bt+1

Rt+1

+ (1 + τ ct )Cs
t = 1− τ `t+1.

If we then subtract the government budget constraint from this last equation, we ob-

tain:

−
(
τ kt+1

Bt+1

Rt+1

+ τ ct (Cs
t + Swt + qtX

w
t ) + τ `t

)
+(1 + τ ct ) (Swt + qtX

w
t )+τ kt+1

Bt+1

Rt+1

+(1 + τ ct )Cs
t = 1−τ `t+1.

Cancelling terms, this condition further becomes:

Swt + qtX
w
t + Cs

t = 1. (30)
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Finally, using qt = A (µt)
−1, we obtain:

Swt +A (µt)
−1Xw

t + Cs
t = 1 and µt = A (µt)

−1Xw
t .

This shows that any solution to the Ramsey Problem satisfies the constraints of the

Primal Problem.

Step 2. The Ramsey Planner can implement the Primal Problem Solution. Next,

observe that for any choice of Cw
t in the Primal Problem, the Primal Planner is better

off maximizing Swt sinceA (µt)
−1 ≥ 1. Hence, it must be the case that:

Swt = min
{

max
{
B̃t −Bt, 0

}
, 1− Cs

t

}
.

Then, by definition:

Xw
t = Ew

t −min
{

max
{
B̃t −Bt, 0

}
, 1− Cs

t

}
/qt.

In this expression, I used thatEw
t = 1−Cs

t exploiting the expenditure-income—equation

(30). Since both the Ramsey and the Primal problems induce the same level of con-

sumption for workers given a level of saver consumption, the value of both problems

coincides if they can induce the same set of saver consumption paths.

In the primal problem, I use that

Cs
t = (1− β)Bt.

Thus, since the planner in the Primal Problem can choose the path of debt directly, it

can chose saver expenditures as well. Since the constraint set in the Primal is a subset

of the constraint in the Ramsey problem, the primal problem is more relaxed than the

original Ramsey problem. Hence, If the Ramsey planner can achieve the same level of

saver expenditures as the Primal planner, then, it must achieve the same value. The

next Lemma is used to verify that claim.

Lemma 1. Let
{
τ kt+1, τ

c
t , τ

`
t+1

}
t≥0

be a sequence of taxes in the Ramsey Problem. The solu-
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tion to the saver’s problem is given by:

Cs
t = (1− β)Bo

t

where

Bo
0 =

B0

(1 + τ c0)

Bo
t+1 = R̂t+kβB

o
t

and

R̂t+k ≡
Rt+1(

1 + τ kt+1

) 1(
1 + τ ct+1

)
/ (1 + τ ct )

.

This Lemma is the solution to the saver’s problem. The Lemma implies that any

sequence of solutions to the Primal Problem can be reproduced by the the Ramsey

Planner.

Indeed, let {Bo
t }t≥0 be a solution to the primal problem. Then, the Ramsey planner

can set

(1 + τ c0) = B0/B
o
0

and set the sequence of taxes
{
τ kt+1, τ

c
t , τ

`
t+1

}
to satisfy,

Bo
t+1

Bo
t

= β
Rt+1(

1 + τ kt+1

) 1(
1 + τ ct+1

)
/ (1 + τ ct )

,

given the equilibrium rate Rt+1 induced by his solution. This equilibrium has to be

found to provide an actual implementation. Recall from the previous step that once we

determine the saver’s consumption path, we have the worker’s expenditures. Hence,

we are free to treat Cw, Sw, µ. and Cw, as functions of B in the Primal and Ramsey

problems (assuming that both problems produce the same path of Bo
t ) as we do in the

problem without taxes in the main text:

Sw
(
B, B̃

)
≡ min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
,

µ
(
B, B̃

)
≡ 1− (1− β)B − Sw

(
B, B̃

)
,

Xw
(
B, B̃

)
≡ A

(
µ
(
B, B̃

))(
1− (1− β)B − Sw

(
B, B̃

))
,
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and

Cw
(
B, B̃

)
= Xw

(
B, B̃

)
+ Sw

(
B, B̃

)
.

Recall that the Ramsey planner must satisfies the two household Euler equations:

Cs
t+1

Cs
t

1

β

[
1 + τ ct+1

1 + τ ct

] (
1 + τ kt

)
= Rt+1 (31)

and for the worker, at continuity points,

Cw
t+1

Cw
t

1

β

[
1 + τ ct+1

1 + τ ct

][
1 +

(
A (µt+1)−1 − 1

)
I[Swt+1=0]

1 +
(
A (µt)

−1 − 1
)
I[Xt>0]

]
= Rt+1, (32)

where I express the indicators as a function of consumption since these conditions are

equivalent to the ones in the main text and, likewise, I work directly with consumption.

I verify below, in the solution to the Primal Planner’s Problem, that the planner never

chooses Bo
t = B̃t but may chose Bo

t = B?
t . Thus, the worker’s Euler equation must

satisfy:

lim
Bot ↑B?t

Cw
t+1

Cw
t

1

β

[
1 + τ ct+1

1 + τ ct

] [
1 +

(
A (µt+1)−1 − 1

)
I[Swt+1=0]

1 +
(
A (µt)

−1 − 1
)
I[Xt>0]

]
< Rt+1,

and

lim
Bot ↓B?t

Cw
t+1

Cw
t

1

β

[
1 + τ ct+1

1 + τ ct

][
1 +

(
A (µt+1)−1 − 1

)
I[Swt+1=0]

1 +
(
A (µt)

−1 − 1
)
I[Xt>0]

]
≥ Rt+1.

The numerator is the same in both cases, it equals 1, in the neighborhood of B?
t . If the

worker’s Euler equation holds with equality in the limit from aboveB?
t , we immediately

verify that the inequality holds in the limit from below:

lim
Bot ↓B?t

1 +
(
A (µt)

−1 − 1
)
I[Xt>0] = δ−1 < 0 = lim

Bot ↑B?t
1 +

(
A (µt)

−1 − 1
)
I[Xt>0].

Hence, we are free to substitute the the strict inequality in the denominator for an

equality:
Cw
t+1

Cw
t

1

β

[
1 + τ ct+1

1 + τ ct

][
1 +

(
A (µt+1)−1 − 1

)
I[Swt+1=0]

1 +
(
A (µt)

−1 − 1
)
I[Xt≥0]

]
= Rt+1.

I use this modified Euler equation in the rest of the proof.

Substituting out
[

1+τct
1+τct+1

]
βRt+1 from both (31) and (32), and replacing the saver’s
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optimal expenditures, we obtain:

(
1 + τ kt

)
=

Cs
t

Cs
t+1

Cw
t+1

(
Bt+1, B̃t+1

)
Cw
t

(
Bt, B̃t

)
1 +

(
A
(
µ
(
Bt+1, B̃t+1

))−1

− 1

)
I[Sw(Bt+1,B̃t+1)=0]

1 +

(
A
(
µ
(
Bt, B̃t

))−1

− 1

)
I[Xt≥0]

 .
We can treat the solution of this equation as a function mapping the sequence of solu-

tions in the Primal Planner to the Ramsey planner:

τ k
(
B,B′, B̃, B̃′

)
=
B

B′
1− (1− β)B

1− (1− β)B′

Q
(
B′, B̃′

)
Q
(
B, B̃

)
1 +

(
A
(
µ
(
B′, B̃′

))−1

− 1

)
I[Sw(B′,B̃′)=0]

1 +

(
A
(
µ
(
B, B̃

))−1

− 1

)
I[Xt≥0]

− 1.

(33)

As long as we have the sequence of debt obtained from the Primal Problem, we obtain

a mapping from this solution to the sequence of capital taxes.

The equilibrium rate is deduced from (31),

Rt+1 =

[
1 + τ ct+1

1 + τ ct

]
Bo
t+1

Bo
t

1

β

(
1 + τ k

(
Bo
t , B

o
t+1, B̃t, B̃t+1

))
.

Hence, other than for time zero, expenditure taxes are indeterminate. Indeed, any se-

quence of expenditure taxes satisfies the saver’s budget equation. If we substitute (31)

into the saver budget constraint to obtain:

Cs
t

Cs
t+1

β

[
1 + τ ct

1 + τ ct+1

]
Bt+1 + (1 + τ ct )Cs

t = Bt.

Using that Cs
t = (1− β)Bo

t and that the debt induced by the Ramsey solution must

satisfy Bt = Bo
t / (1 + τ ct ), the budget constraint is verified.

Since there are multiple paths for expenditure taxes and labor income taxes, the

only condition need is that they jointly satisfy the government budget constraint. Re-
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placing the results above, we obtain that any sequence
{
τ ct , τ

`
t+1

}
that satisfies:

τ k
(
Bo
t , B

o
t+1, B̃t, B̃t+1

)
1 + τ k

(
Bo
t , B

o
t+1, B̃t, B̃t+1

) [ 1 + τ ct
1 + τ ct+1

]
βBo

t +τ ct

(1− β)Bo
t +

1− (1− β)Bo
t

Q
(
Bo
t , B̃t

)
+τ `t+1 = 0,

implements the Primal Planner allocation. For an implementation where τ ct = 0, ∀t ≥
1, Hence, we have:

τ `t = −
τ k
(
Bo
t , B

o
t+1, B̃t, B̃t+1

)
1 + τ k

(
Bo
t , B

o
t+1, B̃t, B̃t+1

)βBo
t ,

also implements the solution.

C.1.1 Auxiliary Proofs

Proof of Lemma 1. To proof the result, I solve the saver’s problem for an arbitrary

sequence of taxes:

Problem 7. The saver’s problem with taxes is:

Vt =
∑
t≥0

βt log (Ct)

subject to:
(
1 + τ kt+1

)
R−1
t+1Bt+1 + (1 + τ ct )Ct = Bt, with B0 given.

Dividing both sides of the budget constraint by 1 + τ ct and multiplying and dividing

by
(
1 + τ ct+1

)
in the first term, we obtain:

(
1 + τ kt+1

) Bt+1

Rt+1 (1 + τ ct )

(
1 + τ ct+1

)(
1 + τ ct+1

) + Ct =
Bt

(1 + τ ct )
.

I introduce the following change of variable:

Bo
t ≡

Bt

1 + τ ct
.

Using this change of variables, the budget constraint is modified to:

Bo
t+1 = R̂t+k (Bo

t − Ct) ,
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where

R̂t+k ≡
Rt+1(

1 + τ kt+1

) 1(
1 + τ ct+1

)
/ (1 + τ ct )

.

This change of variables implies that the original problem can be reformulated as fol-

lows.

Problem 8. Equivalent problem

Vt =
∑
t≥0

βt log (Ct)

subject to: R̂−1
t+kB

o
t+1 + Ct = Bo

t , where Bo
0 ≡ (1 + τ c0)−1B0.

The solution to this problem is typical of log. Conjecture that:

Vt = V (Bo, t) =
1

1− β
log (D) + v (t) .

We thus have that:

V (Bo, t) = maxC log (C) + β log
(
R̂t+1 (Bo − C)

)
+ βv (t+ 1) .

= maxC log (C) +
β

1− β
log (Bo − C) + β

(
1

1− β
log
(
R̂t+1

)
+ v (t+ 1)

)
.

Taking first-order conditions with respect to C, we obtain:

1

C
=

1

Bo − C
β

1− β
→ C = (1− β)Bo.

We verify the conjecture by replacing the expenditure rule:

V (Bo, t) =
log (Bo)

(1− β)
+

log (1− β)

1− β
+ β

(
1

1− β
log
(
R̂t+1

)
+ v (t+ 1)

)
,

where

v (t) =
log (1− β) + β log

(
R̂t+1

)
1− β

+ βv (t+ 1) .
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C.2 Proof of Proposition 9

I first state Proposition 9 in greater generality than as shown in the main body of the

paper.

Proposition 12. (Solution of the Primal Problem): The solution to the Primal Planner

Problem is given by the solution to the following static problem:

Problem 9.

Pθ
(
B̃
)

= max
B∈[0,B̄]

P
(
B, B̃

)
where

P
(
B, B̃

)
≡
{

(1− θ) log ((1− β)B) + θ log
(
A
(
µ
(
B, B̃

))
µ
(
B, B̃

)
+ Sw

(
B, B̃

))}
and µ

(
B, B̃

)
and Sw

(
B, B̃

)
:

µ
(
B, B̃

)
≡ 1− (1− β)B −min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
Sw
(
B, B̃

)
≡ min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
.

Let the solution to this problem be Bθ. Then, the solution to the primal planner’s

problem is Bt = Bθ
(
B̃t

)
. The function Bθ satisfies:

I. Efficiency Threshold. For B̃ ≥ 1+θβ
1−β , Bθ = Bss. Moreover, for this debt level Xw = 0.

II. Inefficiency Threshold. For B̃ < 1+θβ
1−β the planner’s solution induces TFP losses. The

solution to the Primal Planner’s problem in this region depends on the threshold SBL, B̃e.

II.a Social Insurance complements Productive Efficiency. For B̃ ∈
[
B̃e, 1+θβ

1−β

]
, we

have that Bθ = B?
(
B̃
)

if

1− (1− β)B?
(
B̃
)

(1− β)B?
(
B̃
) ≤ θ

1− θ
1− βδ
1− β
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Or is the unique solution Bθ < Bss to:

1− (1− β)Bθ

(1− β)Bθ
=

θ

1− θ

Q
(
Bθ, B̃

)
q
(
Bθ, B̃

)
q

(
Bθ, B̃

)
− β

(
1 + εAµ

(
µ
(
Bθ, B̃

)))
1− β

 .

Moreover, for this debt level Xw, Sw > 0.

II.b Social Insurance conflicts Productive Efficiency. For B̃ ∈
[
0, B̃e

]
, we have that

Bθ is the unique constant solution Bθ > Bss to the equation:

1− (1− β)Bθ

(1− β)Bθ
=

θ

1− θ
(
1 + εAµ

(
1− (1− β)Bθ

))
.

Moreover, for this debt level Sw = 0.

Threshold value B̃e. Let Pθ ≡ Pθ (0) and P̄θ ≡ Pθ
(
B̄
)

. The threshold B̃e solves:

P̄θ = Pθ + θ

∫ 1+θβ
1−β

B̃e

(
P̃B̃ + P̃B̃

(
Bp(B̃)

)
B?
B̃

(
B̃
))

dB̃.

where for B̃ ∈
[
B̃e, 1+θβ

1−β

]
we have:

Pθ
B̃

(
B̃
)

=
θ

1− (1− β)Bp(B̃)

Q
(
Bp(B̃), B̃

)
q
(
Bp(B̃), B̃

) log
(
A
(
µ
(
Bp(B̃), B̃

))
−
(

1 + εAµ

(
µ
(
Bp(B̃), B̃

))))
.

To begin the proof, let me start with the Primal Problem in the statement of Proposi-

tion 8. Taking the sequence of borrowing limits
{
B̃t

}
t≥0

, the Primal Planner maximizes:

max
{Bt}t≥0

∑
t≥0

βt [(1− θ) log (Cs
t ) + θ log (Xw

t + Swt )] ,

subject to the saver’s budget constraint,

Cs
t = (1− β)Bt, ∀t ≥0,
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the income expenditure identity,

1 = µt + Swt + (1− β)Bt,

the spot expenditure constraint,

St ≤ max
{
B̃t −Bt, 0

}
, ∀t ≥0,

and the cost of chained goods,

Xw
t = A (µt)µt,

and subject to µt ∈ [0, 1].

We have that for any Bt, the consumption delivered to the savers is fixed. To maxi-

mize the worker’s utility, we must

max log (Xw
t + Swt )

subject to:

1− (1− β)Bt = µt + Swt

St ≤ max
{
B̃t −Bt, 0

}
Xw
t = A (µt)µt.

and subject to µt ∈ [0, 1]. The last constraint implies that:

1− (1− β)Bt − Swt ≥ 0,

or equivalently,

Swt ≤ 1− (1− β)Bt.

Hence, the Primal Planner respects the same constraint as the worker:

Swt = min
{

max
{
B̃t −Bt, 0

}
, 1− (1− β)Bt

}
.
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Therefore, the expenditures on chained goods are:

µt = 1− (1− β)Bt −min
{

max
{
B̃t −Bt, 0

}
, 1− (1− β)Bt

}
.

Since the the maximization is static, we can solve it state by state as in the statement

of the proposition. Thus, the objective of the Primal Planner is the same as solving the

following problem at each date:

Problem 10. The Primal Planner’s problem is given by:

Pθ
(
B̃
)

= max
B∈[0,B̄]

P
(
B, B̃

)
where

P
(
B, B̃

)
=
{

(1− θ) log ((1− β)B) + θ log
(
A
(
µ
(
B, B̃

))
µ
(
B, B̃

)
+ Sw

(
B, B̃

))}
subject to:

µ
(
B, B̃

)
≡ 1− (1− β)B −min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
Sw
(
B, B̃

)
= min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
.

This is a problem where the planner can distribute wealth at will, but respects the

constraints. Next, I proceed to solve this problem. Naturally, welfare depends on whether

and how the planner may want to distort TFP to provide insurance. There are multiple

policy regimes that depend on the SBL, B̃. I make use of two problems, the best and

worst value problems:

Pθ ≡ Pθ (0) and P̄θ ≡ Pθ
(
B̄
)
.

Case 1. Values of B̃ such that all consumption is spot. Ideally, the planner wants to

maximize spot consumption and set µ = 0. The unconstrained solution to the Primal

Planner’s problem is given by the ratio of of Pareto weights:

1− (1− β)Bo

(1− β)Bo
=

θ

1− θ
→ Bo =

1− θ
1− β

= Bss.
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This yields the same value as P̄θ.
This level of debt must satisfy the condition that all spot consumption must be fea-

sible:

max
{
B̃ −Bo, 0

}
≥ 1− (1− β)Bo > 0.

Thus, we need

B̃ ≥ Bo

and that:

B̃ ≥ 1 + βBo.

Combining both constraints we have:

B̃ ≥ Bo + max {1− (1− β)Bo, 0} .

We know that the optimal debtBo must be less than the natural borrowing limit. Hence,

the inequality is just:

B̃ ≥ 1 + βBo = 1 +
β

1− β
(1− θ) . (34)

Thus, for these levels of the SBL, the planner can achieve the unconstrained solution.

This corresponds to the debt in the efficient steady state level of the competitive equi-

librium that produces the planner’s Pareto weights.

Case 2. Values of B̃ such that some consumption is chained. Now consider the case

where the constraint binds, B̃ < 1+θβ
1−β . In this case, the planner cannot achieve the

unconstrained solution. The amount of chained expenditures are therefore positive:

µ
(
B, B̃

)
= 1− (1− β)B −min

{
max

{
B̃ −B, 0

}
, 1− (1− β)B

}
> 0.

We have critical values.

• If the planner chooses Bp ≥ Bh

(
B̃
)

= B̃, there is no spot consumption.

• If the planner chooses Bp < Bl

(
B̃
)
< B̃, that there is no chained consumption.
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This threshold Bl

(
B̃
)

solves,

max
{
B̃ −Bl, 0

}
= 1− (1− β)Bl

when since Bl < B̃, we obtain:

B̃ = 1 + βBl → Bl

(
B̃
)

= max
{

0, β−1
(
B̃ − 1

)}
= B?

(
B̃
)
.

Obviously, B?
(
B̃
)
< Bo since we are in the constrained region.

Consider now the planner problem that restricts choices to at least some of both goods

are consumed by the worker:

Problem 11. The Primal Planner’s problem restricted to both types of consumption is:

P̃
(
B̃
)

= max
B∈[Bl(B̃),Bh(B̃)]

{
(1− θ) log ((1− β)B) + θ log

(
A
(
µ
(
B, B̃

))
· µ
(
B, B̃

)
+ Sw

(
B, B̃

))}
subject to:

µ
(
B, B̃

)
≡ 1 + βB − B̃

and

Sw
(
B, B̃

)
= B̃ −B.

We have the following Lemma.

Lemma 2. For any B̃ < 1+θβ
1−β , the original planner problem satisfies:

Pθ
(
B̃
)

= max
{
P̃
(
B̃
)
,Pθ

}
.

Proof. Indeed, in the region Bp ∈
[
0, Bl

(
B̃
)]

the objective of the planner is equivalent

to the objective when the SBL is most relaxed, P
(
B, B̄

)
. Thus, since B̃ < 1+θβ

1−β , the

planner’s objective is increasing in the region
[
0, Bl

(
B̃
)]

. Thus, the planner’s solution

must fall in between Bp ∈
[
Bl

(
B̃
)
, B̄
]

. For any Bp ≥ Bh

(
B̃
)

= B̃, the objective

function in P
(
B, B̃

)
is independent of B̃ and hence, must coincide with the value of

Pθ . Hence, we can partition Pθ
(
B̃
)

according to the Lemma.
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To prove the main result, I solve the problems Pθ and P̃
(
B̃
)

Auxiliary Problem Pθ: no spot consumption. The planner’s problem with the tight-

est SBL Pθ = Pθ (0) is given by:

Pθ = max
B∈[0,B̄]

P (B, 0)

where

Pθ = max
B∈[0,B̄]

{(1− θ) log ((1− β)B) + θ log (A (µ (B, 0))µ (B, 0))}

subject to:

µ (B, 0) ≡ 1− (1− β)B.

To solve this problem, I perform some calculations. First, note that:

∂ [A (µ)µ]

∂µ
= A (µ)

(
1 + εA

)
where,

εAµ ≡
∂A (µ)

∂µ

µ

A (µ)
.

The derivative PB is therefore given by:

PB = (1− θ) (1− β)

(1− β)B
+ θ
A (µ)

(
1 + εAµ

)
µB (B, 0)

A (µ)µ
=

(1− θ)
B

− θ
(
1 + εAµ

)
(1− β)

1− (1− β)B
.

The second equation uses that µB (B, 0) ≡ − (1− β) .

The first term in PB, (1− θ) /B, is decreasing in B. The second term,

θ

(
1 + εAµ

)
(1− β)

1− (1− β)B
, (35)

is increasing. We know this because denominator is decreasing in B ∈
[
0, B̄

]
and the

elasticity of TFP is itself decreasing in µ,

εAµµ =
∂

∂µ

[
A′ (µ)µ

A (µ)

]
=
A′′ (µ)µ

A (µ)
+
A′ (µ)

A (µ)
− [A′ (µ)]2

[A (µ)]2
< 0.
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Hence, εAµµµB (B, 0) > 0, since the product of two numbers thus, the numerator of the

second term (35). Thus, P is concave and therefore Pθ has a unique solution:

1− (1− β)B

(1− β)B
=

θ

1− θ
(
1 + εAµ (µ (B, 0))

)
and recall that µ (B, 0) = 1 − (1− β)B. I call this solution Bp: the planner debt level

under the most tight SBL. We have the following Lemma:

Lemma 3. The solution Bp > Bo.

Proof. The proof is immediate from 1 + εAµ < 1 and the fact that

1− (1− β)Bo

(1− β)Bo
=

θ

(1− θ)
.

Next, I solve P̃
(
B̃
)

.

Auxiliary Problem P̃
(
B̃
)

: spot and chained consumption. Consider now the plan-

ner problem where at least some of both goods are consumed by the worker:

P̃
(
B̃
)

= max
B∈[B?(B̃),B̃]

P̃
(
B, B̃

)

P̃
(
B̃
)
≡
{

(1− θ) log ((1− β)B) + θ log
(
A
(
µ
(
B, B̃

))
· µ
(
B, B̃

)
+ Sw

(
B, B̃

))}
subject to:

µ
(
B, B̃

)
≡ 1 + βB − B̃

and

Sw
(
B, B̃

)
= B̃ −B.



54

The derivative of the objective in P̃
(
B̃
)

is:

P̃B
(
B, B̃

)
= (1− θ) 1

B
+ θ
A
(
µ
(
B, B̃

))(
1 + εAµ

(
µ
(
B, B̃

)))
β − 1

A
(
µ
(
B, B̃

))
µ
(
B, B̃

)
+ B̃ −B

.

Recall that,

Cw
(
B, B̃

)
= A

(
µ
(
B, B̃

))
µ
(
B, B̃

)
+ B̃ −B.

Hence, using the definition of Q and q we rewrite:

P̃B
(
B, B̃

)
= (1− θ) 1

B
− θQ

q

q − β
(

1 + εAµ

(
µ
(
B, B̃

)))
1− (1− β)B

We can multiply both sides by the ratio of 1−(1− β)B and divide by (1− β) and obtain:

P̃B
(
B, B̃

) 1− (1− β)B

(1− β)B
=

1− (1− β)B

(1− β)B
− θ

1− θ
Q

(
1− β

(
1 + εAµ

)
A (µ)

1− β

)
.

This function must have the same sign as P̃B
(
B, B̃

)
, since at was obtained by mul-

tiplication of positive numbers. The first term is decreasing in B. In turn, QµµB is

increasing in B. Hence, as long as

A (µ)
(
1 + εAµ

)
= A (µ) +A′ (µ)µ

is decreasing inB, the second term is increasing. The second term is indeed decreasing

in µ since its derivative is:

2A′ (µ) +A′′ (µ)µ < 0,

where the sign follows immediately from the concavity and monotone decreasing prop-

erties ofA. Hence, the objective function P̃
(
B, B̃

)
is concave inB. Furthermore, since

Q

(
1− β

(
1 + εAµ

)
A (µ)

1− β

)
> 1,
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and we have an interior maximum in the region B ∈
[
B?
(
B̃
)
, B̃
]

, B must solve:

1− (1− β)B

(1− β)B
=

θ

1− θ
Q

(
1− β

(
1 + εAµ

)
A (µ)

1− β

)
,

and it is such that B < Bo.

Next, we establish properties regarding the limits of this function at the boundaries

of the set
[
B?
(
B̃
)
, B̃
]

. First, the limit at the left boundary:

lim
B↓B?(B̃)

1− (1− β)B

(1− β)B
− θ

1− θ
Q

q

(
q

1− β
−
β
(
1 + εAµ

)
1− β

)
= lim

B↓Bl(B̃)

1− (1− β)B

(1− β)B
− θ

1− θ

(
1

1− β
−
β
(
1 + limµ↓0 ε

A
µ

)
limµ↓0A (µ)

1− β

)
.

In Appendix A, I show that limµ↓0 1 + εAµ = 0. However, I also show that

lim
µ↓0
A (µ) = δ.

Thus, the limit of the objective function at the left boundary has the sign of:

1− (1− β)B?
(
B̃
)

(1− β)B?
(
B̃
) − θ

1− θ
1− βδ
1− β

=
1− (1− β)B?

(
B̃
)

(1− β)B?
(
B̃
) − 1− (1− β)Bo

(1− β)Bo

1− βδ
1− β

.

The function B?
(
B̃
)
< Bo but 1−βδ

1−β > 1, hence the sign is ambiguous. The solution is

at this corner if this derivative is negative.

Next, we consider the limit of the derivative of the objective to the right of the con-

straint set
[
B?
(
B̃
)
, B̃
]

. If

1− (1− β) B̃

(1− β) B̃
− θ

1− θ

1− β
(

1 + εAµ

(
1− (1− β) B̃

))
1− β

 ≥ 0

the solution to this problem is B = B̃. Otherwise, the solution must fall at some value

B < B̃:
1− (1− β)B

(1− β)B
=

θ

1− θ

(
1− β

(
1 + εAµ (1− (1− β)B)

)
1− β

)
.
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Moreover, we know that since

Q

(
1− β

(
1 + εAµ

)
A (µ)

1− β

)
> 1,

The corner solution B̃ is chosen only if

1− (1− β) B̃

(1− β) B̃
>

1− (1− β)Bo

(1− β)Bo

which implies that this occurs only for some B̃ < Bo. Collecting the results, up to this

point, we have the following Lemma.

Lemma 4. The solution Bp
` to P̃

(
B̃
)

is as follows.

I. Bp
` = B̃ if

1− (1− β) B̃

(1− β) B̃
≥ θ

1− θ

1− β
(

1 + εAµ

(
1− (1− β) B̃

))
1− β

 ,

II. Bp
` = B?

(
B̃
)

1− (1− β)B?
(
B̃
)

(1− β)B?
(
B̃
) ≤ θ

1− θ
1− βδ
1− β

.

III. Otherwise, Bp
` solves:

1− (1− β)Bp
`

(1− β)Bp
`

=
θ

1− θ

(
1− β

(
1 + εAµ (1− (1− β)Bp

` )
)

1− β

)
.

Overall Solution. Recall that we showed above that:

Pθ
(
B̃
)

= max
{
P̃
(
B̃
)
,Pθ

}
.

The following Lemma shows that the solution Bp to the Planner’s problem is never a

corner solution.

Lemma 5. The planner never chooses a solution at Bp = B̃.



57

Proof. Pθ
(
B̃
)

= max
{
P̃
(
B̃
)
,Pθ

}
. To proof this Lemma observe that the left limit as

B ↑ B̃ satisfies
q − 1− εA

1− β
+ 1 + εA > 1 + εA,

where the inequality follows from q > 1 and εA < 0. As a consequence,

1− (1− β) B̃

(1− β) B̃
− θ

1− θ
lim
B↑B̃

Λ
(
B, B̃

)
≥ 0

implies
1− (1− β) B̃t

(1− β) B̃t

− θ

1− θ
lim
B↓B̃t

Λ
(
B, B̃

)
> 0.

Hence, although the derivative of the objective is discontinuous at B̃, we know that if

the derivative is weakly increasing at the left, it is increasing from the right and this

implies that B = B̃ is never an optimal choice for the planner.

Next, observe that the problem P̃
(
B̃
)

has a compact-valued and continuous con-

straint correspondence with a continuous objective. It satisfies the conditions for the

Theorem of the Maximum. In addition it is immediate to verify that:

lim
B̃↑ 1+θβ

1−β

P̃
(
B̃
)

= P̄θ and lim
B̃↑ 1+θβ

1−β

Bp(B̃) = Bo.

We can employ the Envelope Theorem on P̃
(
B̃
)

. In the region where the solution to

P̃
(
B̃
)

is not at a corner solution, the Envelope Theorem yields:

P̃B̃ =
θ

1− (1− β)Bp(B̃)
Q
(
Bp(B̃), B̃

)(
1−

(
1 + εAµ

(
µ
(
Bp(B̃), B̃

)))
A
(
µ
(
Bp(B̃), B̃

)))
,

since B̃ appears directly through µ and S in the objective. The function is strictly in-

creasing in B̃ since εAµ < 0 and A < 1. In the region where the function is at the lower

corner of the constraint:

B = B?
(
B̃
)
,
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the value of this term is:

P̃B̃ =
θ

1− (1− β)B?
(
B̃
) (1− δ)

and

P̃B =
1− θ

B?
(
B̃
) − θ (1− βδ)

1− (1− β)B?
(
B̃
) .

Thus, we have that the marginal objective value is:

P̃B̃ + P̃B
(
Bp(B̃)

)
B?
B̃

(
B̃
)

Hence, there exists a threshold value B̃e such that:

P̃
(
B̃e
)

= Pθ

because notice that Pθ is finite and lower than the value of the problem without con-

straints, P̃ (0) tends to−∞ and P̃
(
B
)

tends to the value of problem without constraints.

This implies that P̃ (0) < Pθ < P̃
(
B
)

and from continuity of the value function (The-

orem of the Maximum) and the Intermediate Value Theorem, the existence of B̃e is

guaranteed. By the fundamental theorem of calculus:

P̄θ = Pθ + θ

∫ 1+θβ
1−β

B̃e

(
P̃B̃ + P̃B

(
Bp(B̃)

)
B?
B̃

(
B̃
))

dB̃.

This concludes the proof of the general version of Proposition 9.
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C.3 Proof of Proposition 10

Let’s define the indirect social utility function of the Planner Problem with expenditures

Pg:

Pg
(
B, B̃,Gs, Gx

)
= (1− θ) log (Cs (B)) + θ log

(
Sw
(
B, B̃,Gs, Gx

)
+Xw

(
B, B̃,Gs, Gx

))
.

The following functions determine the allocation:

Cs (B) ≡ (1− β)B

Ew (B,Gs, Gx) ≡ 1− Es (B)−Gx −Gs

Sw
(
B, B̃,Gs, Gx

)
≡ min

{
max

{
B̃ −B, 0

}
, Ew

}
Xw

(
B, B̃,Gs, Gx

)
≡
Ew −min

{
max

{
B̃ −B, 0

}
, Ew

}
q

q
(
B, B̃,Gs, Gx

)
≡A−1 (µ)

µ
(
B, B̃,Gs, Gx

)
≡Gx +Xwq.

The worker’s total consumption is:

Cw = Sw
(
B, B̃,Gs, Gx

)
+Xw

(
B, B̃,Gs, Gx

)
.

Because

Y = Cw + CS +Gs +
Gx

q (µ)
,

but Cs (B) is independent of the government’s expenditure, we obtain: dY = dCw +

dGs + d (Gx/q (µ))..

Thus, we have that the government’s expenditure multiplier for expenditure of type

i = x, s relates to the worker’s consumption as follow:

Ms
(
B, B̃

)
≡ dY
dGs

=
dCw

dGs
+ 1
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and

Mx
(
B, B̃

)
≡ dY

dGx
=
dCw

dGx
+

1

q
− Gx

q2

dq

dµ

dµ

dGx

=
dCw

dGx
+A (µ) .

where the last equation is because we are interested in obtaining the government’s

infinitesimal multiplier, evaluated at Gx = Gs = 0. So we have defined them as

Mi
(
B, B̃

)
≡ dY

dGi

∣∣∣∣
Gx=Gs=0

,

and relating to the indirect social utility function,the change in the objective is:

θ

Cw

dCw

dGi
,

for expenditure i.

Case 1. All spot consumptionB < B?. If there is only spot consumption:

Cs (B) ≡ (1− β)B

Cw
(
B, B̃,Gs, Gx

)
≡ 1− (1− β)B −Gx −Gs

Xw
(
B, B̃,Gs, Gx

)
≡ 0

q
(
B, B̃,Gs, Gx

)
≡A−1 (µ)

µ
(
B, B̃,Gs, Gx

)
≡Gx.

Since worker consumption is independent of q, we have that:

dCw

dGi
= −1

for both i ∈ {x, s}. In turn, we have that

Ms
(
B, B̃

)
=
dCw

dGs
+ 1 = 0.
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Likewise, for chained expenditures we have:

Mx
(
B, B̃

)
=

dCw

dGx
+A (µ)

(
1 + εAµ

)
= − (1−A (µ)) + εAµ < 0.

Case 2. Some chained consumption. If there are some chained expenditures:

Cs (B) ≡ (1− β)B

Ew (B,Gs, Gx) ≡ 1− (1− β)B −Gx −Gs

Cw
(
B, B̃,Gs, Gx

)
≡ Sw +Xw

Sw
(
B, B̃,Gs, Gx

)
≡ max

{
B̃ −B, 0

}
Xw

(
B, B̃,Gs, Gx

)
≡
Ew −max

{
B̃ −B, 0

}
q

q
(
B, B̃,Gs, Gx

)
≡A−1 (µ)

µ
(
B, B̃,Gs, Gx

)
≡Gx +Xwq.

Rewriting the last three identities usingA (µ) instead of q we have

Xw ≡A (µ)
(
Ew −max

{
B̃ −B, 0

})
µ ≡Gx + Ew −max

{
B̃ −B, 0

}
.

Substituting Ew we have, naturally,

µ = 1−
(

(1− β)B +Gs + max
{
B̃ −B, 0

})
︸ ︷︷ ︸

spot exp.

(36)

From here we obtain that:

dXw

dGx
= −A (µ) +A′ (µ)

dµ

dGx

(
Ew −max

{
B̃ −B, 0

})
.
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Since dµ
dGx

= dSw

dGx
= 0, we have that:

dCw

dGx
= −A (µ) .

Hence, the government multiplier for chained expenditures is:

Mx
(
B, B̃

)
= εAµ < 1.

Next, observe that:

Xw ≡ A (µ)
(

1− (1− β)B −Gx −Gs −max
{
B̃ −B, 0

})
.

Hence,

dXw = −A (µ) dGs +A′ (µ)

(
Xw

A (µ)

)
dµ

= −A (µ) dGs +A (µ) εAµ

(
Xw

A (µ)
/µ

)
dµ.

The second line follows from:

A (µ)µ ≡ Gx +Xw.

Also following this condition, we have that:

A (µ)
(
1 + εAµ

)
dµ ≡ dXw.

Combining the differentials evaluated at Gx = 0, we obtain:

dµ = −dGs.

Hence,
dCw

dGs
=
dXw

dGs
= −A (µ)

(
1 + εAµ

)
.
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Following the relationship with the fiscal multiplier, we obtain:

Ms
(
B, B̃

)
=1−A (µ)−A (µ) εAµ .

Summary. We summarize the results:

dCw

dGx
=


−1 B < B?

(
B̃
)

−A (µ) B > B?
(
B̃
)

and

dCw

dGs
=


−1 B < B?

(
B̃
)

−A (µ)
(
1 + εAµ

)
B > B?

(
B̃
)
.

Finally, recall that the government multipliers relate to the change in consumption

as follows:

Ms
(
B, B̃

)
≡ dY
dGs

=
dCw

dGs
+ 1

and

Ms
(
B, B̃

)
≡ dCw

dGx
+A (µ)

with:

dµ

dGx
=


1 B < B?

(
B̃
)

0 B > B?
(
B̃
)
.

Therefore, adding terms:

Mx
(
B, B̃

)
=


−
(
1−A (µ)

(
1 + εAµ

))
B < B?

(
B̃
)

0 B > B?
(
B̃
)



64

Hence,

Ms
(
B, B̃

)
=


0 B < B?

(
B̃
)

1−A (µ)
(
1 + εAµ

)
B > B?

(
B̃
)
.




