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Abstract

Borrowers obtain liquidity by issuing securities backed by current period payoff and resale price

of a long-lived collateral asset. They are privately informed about the payoff distribution. Asset

price can be self-fulfilling: higher asset price lowers adverse selection, allows borrowers to raise more

funding which makes the asset more valuable, leading to multiple equilibria. Optimal security de-

sign eliminates multiple equilibria, improves welfare, and can be implemented as a repo contract.

Persistence in adverse selection lowers debt funding, generates volatility in asset price, and exac-

erbates credit crunch. The theory demonstrates the role of asset-backed securities on stability of

market-based financial systems.
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1 Introduction

In this paper, we propose a theory of security design when the underlying asset is long-lived and traded,

and both the current period payoff and the resale price of the asset are used to back the optimally chosen

securities. There is asymmetric information about the asset quality: asset owners are better informed

about the current period payoff and this information advantage might be short-lived or persistent. There

are also gains from trade in the style of Lagos and Wright (2005): the asset-backed securities are used

as means of payment for asset owners to fund some outside consumption or investment opportunity.

In our model, due to its collateral role, the entire cum-dividend value of the asset creates gains from

trade. Consequently, the severity of the adverse selection problem depends on the cum-dividend value of

the asset, which activates a price feedback: a high asset price in the future lowers the adverse selection

today allowing for more asset-backed security sales today, which in turn justifies the high asset price.

In the model, security design and asset price are jointly determined in equilibrium. In this economic

setting, we find that when the set of available securities is restricted, there are multiple equilibria with

destabilizing self-fulfilling prices. Optimal security design eliminates multiplicity and leads to a unique

Pareto-optimal equilibrium where the resale price of the asset is high and the sale of securities backed

by the asset raises more funding.

The price feedback mechanism in our paper is empirically relevant because increasingly more markets

(exchange or over-the-counter) are created to trade variety of financial assets. Resale prices of these

financial assets become collateralizable and constitute an important component of the collateral value

for borrowing obligations. Financial institutions, consequently, are becoming more dependent on markets

to assess the collateral values when intermediating capital flows.1 For example, short-term asset-backed

borrowing facilities including repos or repo-like products are widely adopted as financing instruments

for financial institutions. Such securities transform marketable collaterals with varying levels of quality,

opacity and information friction to immediate funding, and thereby increase funding liquidity and fuel

economic growth. Currently, repo financing remains a crucial source of short-term funding for financial

institutions, estimated to have an outstanding notional amount of $12 trillion globally (CGFS, 2017).

At the same time, the rise of market-based financial system has sown the seeds of instability: some of

the short-term borrowing facilities such as asset-backed commercial papers (ABCPs) experienced runs
1According to the Financial Stability Board report on the global shadow banking sector (FSB, 2019), assets under the

market-based financial intermediation grew faster than the assets under traditional banks (characterized by the originate-

and-hold business models) from 2008 to 2018, and reached 48% of total financial assets at the end of 2018. By the end of

2018, the size of the market-based financial intermediation stood at $184 trillion compared to $148 trillion for banks.
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during the Great Recession. Our theory offers a framework to understand the potential fragility in the

market-based financial system with wide-spread securitization.

In our model, borrowers value liquidity more than investors, which leads to gains from trade. Bor-

rowers face two commonly observed frictions in raising liquidity. First, they cannot promise to pay back,

and thus cannot borrow from the investors unless the promise is made credible. To overcome this lack-

of-commitment problem and make the promise credible, borrowers sell securities backed by the value of

a long-lived collateral asset which includes the current period payoff and the endogenous resale price.

Second, there is asymmetric information about the quality of the collateral asset, which leads to adverse

selection that can be short-lived or persistent. This friction limits the collateral asset’s effectiveness in

raising liquidity. Under these two assumptions on the frictions, we find that a dynamic price feedback

emerges in our model since the level of adverse selection depends on the collateral price and the collateral

price and security design are mutually dependent. When the set of available financial instruments is

restricted, this dynamic feedback loop leads to multiple equilibria in liquidity provision.

To illustrate how this dynamic price feedback leads to multiplicity, we first consider a case where

borrowers are restricted to selling asset-backed equity.2 The quality of the collateral asset (captured

by the distribution of its payoff) is either high or low and varies period by period with persistence.

Borrowers are privately informed about the current period quality at the beginning of each period when

they issue equity. Hence, the equity market is subject to adverse selection. The collateral asset is traded

in a frictionless asset market at the end of each period. A high resale price of the asset allows borrowers

to exchange the asset-backed equity claims for more immediate liquidity and lowers the adverse selection,

thereby attracting borrowers with high-quality assets to participate in the equity market.

The dynamic price feedback leads to three possible equilibrium regions in this economy. There is

a ‘separating’ region where adverse selection is severe. In this region, only borrowers with low-quality

assets sell their asset-backed equity to obtain funding. Borrowers with high-quality assets choose to

not sell any since their equity claims are valued at a large discount due to severe adverse selection.

Consequently, the asset-backed equity price today is indeed low, and the asset’s resale price is depressed.

There is a ‘pooling’ region where adverse selection is low. In this region, both types raise funding by

selling equity claims to realize high gain from trade. Consequently the equity is priced at a high pooling

price, and the asset price is booming. There is also a ‘multiplicity’ region where adverse selection is

intermediate, and both separating and pooling equilibria coexist. That is, in this region prices are
2This restriction is a natural one since equity instruments are available to all economies including those without devel-

oped financial markets.
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self-fulfilling.

Next, we introduce security design. For expositional clarity we make the following modeling choices:

1) in each period, the designer chooses a menu of securities backed by the collateral asset’s current period

dividend and its resale price to maximize ex ante surplus; 2) securities are traded in dedicated over the

counter markets that are informationally segmented; and 3) in each security market investors engage

in Bertrand competition. In this environment, we demonstrate that when security design is optimally

chosen every period, the dynamic price feedback eliminates the aforementioned dynamic multiplicity and

restores the uniqueness in equilibrium.3 This finding highlights an additional benefit of security design

besides the well understood one in the literature – that is, in a static economy optimal security design

improves liquidity.4 Formally, we show that there is a unique equilibrium with security design where the

optimal design involves a short-term debt tranche that both borrower types sell in a pooling equilibrium,

and a residual equity tranche that only the low type borrower sells in a separating equilibrium. The

unique security design equilibrium Pareto-dominates the separating equilibrium and corresponds to the

pooling equilibrium in the multiple equilibria region of the equity-only baseline case.

A key economic force in the optimal security design is the dynamic feedback between the asset price

and the face value of the debt tranche. As the collateral price increases, the debt-tranche becomes more

valuable and the designer is able to raise the face value of the debt further. Conversely, as the face

value of debt increases, borrowers raise more liquidity by selling debt and hence realize larger gains from

trade, which leads to a higher collateral price. With security design, agents inter-temporally coordinate

their beliefs so that the debt tranche is always traded in a pooling equilibrium in each period, leading

to higher collateral asset price. Higher asset price, in turn, justifies the debt tranche to be traded in a

pooling equilibrium. This dynamic feedback loop removes multiplicity.

In the static setting, it is known since the work of Akerlof (1970) that multiple equilibria may

exist in adverse selection models if buyers take prices as given. Wilson (1980) has shown that when

buyers are strategic and compete à la Bertrand, there is a unique equilibrium in the static adverse

selection environment. However, Wilson’s logic does not extend to dynamic settings: it is possible that

the expectation of low prices in the future induces adverse selection in the present, leading to a self-
3In the online appendix, we show that the assumption that borrowers have the flexibility to adjust the security design

at the beginning of each period is important. In practice, security contract terms may not be updated frequently because

of administrative costs or simply inattention. When contract terms are rigid in the sense that the face value may not be

updated each period, a run equilibrium through a dynamic price feedback might emerge, and the liquidity of the security

market may deteriorate.
4For example, Leland and Pyle (1977); Myers and Majluf (1984); Nachman and Noe (1994); DeMarzo and Duffie (1995);

Biais and Mariotti (2005) and many others reviewed later.
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fulfilling low-price equilibrium that survives standard game-theoretic foundations. We show that a new

theoretical result, but in a similar spirit, holds in dynamic settings. Expanding the set of available

securities between buyers and sellers eliminates the dynamic multiple equilibria and restores uniqueness.

The model generates unique implications in the case of persistent private information. When private

information is persistent, asset price is state dependent which introduces an additional source of adverse

selection. As a result when private information is long-lived, the debt tranche is smaller and supports

less funding than when it is short-lived.

Moreover, we demonstrate that these insights on price feedback and security design are robust to

alternative modeling choices on the markets for securities and the collateral asset. First, we show that

our main result carries over to the case of unsegmented security markets where there is information

leakage across securities markets. Second, we introduce long-term securities backed by existing long-

term securities, and show that they can be replicated by the short-term securities (backed by the current

period dividend and the collateral asset’s resale price) that we study in the main model. Intuitively, the

equivalence between these two settings arises because the asset price captures all future gains from trade

and is akin to the value function in dynamic programming. Third, instead of Bertrand competition among

investors, we assume borrowers and investors interact through an intermediary that maximizes total

funding from each security. We show that our baseline multiplicity result holds under this alternative

microstructure. Fourth, we allow for non-competitive pricing of the collateral asset where buyers and

sellers bargain over the price of the asset at the end of each period. We show that non-competitive

pricing is equivalent to our main model except that borrowers obtain lower gains from trade.

In the last part of the paper, we focus on one implementation of the optimal security design: short-

term repo contracts. In the repo implementation, there is a representation borrower who values funding

liquidity more than the investors. The debt tranche in the optimal design has key characteristics of

repo and repo-like contracts: short-term, collateralized debt, typically backed by long-term collateral

assets.5 Asset repurchase arises naturally since this borrower has incentive to purchase back the asset in

every period to use it for backing securities in the following period. We provide simple and transparent

comparative static results that link repo terms with the model primitives for both types of information

frictions, hence deriving new testable implications regarding properties of the repo markets.
5The residual equity tranche can be thought of as a derivative contract traded on the over-the-counter market.
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2 Related Literature

In his seminal work on the lemons market, Akerlof (1970) studies the impact of adverse selection on

trade volume and efficiency. There is a long lineage of literature security design with asymmetric in-

formation and adverse selection, including Leland and Pyle (1977), Myers and Majluf (1984), Nachman

and Noe (1994), DeMarzo and Duffie (1995), DeMarzo and Duffie (1999), Biais and Mariotti (2005).6

We contribute to this literature by introducing dynamic feedback from asset prices to the security design

and illustrating that security design eliminates multiple equilibria.7

By studying optimal collateral-backed security design and funding liquidity, our paper is also related

to the literature on collateralized lending in monetary economics and macroeconomics starting with the

seminal work of Kiyotaki and Moore (1997). Recent works on macroeconomic implications of financial

frictions include Gorton and Ordonez (2014), Kuong (2017), Parlatore (2019), and Miao and Wang

(2018). Kurlat (2013) and Bigio (2015) study financial frictions that arise endogenously from adverse

selection in a dynamic production economy. Our paper demonstrates that security design in a dynamic

adverse selection environment eliminates multiple equilibria, pointing to a potentially socially beneficial

role of financial intermediaries.

Our paper is aligned with macro-finance literature where multiple equilibria are dynamic in nature

(Plantin (2009), Moore (2010; 2013), Chiu and Koeppl (2016), Donaldson and Piacentino (2017), As-

riyan, Fuchs, and Green (2019), and Bajaj (2018)). Most closely related to our paper in this literature

are Moore (2010; 2013), Chiu and Koeppl (2016), and Asriyan, Fuchs, and Green (2019). They feature

dynamic price and liquidity feedback effect under adverse selection. However, the occurrence of multi-

ple equilibria in these papers crucially depends on the persistence of asset quality. In Asriyan, Fuchs,

and Green (2019), for example, the gains from trade are in the style of Duffie, Garleanu, and Pedersen

(2007): some agents receive a higher utility from the asset dividend, or produce more output using the

asset as input, but they have asymmetric information about the quality of the asset. This structure

implies that the severity of the adverse selection problem depends only on what creates gain from trade:
6Relatedly, Guerrieri, Shimer, and Wright (2010) and Chang (2018) study asset markets with asymmetric information

and show that, when buyers post a menu of contracts, screening through probabilistic trading (or market tightness) results

in a separating equilibrium.
7Our result that both borrower types issue debt which is traded in a pooling equilibrium is reminiscent of Gorton and

Pennacchi (1990) and Boot and Thakor (1993). Dang, Gorton, and Holmstrom (2013), Farhi and Tirole (2015) and Yang

(2020) incorporate endogenous asymmetric information. The fact that information friction affects the moneyness of an

asset has also been studied by Lester, Postlewaite, and Wright (2012) and Li, Rocheteau, and Weill (2012). Security design

with heterogenous information is studied in Ellis, Piccione, and Zhang (2017).
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dividend. If the asset quality is i.i.d., adverse selection is short lived, future high- and low-quality assets

look identical and the future resale concern no longer affects today’s adverse selection. In our model, the

entire cum-dividend value of the asset creates gains from trade, which generates a new feedback. This

insight on dynamic multiplicity is unique and does not depend on persistent asset quality. Furthermore,

existing models study dynamic adverse selection in indivisible durable assets whereas our setup admits

divisible financial assets (claims to a stream of future dividend payments), providing a natural setting

to study security design. The dynamic multiplicity result in our paper is also similar to the multiplicity

result in Bajaj (2018). However, Bajaj (2018) does not focus on the price feedback mechanism and does

not study security design, whereas our main theoretical result on uniqueness and our application to repo

are about security design.8

Finally, the repo implementation of our model is related to theoretical works on repo contracts.

Among those, Geanakoplos and Zame (2002), Geanakoplos (2003), Fostel and Geanakoplos (2012), and

Simsek (2013) model collateralized borrowing in the general equilibrium context. Gottardi, Maurin, and

Monnet (2017) model repo contracts and repo chain using the competitive approach of Geanakoplos

(1997) with an added feature of the non-pecuniary penalty of default. Dang, Gorton, and Holmstrom

(2011) model the haircut as the outcome of repo chain, borrower’s quality, lender’s liquidity need, and

collateral value. Bigio and Shi (2020) study a two-period screening model with adverse selection. To

attract the high quality borrowers, lenders offer a repurchase option, a lower rate, but have to reduce

loan amounts so that default is not too high. Therefore, in their model, repos resolve adverse selection

inducing full participation, but introduce cream-skimming, that can produce worse outcomes than asset

sales when adverse selection is mild. Typically in screening models such as Bigio and Shi (2020), the

challenge is non-existence rather than multiple equilibria. We depart from the theoretical literature

on repo by modeling the joint determination of collateral asset prices and repo terms, highlighting the

unique price feedback mechanism and the role of repo in eliminating price multiplicity.

3 The Model Setup

The economy is set in discrete time and lasts forever. There is a unit of a long-lived asset which pays out

a random perishable payoff in every period. There are many infinitely-lived potential owners, with deep

pockets, identical preferences and access to the same information, who can potentially own the asset.
8There are also several modeling differences between the two papers. In Bajaj (2018) asset quality is persistent, and

the bilateral exchange is modeled as a signaling game.
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We refer to a representative owner as agent O. There are also several potential investors who live for a

single period and are replaced every period. We refer to them as agent Is.

Gains from Trade. Agent O values inputs provided by agent Is which leads to gains from trade in

this economy. We denote the value per-unit of the input to agent O by z, and assume that it exceeds

the per-unit cost of providing the input by agent Is which is normalized to one.

In a frictionless economy, given that z > 1, gains from trade would be potentially unlimited. The

key friction that limits gains from trade in our economy is lack of commitment: Agent O cannot promise

to pay back, and thus cannot borrow from the investors unless a credible promise is made. The asset

provides a way for agent O to partially overcome the commitment friction because it can be used as

collateral to back up payment promises.

Asset Properties and Information Environment. The asset yields a random payoff at the end of

period t which we denote as st ∈ [s, s̄], where 0 ≤ s < s̄. The payoff state, st, captures both cash payoff

that the asset generates, such as dividend or interest rate payment, and other private benefits that

accrue from the asset to agent O, such as a convenience yield and rental income. We assume that st is

distributed according to probability distribution FQt where Qt ∈ {L,H} denotes the quality of the asset.

Quality Qt follows a Markov process where Qt = L with probability λQt−1 ∈ (0, 1) where λL ≥ λH . The

unconditional probability of Qt = L in the steady state is denoted by λ, where λ ≡ λH/ (1− λL + λH).

When quality is i.i.d. across periods, we have λ = λL = λH .

We denote the density of FQ by fQ and its survival function, 1−FQ (s) , by F̃Q (s). We assume both

distributions have strictly positive density in their domain [s, s̄], and FH stochastically dominates FL

according to the likelihood ratio, i.e., fL (s) /fH (s) is decreasing in s ∈ [s, s̄].

We assume that the use of the collateral asset is, however, limited by an additional friction in the

economy: asymmetric information. The quality of the collateral asset is privately observed by agent O

at the beginning of each period thus introducing an adverse selection problem. The assumption that

agent O is better informed of the collateral asset’s quality can be motivated or micro-founded in various

ways. For example, borrowers hold collateral assets on their balance sheets which may give them an

informational advantage on the quality of these assets.9

9Ownership of the asset often enables owners to observe the cashflows of the asset, or obtain other cashflow-related

information (e.g., on governance). One real-world example of this comes from mortgage loans which are often used as

collaterals by loan originators who have better information on their quality. Another example is proprietary investment

portfolios of hedge funds which are offered as collaterals to obtain financing and increase leverage. There are also historical

incidences where some borrowers, especially when hit by unobservable random negative shocks, debased collateral assets,

e.g., by reducing the metallic content of coins below their face value. In recent times, collateral quality has been subject

8
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Formally, we assume that at the beginning of each period, the owner of the asset privately learns the

asset’s quality in that period. The asset’s quality and the state are both publicly revealed at the end

of each period. We assume that financial markets are segmented across time so that when the period

is over, newborn agent Is in the following period cannot access the past trading or payoff information.

Consequently, agent Is do not know the quality of the asset in previous periods. When quality is i.i.d.,

i.e., λL = λH , this assumption is innocuous because past quality does not provide any information about

the future. In an economy with many assets, segmentation across time could arise naturally when the

assets look identical to the investors in each period. This assumption allows us to abstract away from

the issue of signaling and reputation and focus instead on the dynamic coordination role of security

design.10

Asset Price. We denote the end-of-period ex-payoff price of the asset by φQt : {L,H} → R. Since

Qt is observed at the end of the period, the asset price depends on the period-t quality realization. In

the i.i.d. case we drop the Q subscript and refer to the price simply as φt.

Securities. Agent O raises inputs from investors through the sale of asset-backed securities, which

are payment promises. Formally, a security y : [s, s̄] × {φL, φH} → R+ is a payoff and price contingent

payment contract. Security payment is fulfilled at the end of a period when the state and the price

become public information. We assume that securities are monotone in the total payoff generated by

the asset, so:

y (s, φQ) ≥ y (s′, φQ′) if s+ φQ ≥ s′ + φQ′ (1)

for all s, s′ ∈ [s, s̄] and Q,Q′ ∈ {L,H}.

A security design is a finite set of securities, J =
{
y1, · · · , yJ

}
, backed by the asset, that is,∑

yj∈J

yj(s, φ) ≤ s+ φ (2)

for all s ∈ [s, s̄] and φ ∈ {φL, φH}.

Security Markets. The securities are sold in dedicated over-the-counter markets after agent O obtains

private information about the asset’s quality and before the quality becomes public information. In each

security market, several investors make bids à la Bertrand and the seller – the asset owner – decides how

much to sell at the highest bid.11 We denote the price of security j by qjt , and the quantity of security j

to questioning because of the possibility that borrowers might pledge it multiple times.
10See Chari, Shourideh, and Zetlin-Jones (2014) on the reputation effect under adverse selection.
11If several investors are tied for the highest bid, agent O equally splits the amount she would like to sell between them.
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exchanged when the underlying asset quality is Q by ajt,Q.
12 For expositional clarity, we further assume

that an investor has access only to one security market, so that trading information is segmented across

security markets.13

Determination of the Asset Price. The asset price at the end of period t, φt,Q for Q ∈ {L,H}, is

equal to its discounted value given time t quality and time t+ 1 security design Jt+1:

φt,Q = β

λQ
∫ s̄

s

 ∑
j∈Jt+1

ajt+1,L

(
zqjt+1 − y

j
t+1(s, φt+1,L)

)
+ (s+ φt+1,L)

 dFL(s)

 (3)

+ (1− λQ)

∫ s̄

s

 ∑
j∈Jt+1

ajt+1,H

(
zqjt+1 − y

j
t+1(s, φt+1,H)

)
+ (s+ φt+1,H)

 dFH(s)

 ,

where β is the discount factor, 0 < β < 1/z.

The above asset price is equal to the continuation value to the owner of retaining the asset at the

end of period t. We assume that the asset price is set in a frictionless competitive centralized market.

In our economy, frictions exist exclusively in the securities market so that we focus purely on the role of

security design under dynamic adverse selection.14

Security Design Problem. The goal of security design is to choose at the beginning of each period the

set of securities that are available for trading in that period to maximize ex-ante surplus. The security

design is flexible since the set of securities is updated at the beginning of each period. The design takes

prices and quantities of the securities as given. Hence, formally, in the beginning of each period t, the

security design Jt takes the prices, qjt , and quantities, ajt,Q, as given to maximize:

Vt =λ

∫ s̄

s

∑
j∈Jt

ajt,L

(
zqjt − y

j
t (s, φt,L)

)
+ (s+ φt,L)

 dFL(s)

 (4)

+ (1− λ)

∫ s̄

s

∑
j∈Jt

ajt,H

(
zqjt − y

j
t (s, φt,H)

)
+ (s+ φt,H)

 dFH(s)

 .
Security design takes place at the beginning of each period before the arrival of any private informa-

tion and is independent of trading history. We have in mind an environment where there are several

competing short-lived intermediaries who offer security design services to the asset owners. Competing

intermediaries end up maximizing the overall expected surplus in the economy.
12The price of the security does not depend on the underlying asset quality because investors are not able to distinguish

between low and high quality when they make offers for the security, but the quantity exchanged depends on the quality

because the owner is privately informed.
13In section B.1 we show that the segmentation assumption is not necessary for the main results in the paper.
14In section B.4, we allow for a non-competitive mechanism where the asset price is set via Nash bargaining.
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Figure 1: Timeline

Timing. In each period, the security design takes place first. Then, agent O receives private infor-

mation and trading in the security markets occurs. Once trading in the security markets is completed,

both Qt and st are revealed and asset price is determined. Finally, agent O pays the investors who hold

the securities, and consumption takes place.15 Figure 1 graphs this timeline.

We now define the equilibrium concept in our economy.

Definition 1. An equilibrium with security design consists of asset prices {φt,L, φt,H}, a security design

Jt =
{
y1
t , · · · , yJt

}
, security prices qjt and quantities

{
ajt,L, a

j
t,H

}
for all securities such that:

1. The price of security j, qjt , is determined through Bertrand competition in each security market,

and thus qjt is equal to the expected value of a unit of the security given ajt,Q:

qjt = λajt,LELy
j
t (s, φt,L) + (1− λ) ajt,HEHy

j
t (s, φt,H) . (5)

2. Quantities sold by each type must be optimal given the price, i.e., for each Q ∈ {L,H},

ajt,Q ∈ arg max
a∈[0,1]

a
(
zqjt − EQy

j
t (s, φt,Q)

)
. (6)

3. Asset prices {φt,L, φt,H} satisfy (3).

4. Security design Jt satisfies constraints (1) and (2) and maximizes (4) among all security designs

satisfying (1) and (2) where security prices and quantities are given by (5) and (6).
15The dynamic framework is borrowed from Lagos and Wright (2005).
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4 Equilibrium in Security Markets

The value of securities affects the optimal security design. We begin the analysis by describing the

equilibrium in the market for an arbitrary security y.16 We assume that the expected payoff of the

security when issued by the high type is weakly more than that issued by the low type, i.e., ELy(s, φL) ≤

EHy(s, φH).17 We define the degree of information insensitivity as the ratio of the expected value of the

security under the low versus the high distribution, i.e., ELy(s, φL)/EHy(s, φH). As this ratio increases,

the expected values of the security under the low versus high distribution become closer, and the adverse

selection problem becomes less severe.

Since our focus is not on multiple equilibria in the static setting, following Wilson (1980), we assume

that buyers are strategic and compete à la Bertrand which ensures that equilibrium in each security

market is generically unique. That is, in the market for security y, investors simultaneously make

price offers taking into account which types of borrower would sell the security at that price. Agent

O observes these offers, and decides how much of the security to allocate to each investor.18 Due to

Bertrand competition, investors make zero surplus in expectation, and the equilibrium price of the

security, q, is given by (5). The quantities sold by each type of agent O, aQ, is optimal for that type

and satisfies (6). The next proposition characterizes the equilibrium in the security market.

Proposition 1. If ELy(s, φL)/EHy(s, φH) > ζ ≡ 1− (z−1)/(λz), in the market for security y the price

of the security is q = λELy(s, φL)+(1−λ)EHy(s, φH) and aL = aH = 1. If ELy(s, φL)/EHy(s, φH) < ζ

the price of the security is q = ELy(s, φL) and aL = 1 and aH = 0.19

Proposition 1 shows that when ELy(s, φL)/EHy(s, φH) is above the threshold ζ, the adverse selection

problem is not too severe and both types sell the security. In this case, the security price is the pooling

price q = λELy(s, φL) + (1 − λ)EHy(s, φH). When ELy(s, φL)/EHy(s, φH) is below the threshold, the

adverse selection problem is severe and only the low type sells the security. In this case, the security price

is the separating price q = ELy(s, φL). A security traded in a pooling equilibrium commands a higher

price and generates more liquidity for the borrower than the one traded at a lower separating equilibrium

price. The above proposition also indicates that in addition to the parameters that characterize quality

heterogeneity, the gains from trade parameter, z, is also an important determinant of adverse selection:
16In this section we drop the time subscript t and the security index j from all the variables to ease the notation.
17This assumption is automatically satisfied for monotone securities.
18In this formulation agent O has all the bargaining power, but this is not crucial for any of our results. In section B.4,

we allow for a non-competitive mechanism where the asset price is set via Nash bargaining.
19When ELy/EHy = ζ, there are multiple equilibria. In particular, both pooling and separating (and even semi-

separating) equilibria are possible. To simplify exposition in this knife edge case, we select the pooling equilibrium.
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a lower z leads to a higher ζ. In particular, even if there is very little asymmetric information about the

quality of the security i.e., when ELy(s, φL)/EHy(s, φH) is slightly below 1, as z approaches 1 (so that

ζ is close 1), the security will be sold in a separating equilibrium. In other words, when gains from trade

is low, even a slight amount of asymmetric information results in a severe adverse selection problem.

5 The Baseline: Multiple Equilibria of the Dynamic Lemons

Market

In this section, we consider a baseline case where the borrower is restricted to issuing only the equity

claim, or a passthrough security, to the collateral asset in the security market. We demonstrate that this

economy is fragile and exhibits dynamic multiplicity in prices. Specifically, we show that there might

be multiple equilibria in the security market justified by different asset prices. The multiple asset prices

are themselves justified by the different equilibria in the security market.

For this baseline case, we use the notion of equilibrium in Definition 1 with the restriction that

the equity claim to the asset is the only available security. Choice of security design to maximize (4)

becomes trivial since there is only a single feasible security. By Proposition 1 the price of the equity

claim to the asset in the security market is given by qPt = λ (ELs+ φt,L) + (1 − λ) (EHs+ φt,H) if

(ELs + φt,L)/(EHs + φt,H) ≥ ζ and qSt = ELs + φt,L otherwise. Using (3), we obtain the price of the

collateral asset in the asset market as

φt,Q =

βzq
P
t+1, if ELs+φt+1,L

EHs+φt+1,H
≥ ζ,

β
[
zλQq

S
t+1 + (1− λQ) (EHs+ φt+1,H)

]
, if ELs+φt+1,L

EHs+φt+1,H
< ζ.

(7)

For the rest of the paper, we study stationary equilibria and hence drop the time subscripts. In particular,

in the baseline case, in a stationary equilibrium, the collateral asset is either always traded in a pooling

equilibrium, or it is always traded in a separating equilibrium.

5.1 Pooling Equilibrium

Plugging qP into (7) we observe that a pooling equilibrium, in which both types of agent O sell the

equity claim in the security market for the intermediate goods, exists if and only if

ELs+ φPL
EHs+ φPH

≥ ζ, (8)
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where the asset prices in the pooling equilibrium are given by

φPQ = βz
(
λ
(
ELs+ φPL

)
+ (1− λ)

(
EHs+ φPH

))
.

Solving for the pooling prices we obtain

φPL = φPH =
βz (λELs+ (1− λ)EHs)

1− βz
. (9)

By plugging (9) into (8) we see that a pooling equilibrium exists if and only if ELs/EHs ≥ κP , where

κP =
ζ − βz (1− (1− ζ)λ)

1− βz (1− (1− ζ)λ)
. (10)

5.2 Separating Equilibrium

A separating equilibrium, in which only the low type of agent O sells the equity claim in the security

market, exists if and only if
ELs+ φSL
EHs+ φSH

< ζ, (11)

where the asset prices in the separating equilibrium are given by,

φSL = β
(
zλLELs+ (1− λL)EHs+ zλLφ

S
L + (1− λL)φSH

)
,

φSH = β
(
zλHELs+ (1− λH)EHs+ zλHφ

S
L + (1− λH)φSH

)
.

Solving for the separating prices we obtain

φSL = β
z (λL − β (λL − λH))ELs+ (1− λL)EHs

1− β − β (zλL − λH) + β2z (λL − λH)
, (12)

φSH = β
zλHELs+ (1− λH − βz (λL − λH))EHs

1− β − β (zλL − λH) + β2z (λL − λH)
. (13)

By plugging (12) and (13) into (11) we see that a separating equilibrium exists if and only if ELs/EHs <

κS , where

κS =
ζ − β (1− (1− ζz)λL)

1− β (1− (1− ζz)λH)
.

5.3 Properties of Equilibria and Multiplicity

As the ratio ELs/EHs increases, the expected payoff with respect to the two distributions becomes

closer, and adverse selection is ameliorated. The following proposition shows that there is always a

range with an intermediate degree of information insensitivity such that multiple equilibria exist.
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Proposition 2. (i) If ELs/EHs ≥ κS , then there is a unique equilibrium in which the collateral asset

is sold in a pooling equilibrium in the security market and the pooling price is given by (9).

(ii) If κP > ELs/EHs, then there is a unique equilibrium in which the collateral asset is sold in a

separating equilibrium in the security market and the separating prices are given by (12) and (13).

(iii) If

κS >
ELs

EHs
≥ κP , (14)

then both the pooling equilibrium described in (i) and the separating equilibrium described in (ii) exist.

Next, we demonstrate the liquidity service of the asset by comparing the asset price in our economy

with the discounted present value of future payoffs from the asset in state Q, which we denote by φ0,Q:

φ0,Q = β (λQ (ELs+ φ0,L) + (1− λQ) (EHs+ φ0,H)) .

Solving for φ0,L and φ0,H we obtain

φ0,L = β
(λL − β (λL − λH))ELs+ (1− λL)EHs

(1− β) (1− β (λL − λH))
, (15)

φ0,H = β
λHELs+ (1− λH − β (λL − λH))EHs

(1− β) (1− β (λL − λH))
. (16)

We show in the next proposition that in both states L and H, the price of the asset in a separating

(pooling) equilibrium is strictly higher than the discounted value of future payoffs whenever a separating

(pooling) equilibrium exists. The results are immediate by comparing the expressions of prices.

Proposition 3. If ELs/EHs < κS then φSQ > φ0,Q, and if ELs/EHs > κP then φPQ > φ0,Q for

Q ∈ {L,H}.

In our model equilibrium prices exceed the present value of all future payoffs from the asset because

of the liquidity service provided by the asset. The asset backs the owner’s borrowing from the investors

which she values more than the payoffs that she gives up and this liquidity service is reflected in the

asset price.

Next, we discuss the intuition for the existence of multiple equilibria in the baseline setting which

arises due to a dynamic price feedback effect. When the asset price is high, the degree of information

insensitivity of the equity,
(
ELs+ φPL

)
/
(
EHs+ φPH

)
, is above the threshold ζ. Hence, the adverse

selection problem is mild and the high-type agent O is willing to pool with the low type and issue equity

in the security market. In turn, if agents anticipate the equity claims of the asset to be traded in a

pooling equilibrium in future periods, the liquidity service of the asset is large hence the asset price
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today is high. Conversely, when the asset price is low, the degree of information insensitivity of the

equity,
(
ELs+ φSL

)
/
(
EHs+ φSH

)
, is below the threshold ζ. Therefore, the adverse selection problem

is severe and the high type agent O retains the asset and chooses not to issue equity in the security

market. In turn, if agents anticipate the equity claim of the asset traded in a separating equilibrium in

future periods, the liquidity service of the asset is limited thus the asset price today is low. As a result,

the asset prices are self-fulfilling in this economy.

Comparative static analyses reveal how the size of the multiple equilibrium region varies with the

underlying parameters. For example, persistence in quality increases when λL − λH increases holding

λ∈ (0, 1) constant.20 We find that the separating equilibrium threshold (κS) is increasing and the pooling

equilibrium threshold (κP ) remains the same as persistence in quality increases. That is, the region of

multiplicity expands as persistence goes up. Interestingly, the multiplicity region does not disappear

when the asset quality is i.i.d. which we state in the following corollary.

Corollary 1. When quality is i.i.d. across periods, i.e., λ = λL = λH , multiple equilibria in Proposition

2 exist whenever
ζ − β (1− (1− ζz)λ)

1− β (1− (1− ζz)λ)
>
ELs

EHs
≥ ζ − βz (1− (1− ζ)λ)

1− βz (1− (1− ζ)λ)
. (17)

The asset price in the separating equilibrium is lower than that in the pooling equilibria, φS < φP , where

φS =
β (zλELs+ (1− λ)EHs)

1− β
, (18)

φP =
βz (λELs+ (1− λ)EHs)

1− βz
. (19)

The existence of multiple equilibria when the asset quality is i.i.d. indicates that the sources of

multiple equilibria in our setting are distinct from those in the existing literature. In the static setting,

multiple equilibria exist under perfect competition as in Akerlof (1970). If prices are low, only low-quality

assets are sold, which justifies low prices; if prices are high, higher-quality assets are also sold which in

turn justifies higher prices. For some parameter values both equilibria exist. Wilson (1980) has shown

that when buyers are strategic and compete à la Bertrand, there is a unique equilibrium in the static

adverse selection environment. The reason is that uninformed buyers do not take prices as given, they

recognize the link between price and quality, and only the highest zero-profit price survives as a Nash

equilibrium. However, this logic does not extend to dynamic settings. The expectation of low prices in
20When either high- or low-quality is the absorbing state but not both, that is, when λL = 1 and λH 6= 0 or when

λL 6= 1 and λH = 0, asymmetric information disappears and there is a unique stationary equilibrium. When both high-

and low-qualities are absorbing states, that is, λL = 1 and λH = 0, multiple equilibria arise again.
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the future could induce adverse selection in the present thus lead to a self-fulfilling low-price equilibria

that survives standard game-theoretic foundations.

In the next section, we show that increasing the flexibility of security design by removing the restric-

tion on the set of available securities, restores the unique equilibrium in the economy.

6 The Main Model: Optimal Security Design

In this section, we solve the equilibrium described in Definition 1 with security design, and show that

the equilibrium is unique. Hence, optimal security design eliminates multiple equilibria that arise when

agents are restricted to trading only the equity claim of the underlying asset.21

6.1 Unique Equilibrium with Optimal Security Design

The next proposition characterizes the optimal security design, and shows that it involves at most two

securities: One security, yD(s, φQ), which is traded in a pooling equilibrium, is a debt contract; the other

security, yE (s, φQ), which is traded in a separating equilibrium, is the residual equity tranche. That is,

both high and low quality borrowers sell one unit of the debt contract, only low quality borrowers sell

one unit of the equity contract and high quality borrowers retain the equity contract.

Proposition 4. Suppose that either fL or fH is log-concave. The optimal security traded in a pooling

equilibrium is a debt contract given by:

yD(s, φQ) = min(s+ φQ, D), (20)

for some D ∈ (s+φL, s̄+φH ]. The residual tranche is an equity contract traded in a separating equilibrium

and is given by yE (s, φQ) = max (0, s+ φQ −D) . Moreover, D is unique for given φL and φH .

The amount D is the face value of the debt contract, and it is pinned down by the high quality

asset owner’s participation constraint. It always exceeds s + φL since this amount is free from adverse

selection. As the persistence in asset quality vanishes and λL and λH get closer, and the resale prices

φL and φH approach each other. In the limit, φL = φH = φ, and the face value of debt always exceeds

s+ φ, incorporating all of the resale price.
21In an Online Appendix, we show that multiple equilibria might re-emerge when the security design is rigid, that is,

when the contract terms are not always updated at the beginning of each period.
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Using Proposition 4 and letting d ≡ D − φL and ∆φ ≡ φH − φL, we simplify the statement of

equilibrium given in Definition 1.22 With this notation, we write the prices of the debt and equity

tranches, qD and qE , as:

qD = λ

(
φL + ELs−

∫ s̄

d

F̃L(s)ds

)
+ (1− λ)

(
φH + EHs−

∫ s̄

d−∆φ

F̃H(s)ds

)
, (21)

qE =

∫ s̄

d

F̃L(s)ds. (22)

Both types of borrowers sell the debt tranche but only the low type sells the equity tranche. As a

result, the expected amount of inputs raised by selling the securities depends on the state Q and equals

qD + λQqE . From (3), we write the asset price as:

φQ = β

[
zqD + zλQqE + (1− λQ)

(∫ s̄

d−∆φ

F̃H(s)ds

)]
, Q ∈ {L,H} . (23)

Solving for equilibrium then comprises solving the designer’s optimization problem in (4) to find the

optimal threshold d ∈ [s, s̄+ ∆φ] given the prices of debt and equity tranches qD and qE , and the asset

prices φL and φH .

For our main result we strengthen the standard hazard rate dominance condition, and assume that

FH and FL satisfy, (
fH (s) /F̃H(s)

)
/
(
fL (s) /F̃L(s)

)
≤ [1− β(λL − λH)]

2
. (24)

In the i.i.d. case, where λL = λH , (24) is the standard hazard rate dominance condition, which auto-

matically follows from the likelihood ratio dominance assumption.23

Now, we state the main theorem of the paper.

Theorem 1. Suppose that either fL or fH is log-concave, and (24) holds, then there is a unique equi-

librium with security design. If

ELs/EHs < κP , (25)
22When the asset quality is low, d is the threshold up to which the current period’s payoff is incorporated into the

debt tranche. When the asset quality is high and d−∆φ < 0, the debt tranche incorporates a fraction of the asset price

φH , namely D < φH , and none of the current payoff. When the asset quality is high and d −∆φ > 0, the debt tranche

incorporates the asset price φH and the current payoff up to the threshold d−∆φ.
23This is because when FH stochastically dominates FL according to the likelihood ratio, i.e., fL (s) /fH (s) is decreasing

in s, then FH stochastically dominates FL according to hazard rate, that is,(
fH (s) /F̃H(s)

)
/
(
fL (s) /F̃L(s)

)
≤ 1.
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then d ∈ (s, s̄ + ∆φ), otherwise, that is, if ELs/EHs ≥ κP , then d = s̄ + ∆φ. In the former case,

the equilibrium with security design strictly Pareto-dominates the (unique) separating equilibrium in the

baseline case. In the latter case, security design uniquely selects the pooling equilibrium. It thus strictly

Pareto-dominates the separating equilibrium in the baseline case when there is one and it replicates the

pooling equilibrium otherwise.

The region given by (25) is the region identified in Proposition 2 where a unique separating equilibrium

exists when only equity is allowed to be traded. Hence, security design improves liquidity when there is a

unique separating equilibrium in the baseline case. The formal proof of the theorem is in the Appendix.

We note that for the self-fulfilling multiple equilibria result in Proposition 2 and the uniqueness under

optimal security design result in Theorem 1 to hold, we only need the following two assumptions: lack

of commitment from borrowers and asymmetric information about the quality of the (only pledgeable)

collateral asset. We demonstrate later in the paper that the main results are robust to the alternative

securities and asset market microstructures. The modeling choices we have made in the main model, such

as segmented securities market, competitive asset markets, Bertrand competition in securities market,

as well as maturity structures, are mainly for expositional clarity.

Figure 2 illustrates the feedback loop between the asset price, which depends on the future value of

the collateral, and the current face value of the debt contract, which is the underlying mechanism in

Theorem 1. As the face value of the debt tranche, D = φ+ d, increases, agent O obtains more liquidity,

and gains from trade increase because the marginal value of liquidity for agent O exceeds the marginal

cost of providing liquidity by the investors. The feedback loop involves inter-temporal coordination

since the increase in gains from trade in future periods leads to an increase in φ. Higher asset prices

are incorporated into the face value of debt, alleviating the adverse selection problem and pushing the

face value even higher. We provide an intuitive discussion of the result in Theorem 1 and the economic

mechanism behind it in the next two subsections.

6.2 IID Asset Quality

In this subsection, for expositional clarity, we focus on the case where the asset quality is i.i.d. across

periods to demonstrate the feedback between price and face value of the debt contract and the role of

dynamic coordination. This allows us to provide an intuitive derivation of the result in Theorem 1 and

to highlight the underlying mechanism of dynamic coordination.

When asset quality is i.i.d. across periods, both high- and low-quality assets are sold at the same

price at the end of the period which we denote by φ, and the following corollary of Theorem 1 holds as
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↑ Liquidity

& Output

↑ φ

↓ Adverse

selection

↑ d

Figure 2: Asset Price φ and Debt Face Value φ+ d

long as FH dominates FL in likelihood ratio, i.e., fL (s) /fH (s) is decreasing. We state the formal result

in the following corollary.24

Proposition 5. In the case of i.i.d asset quality, if ELs/EHs < κP , then there is a unique equilibrium

where the debt threshold d ∈ (s, s̄) and the asset price φ are solutions to the participation constraint and

the Euler equation that are given by

φ =
z

z − 1
λ

∫ d

s

[
F̃H(s)− F̃L(s)

]
ds−

∫ d

s

F̃H(s)ds− s, (26)

φ =
β

1− βz

{
z [λELs+ (1− λ)EHs]− (1− λ)(z − 1)

∫ s̄

d

F̃H(s)ds

}
. (27)

If ELs/EHs ≥ κP , then there is a unique equilibrium where d = s̄ and φ = βz
1−βz [λELs+ (1− λ)EHs].

This proposition links optimal security design equilibrium to the equilibria of the baseline case in

Section 5 as stated in Corollary 1. There are two scenarios. First, with security design there is uniquely

determined and welfare-improving tranching in the separating equilibrium region of the baseline case,

i.e., when ELs/EHs < κP . Second, the pooling equilibrium is selected as the unique equilibrium in the

multiple equilibria region of the baseline case, i.e., when ELs/EHs ≥ κP .

We now graphically construct the optimal security design equilibrium. For any d, let φ (d) be the

asset price in the asset market satisfying (27). Similarly, for any φ, let d(φ) be the debt threshold

satisfying 26. We graph the former with a solid line and latter with a dash-dotted line in Figures 3 and

4. An intersection of these two lines is a solution to (26) and (27) and constitutes an equilibrium.

Observe from the Euler equation (27) that if agents coordinate on a higher debt threshold tomorrow,

the asset price today will be higher, since φ is increasing in d.25 The function φ (d) has a few noteworthy
24In the i.i.d case we drop (24) since it becomes the standard hazard rate dominance condition. We also do not need

log-concavity of either distribution.
25Note that φ is strictly increasing for d ∈ [s, s̄), ∂φ/∂d is decreasing and is zero at d = s̄.
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aspects. Let φ = φ (s) and φP = φ (s̄). From Corollary 1 in Section 5 we observe that φS is the asset

price when only the low type sells the asset and the high type retains both the resale price and the

current period payoff. In contrast, the asset price calculation in (27) takes into account that both types

of borrowers sell the debt claim backed by the future resale price as part of the collateral. As a result,

φ > φS . On the other hand, φ (s̄) is the same as the pooling price φP . To see this, we observe that

the φP calculation takes into account that both types use the resale price and the entire current period

payoff of the asset as collateral, which is equivalent to setting the face value of the debt contract to

D = φP + s̄.

Next, consider the designer’s choice of debt threshold, d(φ), which is depicted by the dash-dotted

line in Figure 3 for the case where ELs/EHs < κP .26 Optimal security design chooses d to be as large

as possible making sure that the debt tranche is traded in a pooling equilibrium. We discussed in the

previous paragraph that as d increases, φ increases, which is depicted by the solid line in Figure 3. This

relaxes the high type’s participation constraint. However, as the debt tranche incorporates more of the

high payoff states, eventually the high type’s participation constraint begins to tighten because, by the

likelihood ratio dominance, the likelihood of the high payoff states according to the high type relative

to the low type keeps increasing, and the adverse selection problem worsens. If d is too high, the high

type, who values those states much more than the low type, might prefer to retain the debt tranche

rather than pool with the low type. Optimal security design pushes d to the unique point where the

high type is indifferent between selling or retaining the debt. Crucially, optimal security design solves

the coordination problem that we observed in the baseline case where lenders face strategic uncertainty

about the high type’s participation in the security market. Optimal security design eliminates this

uncertainty by ensuring that both types participate in trading the debt tranche.

Figure 3 illustrates that regardless of how low the asset price is, as long as tranching is feasible,

optimal security design involves a debt tranche that incorporates some of the current period payoff.

That is, d
(
φ
)
> s. In the region depicted in Figure 3, adverse selection is severe, and even when the

asset price is as high as possible, the high type prefers to retain the equity tranche. That is, d
(
φP
)
< s̄.

Using these two curves, φ (d) and d (φ), we can find the equilibrium values (d∗, φ∗). The equilibrium

is where the two curves intersect, i.e., when φ∗ = φ (d∗) and d∗ = d (φ∗). As Figure 3 shows, when

ELs/EHs < κP , the unique equilibrium debt threshold is d∗ ∈ (s, s̄) . This explains the optimal security

design equilibrium and its difference relative to the baseline case in the first scenario.
26This is the left boundary of multiple equilibria region in 14. In this region, without security design, adverse selection

leads to a unique separating equilibrium.
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Figure 3: φ(d) and d(φ) when ELs/EHs < κP

Second, we consider the scenario when ELs/EHs > κP in Figure 4. In this case, adverse selection

is less severe and the d(φ) function is shifted to the right as the same asset price can sustain a higher

face value where the debt tranche is traded in a pooling equilibrium. When the asset price is above a

threshold denoted by φ̂, optimal security design incorporates all payoff states s̄ to the face value of debt,

which is captured by the vertical part of the d(φ) function. This vertical portion of (d(φ)) is a special

feature of debt contract: the debt threshold cannot exceed the maximum payoff which the collateral

asset can yield. The two curves intersect only at the upper right corner,
(
s̄, φ
)
. As a result, there is

a unique equilibrium for the security design problem and it involves setting the debt threshold d∗ = s̄.

That is, the optimal security is a pass-through security, which means that the optimal security’s payoff

is mapped one-to-one from the asset’s cashflow at the realization date, equivalent to an equity contract.

The scenario depicted in Figure 4 may seem surprising since, as we illustrated in Section 5, without

the possibility of security design there is a coordination problem leading to multiple equilibria in part

of this region. Security design solves this coordination problem, and we obtain a unique equilibrium in

which agent O sells the entire “pass-through” debt tranche in a pooling equilibrium. Intuitively, without

security design the high type decides among only two options: whether to use the resale price and the

current period payoff of the asset as collateral versus retaining both parts. The outcome depends on the

asset price. In the good equilibrium φ = φP and the high type sells the asset. In the bad equilibrium,

φ = φS and the high type retains the asset. The bad equilibrium cannot survive with security design

because even if the asset price was φS , the optimal security design would be able to improve this

separating equilibrium by creating a debt tranche with the face value φS , which in turn would increase
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d

φ

φ∗ = φP

φ

d∗ = sHsL

φ̂

d(φ)

Figure 4: φ(d) and d(φ) when ELs/EHs > κP

the asset price above φS . Both graphs in Figures 3 and 4 in fact show that the equilibrium asset price

in the optimal security design equilibrium is no less than φ = φ (s) > φS (since the face value of the

debt tranche is never below φ + s). Given the increase in the asset price to φ from φS , the high type’s

participation constraint is relaxed, which leads to the optimal security design to incorporate more of the

current period payoff into the debt tranche (that is, d > s). A higher d will increase the asset price φ

and so on, triggering the dynamic price feedback loop. This unravelling process is illustrated in Figure 4

with the dashed arrows. As the graph in Figure 4 shows when the asset price is φ, the face value of the

debt rises to φ + d
(
φ
)
. When the face value of the debt increases to φ + d

(
φ
)
, the asset price further

increases, and so on. The process ends when the price rises to φP .

6.3 Persistent Asset Quality

In this section, we discuss how introducing persistence in asset quality affects the feedback loop and

adverse selection problem in our model. When the asset quality is persistent, the adverse selection

problem is more severe because there is an additional source of information asymmetry. In addition to

the current period payoff, lenders and borrowers are also asymmetrically informed about the future asset

price. The next proposition shows that an increasing persistence in asset quality leads to a lower debt

threshold.

Proposition 6. Fix λ > 0. When asset quality becomes more persistent, i.e., as λL − λH increases,

debt threshold d decreases.27

27If d ∈ (s, s̄) then as λL − λH increases, d decreases strictly.
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The gap between high- and low-quality asset prices, ∆φ, reflects the degree of adverse selection

introduced by persistence in asset quality. Since prices are forward looking this second source of adverse

selection is dynamic. To see how this additional dynamic effect works, suppose high- and low-quality

assets sell at different prices, i.e., ∆φ = φH − φL > 0, and the designer initially sets the debt face value

at D = s + φL, which is completely safe regardless of asset quality. At D = s + φL, the high type

strictly prefers to sell the debt tranche and the participation constraint does not bind. Increasing the

debt threshold initially increases both φL and φH due to the feedback loop in this economy. In the i.i.d.

case, when d is large enough, the debt tranche incorporates more of the high payoff states, tightening the

high type’s participation constraint. When the asset quality is persistent, the additional dynamic effect

may relax the high type’s participation constraint as the debt threshold goes up. The reason is that,

when d is higher, the debt tranche incorporates more of the high payoff states that are relatively more

likely under the high distribution and therefore benefits the low-quality asset owner relatively more. As

a result, the low quality asset price φL increases faster than the high-quality asset price φH , narrowing

the price gap ∆φ and lowering the adverse selection in asset prices. This effect may potentially relax

the participation constraint, and necessitates the condition (24) to guarantee a unique security design

equilibrium.28 The following proposition shows that as persistence increases, the price difference ∆φ - a

proxy for price volatility in our model - increases and the dynamic effect gets stronger.

Proposition 7. Fix λ > 0. When asset quality becomes more persistent, i.e., as λL−λH increases, ∆φ

increases.

Finally we observe that when persistence increases, consistent with the above proposition, condition

(24) becomes more stringent.29

7 Robustness: Alternative Modeling Choices

We now demonstrate the robustness of our results derived from the main model by allowing for alternative

modeling choices. For expositional clarity, we only provide summary and intuitions in this section. The

formal results are presented in Appendix B.

Unsegmented Security Markets. We first change the segmentation assumption on security markets

by assuming security markets are unsegmented, that is, we allow lenders to make inferences about the
28The required condition, (24), is stronger than the hazard rate dominance condition, and is not implied by likelihood

dominance.
29Similarly, when agents become more patient, i.e., as β increases, price gap increases and condition (24) becomes more

stringent as well.
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type of the borrower from their trades across markets. We show in Appendix B.1. that our main result

– there is a unique equilibrium with security design – is robust to this modification.

With unsegmented markets, the security designer chooses at most two securities. When the high and

the low type borrowers trade different securities, the design is separating. When both types trade the

same security, the design is pooling. In the separating case, the designer chooses a debt tranche and

the pass-through equity. The high type trades only the debt tranche (and retains the residual equity)

and the low type trades the pass-through equity. Because security markets are unsegmented, in the

separating case, the lenders learn the borrower’s type. We show that in this case the only constraint

that binds is the low type’s incentive compatibility (IC) constraint which makes sure that the low type

does not mimic the high type by selling debt instead of pass-through equity. In the separating case,

this constraint pins down the debt threshold. In the pooling case, the designer chooses a single debt

tranche. Both types trade the debt and retain the residual equity. We show that in this case the only

constraint that binds is the high type borrower’s participation constraint which makes sure that the

high type has the incentive to sell debt instead of retain it.30 In the pooling case, this constraint pins

down the debt threshold. We show that overall there is still a unique equilibrium in which either the

design is separating and the equilibrium asset price is low, or the design is pooling and the asset price is

high. An immediate corollary of the analysis is that the designer obtains a higher payoff with segmented

compared with unsegmented markets since the low type’s IC constraint is not needed in the former case.

long-term Securities. In our main model, the borrower sells a short-term security backed by the

current period dividend and the resale price of the long-lived asset. We show in this part that the

restriction of security design to short-term securities is not as restrictive as it might seem. To do so, we

introduce long-term securities that specify payments from the borrower to the investor in every period

and state. We assume that an investor who buys a long-term security becomes a borrower in the next

period and raises inputs by designing and selling another long-term security backed by the existing

long-term security that she owns.

We compare the setting with long-term securities with the one we consider in our main model. In

Appendix B.2, we first show that these two environments are equivalent – in the sense that the amount of

inputs raised in the securities market and borrower’s continuation value are the same – under symmetric

information. This result is intuitively similar to the principle of optimality in dynamic programming: the

asset price captures all future gains from trade and is akin to the value function which captures the value

of the dynamic program under future optimal behavior. We then illustrate how the equivalence result
30This constraint is the same as the high type’s participation constraint in our main model.
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also extends to the asymmetric information where quality is i.i.d. when the borrower issues securities

that are long-term debt-like and the residual equity tranche.

Securities Market Microstructure. In the main model we stay close to the standard lemons market à

la Akerlof which is the simplest model of a lemons market and provide closed-form solutions. To show

that our results are robust to a different security market microstructure, we solve a model where the

borrower and the investors trade securities through an intermediary in Appendix B.3. We assume that the

intermediary’s goal is to maximize the expected inputs while making sure that the lenders break even. An

alternative interpretation of this setting is that borrowers signal their types through the quantities that

they trade (or equivalently probability of trade) and we select the most efficient equilibrium. The latter

interpretation is closely related to the undefeated equilibrium concept of Mailath, Okuno-Fujiwara, and

Postlewaite (1993) invoked in Bajaj (2018). We show that securities are still traded either in a pooling

or a separating equilibrium. However, unlike in the main model, the high type is able to sell a fraction

of the security in the separating case. Despite this difference, there is still a discontinuous drop in the

amount of inputs the borrower can raise when equilibrium switches from pooling to separating. We

show that, as in our main model, when the borrower is restricted to issuing only the equity claim to the

collateral asset, the economy exhibits dynamic multiplicity in prices and inputs.

Nash Bargaining for Asset Resale Price. In the main model, we assume that at the end of each period

there is a competitive market where the borrower buys back the asset from the investor. Suppose instead,

that the two parties bargain over the resale price of the asset via Nash bargaining where θ ∈ (0, 1] is the

bargaining power of the borrower. We show in Appendix B.4 that this alternative model is equivalent to

the main model where the gains from trade parameter z in the asset price is replaced with ẑ = 1−θ+θz.

This result is intuitive since only proportion θ of gains from trade is captured by the borrower and hence,

reflected in the asset price.

8 Implementation as Repo Contract

Optimal securities derived in the paper describe contract terms on cashflows between borrowers and

lenders upon realization of the state. In practice, the optimal security can be implemented in several

ways. In this section, we demonstrate one prominent implementation which is a one-period repo contract

traded in a pooling equilibrium, and a residual equity-like contract traded in a separating equilibrium.

Furthermore, asymmetric information is an important friction for the bilateral repo market, especially

in Europe. For example, Julliard et al. (2022) have shown that only 60% of bilateral repo contracts in
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UK are backed by high quality collaterals. In this implementation, there is a representative borrower

who values investors’ inputs (at z > 1) more than investors, and hence has incentive to purchase back

the asset in every period to be able to use it for backing securities in the next period. In this section, we

first map terms of repo contracts in the context of our model. These contract terms are endogenously

determined given the underlying information and preference parameters. Next we provide analytical

solutions using a two-point distribution in order to link the primitives of the model to the repo contract

terms.

8.1 Terms of the Repo Contract

When two parties enter a repo contract, one party sells an asset to another party at one price (which in

our model corresponds to the loan value or the price of the debt tranche qD) and commits to repurchase

the same or another part of the same asset from the second party at a different price at a future date

(which in our model corresponds to the face value of the debt tranche D). If the seller defaults during

the life of the repo, the buyer (as the new owner) can sell the asset to a third party to offset the loss.31

The most straightforward mapping of the optimal contract in the model to reality is as follows. During

the term of the repo the lender receives s, the cash flow or the convenience yield/service flow from the

asset (in this sense, lender is the legal owner) in an escrow account.32 When the repo term is finished,

there are two possibilities: (i) if the face value D is more than s+φ, the borrower obtains the asset back

from escrow by paying its price φ; (ii) if the face value D is less than s+ φ, then the borrower pays the

lender remaining D − s, so that the lender obtains the promised face value D and the borrower takes

the asset back from escrow.33

Our model complements the existing repo literature by offering an alternative explanation for why

in a repo contract, an asset is sold and agreed to be repurchased.34 This feature naturally arises in our
31We take the definition of a fixed term repo contract from the International Capital Market Association (ICMA).
32Escrow guarantees that the lender returns the asset. This is consistent with our model which focuses on limited

commitment on the borrower side.
33According to this implementation, the pass through security follows the most commonly conceived form of repo: the

borrower sells the security to obtain inputs, the lender owns it via a custodian and consumes the benefit of being an owner

which is s, the cash flow/service flow of the asset, and the borrower repurchases the security back at the end of the repo

term (at price φ).
34The feature of asset repurchase is modeled differently in the repo literature. In Gottardi, Maurin, and Monnet (2017),

asset repurchase arises from the need of lender and borrower to share risk since the collateral asset price is volatile. In

Duffie (1996) and Parlatore (2019), the reason for asset repurchases comes from the illiquidity in the secondary market –

if the secondary market is illiquid, it will be difficult for the borrowers to find the collateral asset to buy and hence they

would like to repurchase the collateral asset back directly from the lender. In Bigio and Shi (2020), the asset repurchase
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model since borrowers always buy the collateral back at the end of borrowing -- hence repurchase leg

endogenously arises in equilibrium.

We now describe the two terms of the repo contract: repo rate, r, and haircut, h. The definition of

repo rate is straightforward:

r ≡ face value
loan value

− 1 =
D − qD
qD

. (28)

From the definition of repo rate r, we observe that the relationship between asset quality and interest

rate is not straightforward because asset quality has two opposing effects on the repo rate. When asset

quality worsens (improves), loan value is lower (higher), leading to a high (low) repo rate. At the same

time, the face value of the debt might be adjusted down (up), resulting in a lower (higher) repo rate.

To define the haircut, we first need to define the collateral value from the lender’s perspective. In the

context of our model, the lender expects to generate on average Eφ/β from the sale of the collateral in

case of default, where Eφ ≡ λφL + (1− λ)φH . Below, we refer to this amount as the collateral value.35

The definition of repo haircut in our model is

h ≡ 1− loan value
collateral value

= 1− qD
Eφ/β

. (29)

From (23) we write the collateral value as:

Eφ/β = zqD + λzqE + (1− λ)eH , (30)

where eH =
∫ s̄
d−∆φ

F̃H(s)ds is agent O’s expected value of a high-quality equity tranche. Substituting

(30) into (29), we obtain the following expression for haircut:

h = (z − 1)
qD + λqE
Eφ/β︸ ︷︷ ︸

gain from trade/collateral value

+
λqE + (1− λ)eH

Eφ/β︸ ︷︷ ︸
equity/collateral value

. (31)

We observe from (31) that the repo haircut has two components. The first component arises because

the borrowers, who price the collateral asset, value the liquidity service of the asset to realize gain from

trade, while lenders, who price the loan, do not value it. The term z − 1 is the net marginal value of

the liquidity service; it reflects heterogenous valuation over the collateral asset between the lenders and

the borrowers in our model.36 The second component is the value of the equity tranche relative to the

collateral value and arises mechanically because equity tranche by definition is excluded from the repo

debt.
option is introduced to meet the high quality borrowers’ incentive compatibility constraint.

35Eφ is the end-of-period expected value of the collateral asset. Because the repo contract is an intra-period short-term

contract, the collateral value in the definition of haircut refers to the beginning-of-period value, which equals Eφ/β.
36In the case of debt tranche as a passthrough security, the equity tranche disappears, and the haircut is (z−1)/z, solely

driven by the marginal value of liquidity service.
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8.2 Repo Contract with a Two-point Distribution

In this section, we illustrate the properties of optimal repo contract in closed form when quality follows

a two-point payoff distribution. We first consider the i.i.d. case and return briefly to the persistent case

at the end of the section. The purpose of this exercise is to provide simpler expressions for haircut and

repo rate with respect to the primitives of the model. Using these expressions we are able to find clean

comparative statics of repo contract terms that generate empirically testable hypothesis, especially in

the i.i.d. case which captures the characteristics of the vast treasury repo market in the US.

Suppose, the high (low) quality asset pays one unit of payoff with probability πH (πL) and pays zero

otherwise where 0 ≤ πL < πH ≤ 1 and λ = λL = λH . The debt contract takes a simple form. Regardless

of the realization of the payoff, it pays the resale price φ. In addition, it pays d units if the current payoff

is one.37

Let the expected value of the payoff (based on public information) be given by Es ≡ (1−λ)πH+λπL.

Expressions for repo rate and haircut given in (28) and (31) become much simpler. Repo rate is

r =
1− Es
ν

, (32)

and haircut is

h = 1− β

1− Es
ν

, (33)

where ν ≡ λ(πH − πL)/ (z − 1) captures the degree of adverse selection. Severity of adverse selection

increases in the probability that the asset is low quality (λ) and the difference in the probability of

obtaining a positive payoff under high versus low quality (πH − πL) and decreases in gains from trade

(z−1). We observe from equation (33) that haircut is increasing in adverse selection ν holding Es fixed,

and the sensitivity of haircut to adverse selection is increasing in β. The latter observation is another

manifestation of the dynamic feedback between collateral price and contract terms: when agents become

more forward looking, the role of resale price in backing the loan becomes more important. Hence,

higher adverse selection lowers price and leads to a higher haircut. Comparative statics on haircut with

respect to information friction that ignore the dynamic feedback and take resale price as exogenously
37The expressions for the terms of this repo contract are as follows:

d = D − φ =

β
1−βz [zλπL + (1− λ)πH ]

z
z−1

λ (πH − πL)− 1−β[1+λ(z−1)]
1−βz πH

< 1,

φ =
β

1− βz
[zλπL + (1− λ)πH + (1− λ)(z − 1)πHd] .
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given would then be inaccurate. The following proposition describes the comparative statics of repo rate

and haircut.

Proposition 8. Both the repo rate and the haircut are decreasing in the expected value of the payoff

based on public information, Es, holding ν fixed. Repo rate is decreasing and repo haircut is increasing

in the degree of adverse selection, ν, holding Es fixed.

This proposition maps out how the degree of adverse selection and the expected value of the payoff,

which are functions of the primitives of the model, affect repo rate and haircut. The only part of

Proposition 8 that may seem counter-intuitive is the statement that repo rate is decreasing in adverse

selection. In fact, this result is in the same spirit as the standard result in the credit rationing models

(Stiglitz and Weiss (1981)). When adverse selection increases, haircut goes up, which means that the

face value of repo loan is lower, making the repo loan safer and leading to a lower repo rate.

The results in the above proposition point out that the impact of adverse selection on repo terms is

intricate. When testing how adverse selection affects repo rates and haircuts, empiricists need to control

for changes in the expected value of the asset’s payoff. The degree of adverse selection and the expected

value of the payoff can be inferred from secondary information (such as prices, dividends, credit ratings,

convenience yields, etc.). With these implementable metrics, the simple analytical solution provides new

testable implications for cross-sectional repo contracts.

In segments of the repo market that uses low quality collaterals, private information advantage

can be long-lived. Motivated by this observation, we next demonstrate the effect of persistent private

information for the two-point distribution case. The main message is that higher persistence in private

information leads to higher price volatility, lower collateral values and inputs raised, larger haircuts and

repo rates. To allow for persistence we let λL > λH where ∆λ = λL − λH . To simplify the analysis

and obtain closed-form solutions for the repo terms, we further assume that πH = 1 and πL = 0, i.e.,

the high quality asset always pays one unit of payoff and the low-quality asset always pays zero. The

following proposition describes the comparative statics for outcomes of economic interest as persistence

in quality ∆λ increases holding the steady state quality distribution λ constant.

Proposition 9. Keeping λ constant, as ∆λ increases (i) the debt threshold, d decreases; (ii) price

volatility, ∆φ , increases; (iii) collateral value Eφ decreases; (iv) loan value, qD, decreases; (v) haircut,

h, increases; (vi) repo rate, r, increases.
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9 Conclusion

Our paper studies optimal security design in a dynamic lemons market. We show that one implemen-

tation of our optimal security design involves short-term collateralized debt. Because optimal security

design helps coordinate investors’ inter-temporal decisions, the dynamic lemons market under optimal

security design is robust to multiple equilibria induced by inter-temporal miscoordination. We also

explore economic implications of an implementation of optimal security, short-term repos, and derive

dynamic equilibrium properties of repo rates and haircuts. Our setup in general can be applied to any

collateralized borrowing where the collaterals are traded in the capital market.38 The underlying eco-

nomic mechanism of our theory is the price liquidity feedback effect derived from the fact that collateral

assets can be resold and resale prices can back security payments. Optimal security design eliminates

multiplicity, generates greater amounts of liquidity, and restores the economy to a unique Pareto-optimal

equilibrium.

According to the current understanding, the shadow banking system of overnight repurchase agree-

ments, asset-backed securities, broker-dealers, and investments contributed to the Great Depression and

the runs on the shadow banking system were classic bank runs à la Diamond and Dybvig (1983). How-

ever, this popular explanation ignores the fact that most of the securitized products and the short-term

funding instruments of these shadow banks are backed by the resale prices of the assets on their balance

sheet (in addition to dividend/interest payments). Our model implies that in a dynamic economy, when

financial intermediaries can flexibly tranche their assets, self-fulfilling price dynamics can be removed

and the amount of funding liquidity as well as the real output in the economy will be greatly improved.

Securitization in fact eliminates multiple equilibria and excessive volatility in asset prices and liquidity.

Nevertheless, our theory identifies a new source of financial fragility that potentially emerges via the

price-liquidity feedback loop. For example, we find, in a repo implementation of our model, that more

persistence in private information results in more adverse selection, volatile asset prices, a lower amount

of repo debt financing, exacerbating credit crunch.39 We conclude, therefore, by pointing out that as

the current global financial system moves from bank-based towards market-governed, it is crucial to
38It has been observed that more firms raise funding and manage their working capital directly from investors by issuing

securities backed by marketable collateral assets on their balance sheets, sidestepping banks or other traditional financial

intermediaries. For instance, Apple Inc. reported $5.2 billion of repo borrowing in its 2020 10-K filing to support its

working capital need during the Covid-19 pandemic. An implication of this practice is that firms now have incentives to

acquire marketable assets (such as high grade sovereign and corporate bonds) to access funding liquidity directly.
39Rigidity in security design may lead to failure of inter-temporal coordination and result in runs. We discuss the

implications of rigidity in follow up work which is available upon request.
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understand the dynamic feedback mechanism between asset prices and funding liquidity identified in

this paper. It may generate more funding and promote greater economic growth, but at the same time

it is possible to ignite destabilizing self-fulfilling crises. Economic policymakers and financial regulators

need to closely monitor this new source of financial instability.
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A Appendix

A.1 Proof of Proposition 1

Let q ≡ λELy + (1− λ)EHy. Note that zq − EHy T 0 iff ELy/EHy T ζ.

Consider the case ELy/EHy > ζ. Suppose that the equilibrium price q is strictly less than q. In this

case an investor can deviate and bid q−ε where ε > 0. For ε small enough, z (q − ε)−EHy > 0. Hence at

this price both types sell the security and the deviation generates strictly positive surplus. This means

that the equilibrium price must be at least q. At price q or above both types sell the security, hence the

only price that is consistent with zero profit condition is q = q.

Now consider the case ELy/EHy < ζ. In this case high type will sell the security only if q is

sufficiently larger than q. However, at prices above q, investors make negative profit. Hence equilibrium

price must be below q. If q is below (ELy) /z then neither type sells the security. In this case, one of

the investors can deviate and bid ELy − ε where ε > 0. For ε small enough, z (ELy − ε) − ELy > 0 so

the low type sells the security and the deviating agent makes strictly positive surplus. If q is at least

(ELy) /z but less than ELy then the low type sells the security to the investors who bid that price. In

this case, one of the investors who bids ELy or less can deviate and bid slightly above q. This agent then

buys the security alone and increases her surplus. At prices greater than equal to ELy (and below q),

the low type alone sells the security. Hence the only price that is consistent with zero profit condition is

q = ELy.

A.2 Proof of Proposition 2

By the discussion in the text we know that a pooling equilibrium exists if and only if ELs/EHs ≥ κP , and

a separating equilibrium exists if and only if ELs/EHs < κS . To complete the proof of the proposition

we need to show κP < κS . To see this note that,

[ζ − βz (1− (1− ζ)λ)]− [ζ − β (1− (1− ζz)λL)] = −βλL (z − 1)

(
1− λ
λ

)
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and similarly,

[1− βz (1− (1− ζ)λ)]− [1− β (1− (1− ζz)λH)] = −βλH (z − 1)

(
1− λ
λ

)
.

Using the equalities above and the fact that λL > λH we obtain:

κP =
ζ − βz (1− (1− ζ)λ)

1− βz (1− (1− ζ)λ)
<
ζ − βz (1− (1− ζ)λ) + βλL (z − 1)

(
1−λ
λ

)
1− βz (1− (1− ζ)λ) + βλH (z − 1)

(
1−λ
λ

)
=
ζ − β (1− (1− ζz)λL)

1− β (1− (1− ζz)λH)
= κS .

A.3 Statement and Proof of Lemma 1

Lemma 1. If two securities, y and y′, are both traded in a pooling (separating) equilibrium, then y+ y′

is also traded in a pooling (separating) equilibrium. Moreover, if a feasible security design contains y and

y′, replacing the two securities by y+ y′ is also a feasible security design and the value of the designer’s

objective remains the same in these two cases. Hence, w.l.o.g. we can restrict attention to security

designs that contain at most two securities, one traded in a pooling equilibrium and the other traded in

a separating equilibrium.

Proof. If two securities, y and y′, are both traded in a pooling equilibrium, ELy ≥ ζEHy and ELy′ ≥

ζEHy
′. Then combining these two securities results in a security traded in a pooling equilibrium.

Similarly, combining two securities traded in a separating equilibrium results in a security traded in a

separating equilibrium. To see the second statement in the lemma, first note that replacing the two

securities with their combination is clearly feasible. In addition, when y, y′ and y + y′ all trade in a

pooling (separating) equilibrium, q′′, the price of y + y′, is the sum of q and q′, the prices of y and y′.

Now consider the pooling case. Ignoring the irrelevant terms, agent O’s payoff when the two securities

are separate is:

λ

∫
{a [zq − y(s)] + a [zq′ − y′(s)]} dFL(s) + (1− λ)

∫
{a [zq − y(s)] + a [zq′ − y′(s)]} dFH(s)

and when they are combined is:

λ

∫
{a [zq′′ − (y(s) + y′ (s))]} dFL(s) + (1− λ)

∫
{a [zq′′ − (y(s) + y′ (s))]} dFH(s).

Since q′′ = q + q′, when the securities are combined agent O’s payoff is unchanged.

Next consider the separating case. Once again ignoring the irrelevant terms, agent O’s payoff when

the two securities are separate is:

λ

∫
{a [zq − y(s)] + a [zq′ − y′(s)]} dFL(s) + (1− λ)

∫
{ay(s) + ay′(s)} dFH(s)
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and when they are combined is:

λ

∫
{a [zq′′ − (y(s) + y′ (s))]} dFL(s) + (1− λ)

∫
{a (y(s) + y′ (s))} dFH(s).

Once again, when the securities are combined agent O’s payoff is unchanged.

A.4 Proof of Proposition 4

Using Lemma 1 we restate the optimal security design problem as choosing the pooling tranche of the

asset, yD(s, φQ), to maximize the value of a high-quality debt tranche:

EHyD(s, φH) (A.1)

subject to

s+ φQ − yD(s, φQ) ≥ 0,∀s ∈ [s, s̄] and Q ∈ {L,H} , (A.2)

ELyD(s, φL)− ζEHyD(s, φH) ≥ 0, (A.3)

and

yD (s, φQ) ≥ yD (s′, φQ′) if s+ φQ ≥ s′ + φQ′ ,∀s ∈ [s, s̄] and Q,Q′ ∈ {L,H} . (A.4)

We obtain the objective function by plugging the security prices and the quantities given in Proposition 1

into the designer’s objective (4). The first constraint above is the simplified feasibility constraint (2) and

requires yD (s, φQ) to be backed by the underlying asset. The second is the requirement in Proposition

1 that the security is sold in a pooling equilibrium. The third constraint restates (1) that requires the

pooling security to be monotone in the total payoff generated by the asset.4041

We introduce some notations that we use in the rest of the proof. Let Ỹ be the set of non-decreasing

functions from [s+ φL, s̄+ φH ] to R+. Define

GL (x) =

FL (x− φL) if x ∈ [s+ φL, s̄+ φL]

1 if x ∈ (s̄+ φL, s̄+ φH ]

and

GH (x) =

0 if x ∈ [s+ φL, s+ φH)

FH (x− φH) if x ∈ [s+ φH , s̄+ φH ]

.

40Equation (1) needs to hold for the residual equity tranche as well but this constraint is not binding.
41The uniqueness of equilibrium does not depend on the restriction of issuing monotone securities, and also holds when

the borrower issues Arrow securities against the dividend payment and the resale value of the asset. This result is available

upon request.
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The corresponding density functions are:

gL (x) =

fL (x− φL) if x ∈ [s+ φL, s̄+ φL]

0 if x ∈ (s̄+ φL, s̄+ φH ]

and

gH (x) =

0 if x ∈ [s+ φL, s+ φH)

fH (x− φH) if x ∈ [s+ φH , s̄+ φH ]

.

Let EGQ denote the expectation with respect to GQ. Consider the following problem:

max
ỹ∈Ỹ

EGH ỹ (A.5)

subject to:

x− ỹ(x) ≥ 0,∀x ∈ [s+ φL, s̄+ φH ], (A.6)

EGL ỹ − ζEGH ỹ ≥ 0. (A.7)

Next, we provide three lemmas which help us prove the result.

Lemma 2. For any y(x, φQ) where Q ∈ {L,H} that satisfies (A.2)-(A.4), there is ỹ ∈ Ỹ that satisfies

(A.6) and (A.7) and

EHy(s, φH) = EGH ỹ. (A.8)

Proof. Fix an arbitrary y(s, φQ) and let ỹ (x) = y(x, φQ) for x ∈ [s+ φQ, s̄+ φQ] and Q ∈ {L,H} . If

s+φH < s̄+φL, then by (A.4), y(x, φL) = y(x, φH) for x ∈ [s+ φH , s̄+ φL]. Hence, ỹ is well-defined in

this range. If s̄+ φL < s+ φH , then let ỹ (x) = y(s̄, φL) for x ∈ [s̄+ φL, s+ φH ].42 It is easy to see that

ỹ is increasing by (A.4) and satisfies (A.6) and (A.7) by (A.2) and (A.3). Moreover, by construction of

GH , (A.8) is satisfied.

Lemma 3. Suppose ỹ∗ ∈ Ỹ maximizes (A.5) subject to (A.6) and (A.7). Let yD(s, φQ) = ỹ∗ (s+ φQ)

for s ∈ [s, s̄] where Q ∈ {L,H} . Then yD(s, φQ) maximizes (A.1) subject to (A.2)-(A.4).

Proof. By construction yD(s, φQ) satisfies (A.2)-(A.4) and EHyD(s, φH) = EGH ỹ
∗. Lemma 2 then im-

plies that yD(s, φQ) maximizes (A.1) subject to (A.2)-(A.4).

Lemma 4. If fL (x) /fH (x) is decreasing for x ∈ [s, s̄] and either fL or fH is log-concave then

fL (x− φL) /fH (x− φH) is decreasing in x for x ∈ [s+ φH , s̄+ φL].
42In this range, ỹ can be chosen in any way as long as it is non-decreasing.
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Proof. Note that the derivative of fL (x− φL) /fH (x− φH) is negative if:

f ′L (x− φL)

fL (x− φL)
<
f ′H (x− φH)

fH (x− φH)
. (A.9)

Since fL (x) /fH (x) is decreasing we have:

f ′L (x− φQ)

fL (x− φQ)
<
f ′H (x− φQ)

fH (x− φQ)
(A.10)

where Q ∈ {L,H} . Moreover, fQ is log-concave if and only if f ′Q (x) /fQ (x) decreasing in x. Hence if

fH is log-concave then
f ′H (x− φL)

fH (x− φL)
<
f ′H (x− φH)

fH (x− φH)
(A.11)

and if fL is log-concave then
f ′L (x− φL)

fL (x− φL)
<
f ′L (x− φH)

fL (x− φH)
(A.12)

Inequality (A.10) together with either (A.11) or (A.12) implies (A.9).

Proposition 10. Assume that fL (x) /fH (x) is decreasing for x ∈ [s, s̄], and either fL or fH is log-

concave. Then there is a unique solution to (A.5) where the optimal solution ỹ∗ is such that

ỹ∗(x) = min(x,D),

for some D ∈ (s+ φL, s̄+ φH ].

Proof. We can write any right-continuous monotone security ỹ(s) as:

ỹ(s) = φL + s+

∫ s̄+φH

s+φL

χ(j)dj,

where χ(j) ≥ 0 for all j ∈ [s+ φL, s̄+ φH ].

Let G̃Q(x) = 1−GQ (x) for Q ∈ {L,H} and x ∈ [s+ φL, s̄+ φH ]. Then,

EGQ ỹ = φL + s+

∫ s̄+φH

s+φL

G̃Q(j)χ(j)dj.

The optimization problem (A.5) is equivalent to the following problem:

arg max
χ≥0

∫ s̄+φH

s+φL

G̃H(x)χ(x)dx, (A.13)

s.t.s+ φL +

∫ x

s+φL

χ(j)dj ≤ x, ∀x ∈ [s+ φL, s̄+ φH ] , (A.14)∫ s̄+φH

s+φL

[
G̃L(x)− ζG̃H(x)

]
χ(x)dx+ (1− ζ) (s+ φL) ≥ 0, (A.15)

χ(x) ≥ 0,∀x ∈ [s+ φL, s̄+ φH ] (A.16)
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Note that the feasible set is compact, convex and nonempty so the optimization problem must have a

solution. Moreover, since the objective function is bounded above, the solution must be finite. The

Lagrangian of the optimization problem is

L (x; γ, µ, µχ) =

∫ s̄+φH

s+φL

G̃H(x)χ(x)dx+

∫ s̄+φH

s+φL

γ(x)

[
x− (s+ φL)−

∫ x

s+φL

χ(j)dj

]
dx

+ µ

{∫ s̄+φH

s+φL

[
G̃L(x)− ζG̃H(x)

]
χ(x)dx+ (1− ζ) (s+ φL)

}
+

∫ s̄+φH

s+φL

µχ(x)χ(x)dx

=

∫ s̄+φH

s+φL

{
G̃H(x) + µ

[
G̃L(x)− ζG̃H(x)

]
− η (x) + µχ(x)

}
χ(x)dx

+ µ(1− ζ) (s+ φL) +

∫ s̄+φH

s+φL

η (x) dx,

where the second equality is obtained by using integration by parts on the second term of the Lagrangian,

and then setting η (x) =
∫ s̄+φH
x

γ(j)dj. Let L∗ = minγ≥0,µ≥0,µχ≥0 [maxχ≥0 L (x; γ, µ, µχ)] . Note that L∗

is the value of the original optimization problem. The quantity inside the curly brackets must be zero

or otherwise the value of the optimization problem would be infinite. Consider the following problem,

min
µ≥0

minη≥0,µx≥0 µ(1− ζ) (s+ φL) +

∫ s̄+φH

s+φL

η (x) dx

s.t. G̃H(x) + µ
[
G̃L(x)− ζG̃H(x)

]
− η (x) + µχ(x) = 0.

The value of this problem is L∗. Let Hµ (x) = G̃H(x) + µ
[
G̃L(x)− ζG̃H(x)

]
, and rewrite one more

time as:

min
µ≥0

minη≥0 µ(1− ζ) (s+ φL) +

∫ s̄+φH

s+φL

η (x) dx

s.t. η (x) ≥ Hµ (x) ,

and the constraint that η(x) is a decreasing function in x. Note, hµ (x) ≡ ∂Hµ(x)
∂x = − [gH (x) + µ (gL (x)− ζgH (x))],

Hµ (s+ φL) = 1 + µ [1− ζ] > 0 and Hµ (s̄+ φH) = 0.

If µ = 0 then hµ (x) < 0. Suppose µ > 0.

• Case 1) Suppose s̄+ φL < s+ φH :

– If x ∈ [s+ φL, s̄+ φL] then hµ (x) = −µ (fL (x− φL)) < 0.

– If x ∈ (s̄+ φL, s+ φH) then hµ (x) = 0.

– If x ∈ [s+ φH , s̄+ φH ] then hµ (x) = −fH (x− φH) [1− µζ] .
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If 1 − µζ ≥ 0 then hµ (x) ≤ 0 for all x ∈ [s+ φL, s̄+ φH ]. If 1 − µζ < 0 then hµ (x) ≤ 0 for

x ∈ [s+ φL, s+ φH ] and hµ (x) > 0 for x ∈ [s+ φH , s̄+ φH ]. Hence, hµ changes its sign at

most once from negative to positive.

• Case 2) Suppose s+ φH < s̄+ φL:

– If x ∈ [s+ φL, s+ φH) then hµ (x) = −µ (fL (x− φL)) < 0.

– If x ∈ [s+ φH , s̄+ φL] then hµ (x) = −fH (x− φH)
[
1 + µ

(
fL(x−φL)
fH(x−φH) − ζ

)]
.

– If x ∈ (s̄+ φL, s̄+ φH ] then hµ (x) = −fH (x− φH) [1− µζ] .

By Lemma 4, hµ (x) can change sign from negative to positive only once over [s+ φH , s̄+ φL].

Moreover, at x = s̄ + φL, hµ (x) may only jump up and its sign remains unchanged on

(s̄+ φL, s̄+ φH ] . Hence, hµ changes its sign at most once from negative to positive.

Since hµ changes its sign at most once from negative to positive, and since Hµ (s+ φL) > 0 and

Hµ (s̄+ φH) = 0, either there exists a unique x∗µ ∈ (s+ φL, s̄+ φH) such thatHµ

(
x∗µ
)

= 0, orHµ (x) > 0

for all x ∈ (s+ φL, s̄+ φH). In the latter case, we let x∗µ = s̄+ φH .

Note that for given µ ≥ 0 optimal ηµ is given by:

ηµ (x) =

 Hµ (x) if x ≤ x∗µ
0 if x > x∗µ

.

Plugging this into the minimization problem we get:

min
µ≥0

µ(1− ζ)φ+

∫ x∗µ

s+φL

(
G̃H(x) + µ

[
G̃L(x)− ζG̃H(x)

])
dx.

The first order condition for this problem is:

(1− ζ)φ+

∫ x∗µ

s+φL

[
G̃L(x)− ζG̃H(x)

]
dx+

∂x∗µ
∂µ

Hµ

(
x∗µ
)
≥ 0

Because Hµ

(
x∗µ
)

= 0,

(1− ζ)φ+

∫ x∗µ

s+φL

[
G̃L(x)− ζG̃H(x)

]
dx ≥ 0

with complementary slackness.

Let x∗ ∈ (s+ φL, s̄+ φH ] be the unique s for which

(1− ζ)φ+

∫ x∗

s+φL

[
G̃L(x)− ζG̃H(x)

]
dx = 0
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if it exists. If

(1− ζ)φ+

∫ s̄+φH

s+φL

[
G̃L(x)− ζG̃H(x)

]
dx > 0

for all x ∈ [s+ φL, s̄+ φH ], then x∗ = s̄+ φH .

If x∗ < s̄+ φH then µ > 0, x∗µ = x∗, and

L∗ = µ(1− ζ)φ+

∫ x∗

s+φL

(
G̃H(x) + µ

[
G̃L(x)− ζG̃H(x)

])
dx =

∫ x∗

s+φL

G̃H(s)ds.

If x∗ = s̄+ φH then µ = 0, x∗µ = s̄+ φH , and

L∗ =

∫ s̄+φH

s+φL

G̃H(s)ds.

To complete the proof, let D = x∗ and note that χ (x) = 1 for x ∈ [s+ φL, D) and χ (x) = 0 for

x ∈ [D, s̄+ φH ] achieves the value L∗ and it is feasible, and must be optimal for the original problem.

To finish the proof we observe from Lemma 3 that solution to (A.1) is yD(s, φQ) = min(s + φQ, D)

for s ∈ [s, s̄] where Q ∈ {L,H} and D ∈ (s+ φL, s̄+ φH ].

A.5 Proof of Theorem 1

Using Proposition 4, we write the designer’s problem as:

max
d∈[s,s̄+∆φ]

∫ d−∆φ

s

F̃H(s)ds (A.17)

subject to

s+ φL +

∫ d

s

F̃L(s)ds− ζ

(
s+ φH +

∫ d−∆φ

s

F̃H(s)ds

)
≥ 0, (A.18)

where d ≡ D − φL and ∆φ ≡ φH − φL. To obtain (A.17) and (A.18), we substitute (20) into the

designer’s objective given in (A.1) and into (A.3) which guarantees that the debt tranche is sold in a

pooling equilibrium.43

Define Agent O’s value over the equity tranche, eH and eL, as:

eL (d) ≡
∫ s̄

d

F̃L(s)ds, (A.19)

eH (d) ≡
∫ s̄

d−∆φ

F̃H(s)ds. (A.20)

43Condition (A.4) holds automatically for the debt contract given in Equation (20).
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Note that the flow payments in the debt tranche are∫ d

s

F̃L(s)ds = ELs− eL (d) , (A.21)∫ d−∆φ

s

F̃H(s)ds = EHs− eH (d) . (A.22)

The participation constraint (A.18) can now be written as:

Γ(d) = φL + ELs− eL (d)− ζ (φH + EHs− eH (d)) ≥ 0. (A.23)

To prove that there is a unique equilibrium with security design, we show that either there is a unique

d ∈ (s, s̄ + ∆φ) at which the participation constraint is binding, or the constraint does not bind and

d = s̄+ ∆φ.

As a first step, we solve φQ as functions of eH and eL. Then, we evaluate the derivative of eH and

eL with respect to d. Substituting qD and qE which are given by (21) and (22) into φQ which is given

by (23), and using (A.21) and (A.22), we obtain:

φQ = β [z (λ (φL + ELs− eL (d)) + (1− λ) (φH + EHs− eH (d))) + zλQeL (d) + (1− λQ)eH (d)]

and

∆φ = φH − φL = β(λL − λH)(eH (d)− zeL (d)). (A.24)

Note that the prices are functions of all the underlying parameters of the model even though we do not

explicitly express their dependence on them. Next, we solve for the prices φL and φH .

φL = c0L + cHLeH + cLLeL (A.25)

where

c0L =
βz (λELs+ (1− λ)EHs)

1− βz
,

cHL =
β [1− λL − z(1− λ) + z(1− λ)β(λL − λH)]

1− βz
,

cLL =
βz [−λ+ λL − (1− λ)β(λL − λH)z]

1− βz
,

and

φH = c0H + cHHeH + cLHeL (A.26)
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where

c0H =
βz (λELs+ (1− λ)EHs)

1− βz
,

cHH =
β [1− λH − z(1− λ)− zλβ(λL − λH)]

1− βz
,

cLH =
βz [−λ+ λH + λβ(λL − λH)z]

1− βz
.

Using (A.19), (A.20), and (A.24), we obtain derivatives of eL and eH with respect to d as:

e′L(d) = −F̃L(d), (A.27)

e′H(d) = −GL (d)

GH (d)
F̃H(d−∆φ), (A.28)

where

GL (d) = 1− β(λL − λH)zF̃L(d),

and

GH (d) = 1− β(λL − λH)F̃H(d−∆φ).

We can now write the derivative of Γ with respect to d as:

Γ′(d) = κLe
′
L(d) + κHe

′
H(d), (A.29)

where

κL =cLL − ζcLH − 1

=
βz

1− βz
[λL − ζλH − (1− ζ)λ− β(λL − λH)]− 1,

κH =cHL − ζcHH + ζ

=
β

1− βz
[1− λL − ζ(1− λH)− (1− ζ)z(1− λ) + β(λL − λH)] + ζ.

Since eL (s) = ELs and eH (s) = EHs+ ∆φ,

Γ(s) = φL − ζ (φH −∆φ) = (1− ζ)φL > 0,

and

Γ(s̄+ ∆φ) < 0 if and only if ELs/EHs < 1− (z − 1) / (zλ (1− β)) .

Substituting (A.27) and (A.28) into (A.29), we obtain:

Γ′(d)

F̃L(d)
=− κL − κH

e′H(d)

e′L(d)
.
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If κH > 0 and
d(e′H(d)/e′L(d))

dd > 0, then Γ (d) = 0 has at most one solution for d ∈ (s, s̄+ ∆φ). To see this,

note that Γ′ can change sign at most once from positive to negative. Since Γ(s) > 0, if Γ(s̄ + ∆φ) < 0

then there exists a unique solution to Γ (d) = 0 where d ∈ (s, s̄+ ∆φ), and if Γ(s̄ + ∆φ) > 0 then

Γ (d) > 0 for all d ∈ (s, s̄+ ∆φ). If κH < 0 and
d(e′H(d)/e′L(d))

dd > 0, then Γ′ (d) > 0. Hence, Γ (d) > 0 for

all d ∈ (s, s̄+ ∆φ).44

To finish the proof we observe that,

d∆φ

dd
= −GL (d)−GH (d)

(GL (d))
2
GH (d)

. (A.30)

So,

d

dd
ln [e′H(d)/e′L(d)] =

1

χL

[
fL(d)

F̃L(d)
− fH(d−∆φ)

F̃H(d−∆φ)

{
(GL (d))

2
GH (d) +GL (d)−GH (d)

GL (d) (GH (d))
2

}]
.

Hence,
d(e′H(d)/e′L(d))

dd > 0 if

fL(d)

F̃L(d)
− fH(d−∆φ)

F̃H(d−∆φ)

{
(GL (d))

2
GH (d) +GL (d)−GH (d)

GL (d) (GH (d))
2

}
> 0. (A.31)

Note that
(GL (d))

2
GH (d) +GL (d)−GH (d)

GL (d) (GH (d))
2 <

1

(GH (d))
2 .

Moreover, if fH is log-concave:

fH(d−∆φ)

F̃H(d−∆φ)
/
fL(d)

F̃L(d)
<
fH(d)

F̃H(d)
/
fL(d)

F̃L(d)

and if fL is log-concave

fH(d−∆φ)

F̃H(d−∆φ)
/
fL(d)

F̃L(d)
<
fH(d−∆φ)

F̃H(d−∆φ)
/
fL(d−∆φ)

F̃L(d−∆φ)
.

Combining we observe that (A.31) holds if

fH(d)

F̃H(d)
/
fL(d)

F̃L(d)
<

1

(GH (d))
2

which is (24). It is immediate that when d ∈ (s, s̄ + ∆φ), the security design equilibrium Pareto domi-

nates the the (unique) separating equilibrium in the baseline case. Moreover, security design uniquely

selects the pooling equilibrium when d = s̄+ ∆φ, and hence it strictly Pareto dominates the separating

equilibrium if there are multiple equilibria in the baseline case which completes the proof.
44This case is consistent with Condition (25) because when κH < 0, ELs/EHs > 0 ≥ 1 − (z − 1) /(zλ (1− β)), and

optimal debt threshold is d = s̄+ ∆φ.
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A.6 Proof of Proposition 6

Fix λ ∈ (0, 1) . Since λH = λ
1−λ (1− λL) , if λL increases by d > 0 then λH decreases by λ

1−λd > 0 so

that λ remains constant. Fix some small d > 0. Let Γd denote the participation constraint (A.23) as a

function of d. We show next that Γd (d) < Γ0 (d) for all d ∈ [s, s̄] which establishes that the unique debt

threshold must be decreasing in d. Note that we can write Γd as:

Γd(d) = κHeH (d) + κLeL (d)

plus other terms that do not depend on d. For any d ∈ [s, s̄] ,

Γd(d)− Γ0(d) = dβ/ (1− λ) (1− βz) [− (1− β) + λ (1− ζ)] (eH (d)− zeL (d)) .

Since,

− (1− β) + λ (1− ζ) ≤ 0⇔ 1− z − 1

z (1− β)
= κP ≥ 0

and eH (d)− zeL (d) = ∆φ/ (β(λL − λH)) > 0, we have Γd(d) < Γ0(d).

A.7 Proof of Proposition 7

Let ∆λ = λL − λH . From (A.24), we obtain

∂∆φ

∂d
= −

β∆λ
[
F̃H(d−∆φ)− zF̃L(d)

]
1− β∆λF̃H(d−∆φ)

,

∂∆φ

∂∆λ
=
β
[∫ s̄
d−∆φ

F̃H(s)ds− z
∫ s̄
d
F̃L(s)ds

]
1− β∆λF̃H(d−∆φ)

=
β (eH − zeL)

1− β∆λF̃H(d−∆φ)
.

Then,

d∆φ

d∆λ
=
∂∆φ

∂d

dd

d∆λ
+
∂∆φ

∂∆λ

=
β

1− β∆λF̃H(d−∆φ)

{
−∆λ

[
F̃H(d−∆φ)− zF̃L(d)

] dd

d∆λ
+ eH − zeL

}
(A.32)

Because the designer takes asset prices, φH and φL, as given when choosing the debt threshold d, the

optimal debt threshold must be such that increasing d tightens the IC when d ∈ (s, s̄). If optimal d = s̄

then ∂Γ/∂d = 0. So, the partial effect of increasing d on Γ at the optimal d must be negative,

∂Γ

∂d
= −e′L(d) + ζe′H (d)

= F̃L(d)− ζF̃H(d−∆φ) ≤ 0,
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which is equivalent to F̃H(d−∆φ)− 1
ζ F̃L(d) ≥ 0. Since 1/ζ = z [1/ (1− ((z − 1)(1− λ)/λ))] > z,

F̃H(d−∆φ)− zF̃L(d) > 0.

Because high-quality equity seller is not willing to sell the equity, eH (d)−zeL (d) > 0.45 From Proposition

6, dd/d∆λ ≤ 0. Therefore, by (A.32), d∆φ
d∆λ > 0.

A.8 Proof of Proposition 8

Specializing the model to this case, we can write the expressions for the debt threshold, d, and the asset

price, φ = φL = φH :

d =

β
1−βz [zλπL + (1− λ)πH ]

z
z−1λ (πH − πL)− 1−βz+β(1−λ)(z−1)

1−βz πH
, (A.33)

φ =
β [zλπL + (1− λ)πH ]

1− βz − β (1−λ)(z−1)πH
z
z−1λ(πH−πL)−πH

. (A.34)

Plugging the expressions for d and φ, Equations (A.33) and (A.34), into (28) and (29) we obtain (32)

and (33). The result follows immediately from these expressions.

A.9 Proof of Proposition 9

From Equations (A.25) and (A.26) in the proof for Theorem 1,

φL = c0L + cHLeH ,

where

c0L =
βz(1− λ)

1− βz
,

cHL =
β [1− λL − z(1− λ) + z(1− λ)β(λL − λH)]

1− βz
,

and

φH = c0H + cHHeH ,

where

c0H =
βz(1− λ)

1− βz
,

cHH =
β [1− λH − z(1− λ)− zλβ(λL − λH)]

1− βz
.

45Alternatively, eH (d)− zeL (d) = ∆φ/ (β(λL − λH)) > 0.
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Hence,

∆φ = (cHH − cHL)eH

=
β(λL − λH) (1− d)

1− β(λL − λH)
(A.35)

and

Eφ =
βz(1− λ)

1− βz
− β(z − 1)(1− λ)

1− βz
(1− d+ ∆φ) .

From the proof of Proposition 1, the participation constraint for the owner of a high-quality debt tranche

is

Γ(d) = φL + ELs− eL (d)− ζ (φH + EHs− eH (d))

= φL − ζ (φL + d) ≥ 0.

When the IC constraint is binding,

d =
1− ζ
ζ

φL =
β(z − 1) 1−λL

1−β(λL−λH)

1− z + (1− β)zλ+ β(z − 1) 1−λL
1−β(λL−λH)

.

As ∆λ increases keeping λ constant, λL decreases. Then, from this expression we observe that d is

decreasing in ∆λ keeping λ constant.

From equation A.35, ∆φ is increasing in ∆λ keeping λ constant. Because

Eφ =
βz(1− λ)

1− βz
+
β(z − 1)(1− λ)

1− βz
(−1 + d−∆φ) ,

the expected asset price decreases in ∆λ because d is decreasing and ∆φ is increasing in ∆λ keeping λ

constant.

Loan volume equals qD

qD = λφL + (1− λ)φH + λ(EsL − eL) + (1− λ)(EsH − eH)

=
1− λ
1− βz

[β + (1− β)(d−∆φ)]

Since d−∆φ decreases in ∆λ keeping λ constant, qD is decreasing in ∆λ keeping λ constant.

We compute the haircut as,

h = β((z − 1)qD + λzeL + (1− λ)eH)/Eφ

=
z − 1 + (2− z − β) (1− d+ ∆φ)

z − (z − 1) (1− d+ ∆φ)
.
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Notice that

∂h

∂ (1− d+ ∆φ)
∝ (2− z − β) [z − (z − 1) (1− d+ ∆φ)]

+ (z − 1) [z − 1 + (2− z − β) (1− d+ ∆φ)]

= 1− βz > 0.

So,
dh

d∆λ
= − ∂h

∂(1− d+ ∆φ)

d(d−∆φ)

d∆λ
> 0.

Haircut increases in ∆λ keeping λ constant.

The repo rate is given by

r =
d+ φL
qD

− 1 =
1

1− ζ
1− βz
λ

(1− β∆λ) d

β − β∆λ+ (1− β) d
− 1.

Note that:

∂

∂∆λ

{
(1− β∆λ) d

β − β∆λ+ (1− β) d

}
=
βd (1− β) (1− d)− ∂d

∂∆λ

{
(1− β)d+ β2∆λ (1−∆λ)

}
[β − β∆λ+ (1− β) d]

2 > 0.

So, finally, r is increasing ∆λ keeping λ constant.

B Robustness and Extensions

B.1 Unsegmented Security Markets

For simplicity we restrict attention to the iid case. As in the main model a security design is a menu of

securities backed by the asset and each type chooses a subset of the securities to trade. With unsegmented

markets, we can combine all the securities that are traded by a given type. Hence w.l.o.g we can restrict

attention to a menu of at most two securities
{
yL, yH

}
where each security is backed by the asset, that

is,

yQ(s, φ) ≤ s+ φ (B.1)

for all s ∈ [s, s̄]. After agent O obtains private information about the asset’s quality, she sells only one

of the securities from the menu in the security market. Note that the two securities may be identical, in

which case the security is traded in a pooling equilibrium. Otherwise, since markets are unsegmented,

lenders learn the type of the borrower and securities are traded in a separating equilibrium. Security

market is otherwise as in the main model.
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The asset price at the end of period t, φt is equal to :

φt = β

{
λ

[∫ s̄

s

((
zqLt+1 − yLt+1(s, φt+1)

)
+ (s+ φt+1)

)
dFL(s)

]
(B.2)

+ (1− λ)

[∫ s̄

s

((
zqHt+1 − yHt+1(s, φt+1)

)
+ (s+ φt+1)

)
dFH(s)

]}
,

where β is the discount factor, 0 < β < 1/z.

In the beginning of next period t+ 1, designer takes the prices, qQt+1 and asset price φt+1 as given to

maximize:

Vt+1 =λ

[∫ s̄

s

((
zqLt+1 − yLt+1(s, φt+1)

)
+ (s+ φt+1)

)
dFL(s)

]
(B.3)

+ (1− λ)

[∫ s̄

s

((
zqHt+1 − yHt+1(s, φt+1)

)
+ (s+ φt+1)

)
dFH(s)

]
subject to the low type and the high type’s incentive compatibility constraints:

zqLt+1 − ELyLt+1(s, φt+1) ≥ zqHt+1 − ELyHt+1(s, φt+1) (B.4)

zqHt+1 − EHyHt+1(s, φt+1) ≥ zqLt+1 − EHyLt+1(s, φt+1) (B.5)

and the high type’s participation constraint.46

zqHt+1 − EHyHt+1(s, φt+1) ≥ 0. (B.6)

We now define the equilibrium concept in our economy.

Definition 2. An equilibrium with security design consists of the asset price φt, a security design{
yLt , y

H
t

}
, security prices qQt such that:

1. The price, qQt , of security y
Q
t for Q ∈ {L,H} is determined through Bertrand competition in each

security market:

qQt =

λELy
Q
t (s, φ) + (1− λ)EHy

Q
t (s, φ) if yLt = yHt

EQy
Q
t (s, φ) if yLt 6= yHt

(B.7)

2. Asset price φ satisfies (B.2).

3. Security design satisfies (B.1) and maximizes (B.3) among all security designs satisfying the incen-

tive compatibility constraints (B.4) and (B.5) and the participation constraint (B.6).
46The low type’s participation constraint is automatically satisfied by combining (B.4) and (B.5).
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For the rest of this section we restrict attention to threshold securities where

yQt (s, φ) =

s+ φ if s ≤ δQ

δQ + φ if s > δQ

Next we look at two cases:

Pooling case:

In a pooling equilibrium yLt = yHt . Denote the pooling debt threshold by δP . Note that incentive com-

patibility constraint are automatically satisfied. High type’s participation constraint is satisfied iff:

(z − 1)

(
s+ φ+

∫ δP

s

F̃H(s)ds

)
≥ zλ

(∫ δP

s

F̃H(s)ds−
∫ δP

s

F̃L(s)ds

)
.

In a pooling equilibrium designer’s value is:

z

(
s+ φ+ λ

∫ δP

s

F̃L(s)ds+ (1− λ)

∫ δP

s

F̃H(s)ds

)
+ λ

∫ s

δP (φ)

F̃L(s)ds+ (1− λ)

∫ s

δP (φ)

F̃H(s)ds.

Separating case:

Clearly, for the low type’s incentive compatibility constraint to hold we must have δL > δH . The low

type’s incentive compatibility constraint (B.4) can be written as:

z

∫ δL

s

F̃L(s)ds−
∫ δL

δH
F̃L(s)ds ≥ z

∫ δH

s

F̃H(s)ds.

The high type’s incentive compatibility constraint (B.5) can be written as:

z

∫ δH

s

F̃H(s)ds ≥ z
∫ δL

s

F̃L(s)ds−
∫ δL

δH
F̃H(s)ds.

Combining we obtain:

z

∫ δL

s

F̃L(s)ds−
∫ δL

δH
F̃L(s)ds ≥ z

∫ δH

s

F̃H(s)ds ≥ z
∫ δL

s

F̃L(s)ds−
∫ δL

δH
F̃H(s)ds.

Note that designer’s payoff is increasing in δH . Suppose the first inequality is a strict inequality and the

second inequality holds with equality. Then increasing δH slightly, relaxes the second inequality without

violating the first one. (This is because derivative of the middle expression, zF̃H(δH), is strictly larger

than the derivative of the third expression, F̃H(δH).) Hence the high type’s incentive compatibility

constraint cannot be binding.
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In addition, increasing δL relaxes low type’s incentive compatibility constraint. Since designer’s

payoff increasing in δL, we must have have δL = s̄. Hence in the separating case we only need to check

low type’s incentive compatibility constraint:

z

∫ s

s

F̃L(s)ds−
∫ s

δH
F̃L(s)ds ≥ z

∫ δH

s

F̃H(s)ds

From the above constraint, we can see that δH does not depend on φ. In a separating equilibrium

designer’s value is

z

(
φ+ λELs+ (1− λ)

(
s+

∫ δH

s

F̃H(s)ds

))
+ (1− λ)

∫ s

δH
F̃H(s)ds

To summarize: there are two possible types of stationary equilibria. In a pooling equilibrium, both types

sell debt and retain equity. In this case, only high type’s participation constraint may be binding. In a

separating equilibrium, high type sells debt and low type sells the entire equity. In this case, only low

type’s incentive compatibility constraint may be binding. (It is also possible that none of the constraints

are binding and both types sell the entire equity.)

Next we look at which type of design is selected by the security designer. The answer to this question

depends on the asset price which itself depends on the chosen design. But before solving for the full

equilibrium, we first take asset price as exogenous and see how the chosen design depends on the asset

price. Clearly, if none of the constraints are binding at δH = δP = s̄, then the designer chooses the

pass through security and there is no distinction between pooling and separating cases. So suppose the

relevant constraints are binding.

Comparing the designer’s payoff in pooling versus separating, we see that there is some threshold δ̂

satisfying s > δ̂ > δH ,such that pooling design generates higher payoff iff δP ≥ δ̂. Moreover neither δ̂

nor δH depend on φ. Since δP is increasing in φ, there is some φ̂ such that for φ ≥ φ̂ we have δP ≥ δ̂.

Hence, pooling design generates a higher payoff iff φ ≥ φ̂.

Now we turn to solving for equilibrium. We consider the two cases separately.

Separating case:

Consider the following mapping:

φ′ = βz

(
φ+ λELs+ (1− λ)

(
s+

∫ δH

s

F̃H(s)ds

))
+ β (1− λ)

∫ s

δH
F̃H(s)ds. (B.8)

Note:
∂φ′

∂φ
= βz + β (1− λ) (z − 1)

∂δH

∂φ
F̃H(δH) = βz < 1.
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Hence, there can only be one stationary separating equilibrium where the separating asset price is:

φS =
1

1− βz

(
βz

(
λELs+ (1− λ)

(
s+

∫ δH

s

F̃H(s)ds

))
+ β (1− λ)

∫ s

δH
F̃H(s)ds

)
.

Pooling case:

Consider the following mapping:

φ′ = βz

(
s+ φ+ λ

∫ δP (φ)

s

F̃L(s)ds+ (1− λ)

∫ δP (φ)

s

F̃H(s)ds

)
(B.9)

+ β

(
λ

∫ s

δP (φ)

F̃L(s)ds+ (1− λ)

∫ s

δP (φ)

F̃H(s)ds

)

where δP (φ) is the solution to

(z − 1)

(
s+ φ+

∫ δP

s

F̃H(s)ds

)
= zλ

(∫ δP

s

F̃H(s)ds−
∫ δP

s

F̃L(s)ds

)
.

Note:
∂δP

∂φ
=

(z − 1)(
(zλ− z + 1) F̃H(δP )− zλF̃L(δP )

)
∂φ′

∂φ
= βz + β

(z − 1)
2
(
λF̃L(δP ) + (1− λ) F̃H(δP )

)
(

(zλ− z + 1) F̃H(δP )− zλF̃L(δP )
)

∂2φ′

∂φ2
= −βλ (z − 1)

2 fL(δP )F̃H(δP )− fH(δP )F̃L(δP )(
(zλ− z + 1) F̃H(δP )− zλF̃L(δP )

)2 < 0.

Hence, there can only be one stationary pooling equilibrium where the pooling asset price is:

φP =
β

1− βz

[
z

(
sλ

∫ δP (φP )

s

F̃L(s)ds+ (1− λ)

∫ δP (φP )

s

F̃H(s)ds

)

+

(
λ

∫ s

δP (φP )

F̃L(s)ds+ (1− λ)

∫ s

δP (φP )

F̃H(s)ds

)]
.

Finally, we show that there is in fact a unique equilibrium. If the equilibrium is separating then the

asset price is less than φ̂. If the equilibrium is pooling then the asset price is more than φ̂. To see this

fact, graph the mappings (B.8) and (B.9) from φ to φ′. The mapping (B.9) begins below (B.8) and the

two intersect at φ = φ̂. It is clear that a 45-degree line intersects both of these mappings either to the

left of φ̂ or to the right of φ̂. If the intersections are to the left of φ̂, by our earlier argument, designer
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chooses a separating design every period. So, the unique stationary equilibrium is the one where the

design is separating every period. If the intersections are to the right of φ̂, designer chooses a pooling

design every period. So, the unique stationary equilibrium is the one where the design is pooling every

period.

B.2 Long-term Securities

B.2.1 Symmetric Information

A long-term security in period t is a mapping yt : {t, t+ 1, . . .} × [s, s̄] → R+ that specifies payments

from the borrower to the investor in every period and state. We assume that time t long-term security

is backed by a time t − 1 long-term security. That is yt (τ, s) ≤ yt−1 (τ, s) for τ ∈ {t, t+ 1, . . .} and

s ∈ [s, s̄]. In addition, time 0 security is backed by the long-term asset, y0(τ, s) ≤ s for τ ∈ {1, 2, . . .}.

Denote the price of security at time t by qLt which is the amount that the lender pays the borrower for

long-term security in period t. Let’s assume that lenders compete for the security (or equivalently, the

borrower has all bargaining power.) In that case price of the security at time t is the lender’s reservation

value of the security which is qLt = Eyt (t, s)+βzqLt+1 where yt (t, s) ≤ yt−1 (t, s) . In the pricing equation,

the first term is the expected value of the payment of security t at period t, and the second term is the

value of the security at the end of period t for a period t + 1 borrower. Since the borrower would like

to raise as much inputs as possible qLt = Eyt−1 (t, s) + βzqLt+1. Since in period 0 the borrower would set

y0 (t, s) = s we obtain: qLt = Es+ βzqLt+1. In steady state we obtain qL = Es
1−βz .

In our model with symmetric information the security price is q = Ey + φ = Es + φ. Asset price

is φ = βz
1−βzEs. Combining we find q = Es

1−βz . Thus, the amount of inputs raised is the same with

long-term securities backed by long-term securities versus short-term securities backed by the long lived

asset’s resale price.

B.2.2 Asymmetric Information

Now suppose there is asymmetric information about the quality if the asset and quality is i.i.d over time.

Suppose also that there are two long-term securities in each period. One is a debt-like security. In the

current period it behaves like a debt contract and in future periods it is a claim to the entire cash flow:

yLDt (τ, s) =

min (d, s) if τ = t

s if τ ∈ {t+ 1, t+ 2, · · · }
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The second is residual equity-like security:

yLEt (τ, s) =

max (0, s− d) if τ = t

0 if τ ∈ {t+ 1, t+ 2, · · · }

where d ∈ (s, s̄]. We assume that the debt threshold d is such that long-term debt is issued by both

types and long-term equity is issued only by the low quality type. We will write this condition formally

after we state the security prices. As before, we also require that time t long-term securities are backed

time t − 1 long-term securities, and time 0 securities are backed by the long-term asset. We next

show that in the main model there are two short-term securities, namely short-term debt backed by

the asset price and residual equity, that replicate these long-term securities. That is, given the price

short-term debt is sold in a pooling equilibrium, residual equity is sold in a separating equilibrium,

the borrower’s continuation value is the sam ein both settings and the price of the asset φ is simply

discounted continuation value. Once we establish these results we argue that issuing long-term debt and

equity is optimal, hence restricting attention to these securities is without loss of generality.

We can now write the price of debt and equity as:

qLDt =

(
s+ λ

∫ d

s

F̃L(s)ds+ (1− λ)

∫ d

s

F̃H(s)ds

)
+ βVt+1,

qLEt =

∫ s̄

d

F̃L(s)ds

Vt+1 = z
(
qLDt+1 + λqLEt+1

)
+ (1− λ)

∫ d

s

F̃H(s)ds

The equations for the price of long-term debt and equity take into account the continuation value of

holding debt and issuing long-term securities in the next period. The condition for both types to sell

long-term debt is

zqLDt ≥ s+

∫ d

s

F̃H(s)ds+ βVt+1

or equivalently,

(z − 1)

(
s+ λ

∫ d

s

F̃L(s)ds+ (1− λ)

∫ d

s

F̃H(s)ds+ βVt+1

)
≥ λ

(∫ d

s

F̃H(s)ds−
∫ d

s

F̃L(s)ds

)
(B.10)

Thus in steady state,

qLD+λqLE =
1

1− βz

[(
s+ λ

∫ d

s

F̃L(s)ds+ (1− λ)

∫ d

s

F̃H(s)ds

)
+ λ

∫ s̄

d

F̃L(s)ds+ β (1− λ)

∫ d

s

F̃H(s)ds

]
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and

V =
1

1− βz

[
z

(
s+ λ

∫ d

s

F̃L(s)ds+ (1− λ)

∫ d

s

F̃H(s)ds+ λ

∫ s̄

d

F̃L(s)ds

)
+ (1− λ)

∫ d

s

F̃H(s)ds

]
.

Note that this is the same continuation value when the borrower issues short-term debt and equity as

in the main model. Moreover, if we let φ = βV then the condition for both types to sell long-term

debt is exactly the participation constraint of the high quality type to sell short-term debt. Hence, the

equivalence results extends to the case of asymmetric information where the borrower issues debt and

equity.

We now argue that the restriction to two long-term securities, yLDt (τ, s) and yLEt (τ, s) specified

above, is without loss of generality. So far we assume that a borrower designs securities backed by

one long-term security. We now relax this assumption. Suppose that a borrower can design securities

whose payments are backed by a pool of long-term securities. Denote the total dividend of the pool

at any period t, ŝt. Note that future cash flows from the pool of long-term securities are not subject

to asymmetric information. Hence, we can use arguments similar to the ones in the main model to

show that it is optimal to use these cash flows all to back a long-term debt security (to lower adverse

selection associated with this security). We set the debt threshold as high as possible making sure

that high type’s participation constraint is satisfied so that it is sold in a pooling equilibrium. If there

are two separate pools of long-term securities, denote the payments of the two pools at period τ , ŝ1
τ

and ŝ2
τ respectively, and denote the value of the two pools at the beginning of period t + 1, V̂ 1

t+1 and

V̂ 2
t+1. yLDt (τ, ŝ1

τ ) + yLDt (τ, ŝ2
τ ) still satisfies high type’s participation constraint thus generates weakly

lower payoff for the borrower than yLDt (τ, ŝ1
τ + ŝ2

τ ), given V̂ 1
t+1 and V̂ 2

t+1. This argument shows that it is

optimal to pool all long-term securities together and then issue a long-term debt security and a long-term

equity security against the pool, given V̂ 1
t+1 and V̂ 2

t+1. By applying repeatedly the same argument for

all periods after period t, we can show that it is optimal to design two long-term securities, yLDt (τ, s)

and yLEt (τ, s) as specified above.

B.3 An Alternative Security Market Microstructure

In this section we introduce security trading through an intermediary that maximizes expected amount of

inputs raised in the security market. Fix an arbitrary security y. Assume EHy > ELy. The intermediary

posts (aQ, qQ) for Q ∈ {L,H} . Borrower of type Q sells aQ units of the security and the investor receives

this amount and pays qQ to the borrower through the intermediary. We assume that the investor breaks
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even. incentive compatibility constraints require:

zqH − aHEHy ≥ zqL − aLEHy (B.11)

and

zqL − aLELy ≥ zqH − aHELy (B.12)

where aQ ∈ [0, 1] and qQ ≤ EQy. High type’s incentive to participate requires:

zqH − aHEHy ≥ 0. (B.13)

(Type L′s incentive to participate is automatically satisfied.)

Hence the intermediary’s problem can be written as:

max
qL∈[0,ELy],qH∈[0,EHy]

λqL + (1− λ) qH

subject to (B.14) and (B.13) and lenders break even.

We consider two cases:

Pooling: In this case qL = qH = q and aL = aH = a. incentive compatibility constraints (B.11) and

(B.12) are automatically satisfied. Break even constraint implies q = a (λELy + (1− λ)EHy) . Hence

a = 1. From (B.13) we obtain:
ELy

EHy
≥ 1− z − 1

zλ
= ζ.

Separating: In this case qL 6= qH . Since lenders know the type of the borrower, break even implies

qQ = aQEQy. Let σ (y) = ELy
EHy

. Plugging into (B.11) and (B.12) we obtain:

(σ (y)− z) qL + (z − 1) qH ≥ 0 (B.14)

− (z − 1) qL + (z − σ (y)) qH ≤ 0 (B.15)

Solution to the problem is qL = ELy, aL = 1, qH = σ(y)(z−1)
z−σ(y) EHy and aH = σ(y)(z−1)

z−σ(y) < 1. Inputs raised

is λELy + (1− λ) σ(y)(z−1)
z−σ(y) EHy which is strictly less that in the pooling case.

Note that unlike the situation in the main model, in the separating case the high type sells a fraction

of the security and retains the rest. Yet, there is still a “discontinuity” at the threshold ζ. When σ (y)

goes above ζ, there is a discrete drop in the amount of inputs the borrower can raise.
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B.3.1 Multiple Equilibria with Equity Claims

Suppose the borrower is restricted to issuing only the equity claim, or a passthrough security, to the

collateral asset in the security market. We show that the multiple equilibria in the security market

justified by different asset prices can happen under the alternative formulation.

As in the baseline case, we can solve for the asset price in a pooling equilibrium:

φP = βz(φP + λELs+ (1− λ)EHs),

φP =
βz (λELs+ (1− λ)EHs)

1− βz
. (B.16)

The asset price in the separating equilibrium is given by:

φS = βz

[
λ
(
ELs+ φS

)
+ (1− λ)

(z − 1)
(
EHs+ φS

)
z − ELs+φS

EHs+φS

]
+ β (1− λ)

z (EHs− ELs)
z − ELs+φS

EHs+φS

.

As usual multiple equilibria exist when:

ELs+ φS

EHs+ φS
< ζ ≤

(
ELs+ φP

EHs+ φP

)
.

Although a simple closed form condition is not easy to get, we can show numerically that multiplicity

is possible. Suppose β = 0.9, z = 1.05, λ = 0.5, ELs = 1, EHs = 10. Then ζ = 0.9, φS = 70.58 and

φP = 94.5. Hence,
ELs+ φS

EHs+ φS
= 0.88 and

ELs+ φP

EHs+ φP
= 0.91

and both prices are consistent with equilibria.

B.4 Nash Bargaining over the Asset Price

Let θ denote the bargaining power of Agent O. Agent O designs the security at the beginning of a

period, anticipating bargaining over the ownership of the asset at the end of the period. Denote the

resale value of the asset from renegotiation φ.

For simplicity, we focus on a stationary equilibrium. Given the security design {yi(s)}. The reserva-

tion value of the asset for agent O is

VO = β [λaiL (zqi − ELyi) + (1− λ)aiH(zqi − EHyi) + Es+ φ]

Taken φ as given, the optimal security design is the same as in the main text. The reservation value can

then be expressed as

VO = β

{
(z − 1)

[∫ sH

sL

(min(d, s) + φ) d (λFL(s) + (1− λ)FH(s)) + λ

∫ sH

d

(s− d)dFL(s)

]
+ Es+ φ

}
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The reservation value of the asset for suppliers is

VS = β (Es+ φ) .

In Nash bargaining the resale value φ maximizes:

(VO − φ)θ(φ− VS)1−θ

Hence,

φ = θVO + (1− θ)VS

= β

{
θ(z − 1)

[∫ sH

sL

(min(d, s) + φ) d (λFL(s) + (1− λ)FH(s)) + λ

∫ sH

d

(s− d)dFL(s)

]
+ Es+ φ

}
The asset price is equivalent to that in our main model with a different private return from investment

for agent O, ẑ = 1− θ + θz.

B.5 Online Appendix: Continuous time extension of Corollary 1

Interestingly, the next corollary shows that in the continuous time limit of the i.i.d. asset quality case

in Corollary 1, there still exists a region of multiple equilibria, indicating the importance of adverse

selection problem at the short horizon. When we take the model to the continuous time limit, we

change notations in the following way: denote the duration of a period in the discrete time model dt,

the dividend payment of the asset (s) sdt, the gain from trade (z) 1 + zdt, the time discount factor (β)

1−ρdt, where ρ > z > 0. We can derive the condition of multiple equilibria in the continuous time limit

by taking equation (17) to the limit.

Corollary 2. In the continuous time limit of dt→ 0, multiple equilibria exist whenever

ρ− z
ρ+ 1−λ

λ z
>
ELs

EHs
≥
ρ− 1

λz

ρ
. (B.17)

Notice that the upper bound in (B.17) is always above the lower bound since 0 ≥ −(1− λ)z/λ2. So,

there always exists multiple equilibria in the continuous time limit. Intuitively, in the limit, both the gains

of trade and the heterogeneity in asset value become smaller, 1+zdt→ 1, (ELsdt+φ)/(EHsdt+φ)→ 1.

But the heterogeneity in value relative to the gains from trade may still be large, so that adverse selection

may still be present in the limit.
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