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Abstract

Surveys that are designed to measure subjective states (e.g., happiness) typically
generate ordinal data. A fundamental problem is that methods used to analyse ordinal
data (e.g., ordered probit) rely on strong and often unjustified distributional assump-
tions. In this paper, we propose using survey response times to solve that problem.
The key assumption of our approach is that individual response time is decreasing in
the distance between the value of the latent variable and an indecision threshold. This
assumption is supported by a large body of evidence on chronometric effects in psy-
chology, neuroscience and economics. We provide conditions under which the expected
value of the latent variable (e.g., average happiness) can be compared across groups,
even without making distributional assumptions. We apply our method to an online
survey experiment and obtain some evidence that happiness follows distributions for
which traditional regression analysis is valid.
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1 Introduction

Surveys have been an important tool in the social sciences for a long time (see Rossi et al.,
1983, for a historical overview). With the help of surveys, information can be collected on a
diverse range of topics, from objective socio-demographic characteristics of a population to
subjective attitudes like political orientation of individuals. Surveys are also used regularly
for program evaluation and in market research.

In economics, surveys have been used at least since Easterlin (1974) to measure happiness.
The happiness literature has generated many interesting insights, the most prominent one
being Easterlin’s paradox of a correlation between income and reported happiness within
countries but not across countries or over time. Recently, surveys have also become popular
as a tool for measuring economic preferences. For instance, Falk et al. (2018) have introduced
the Global Preference Survey, which is conducted around the world and elicits individuals’
preferences in different domains such as risk and time.

Many surveys, in particular those measuring subjective states like happiness or prefer-
ences (Likert-scale surveys, Likert, 1932), generate ordinal data. For example, the overall life
happiness question in the General Social Survey (GSS, Davis and Smith, 1991) provides the
three response categories “not too happy,” “pretty happy,” and “very happy.” People respond-
ing “not too happy” are supposed to be less happy than those responding “pretty happy,”
but there is no information by how much less. Similarly, Falk et al. (2018)’s question about
the willingness to take risks asks for an answer on a scale from 0 to 10. Experimental valida-
tion has shown that individuals responding in a lower category behave in a more risk-averse
way than those responding in a higher category, but there is no information in the survey
response data that allows us to judge by how much their risk-aversion coefficients differ.

To analyse ordinal survey data, researchers typically rely on ordered response models
like ordered probit (see e.g. Boes and Winkelmann, 2006). These models assume that there
is a continuous latent variable, e.g. true happiness or the risk-aversion coefficient, which
generates discrete survey responses based on reporting thresholds. With assumptions on the
distribution of the latent variable, the effect of observables on the outcome of interest can
be estimated. For instance, one can compare average happiness between the rich and the
poor, or average risk-aversion between different countries.

The distributional assumptions made in traditional models are strong. Consider the case
of happiness surveys, which we will use as our main example throughout the paper. The
classic ordered probit approach assumes that happiness follows Gaussian distributions with
equal variances within each of the groups of individuals that the analyst wants to compare.
This implicitly assumes that the happiness distributions of different groups are always ranked
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by first-order stochastic dominance.
Recently, Bond and Lang (2019) have shown that results depend on these assumptions

in a drastic way. Without distributional assumptions, the comparison of happiness between
two groups is possible only under stringent conditions which are never satisfied in real-world
survey data. Roughly speaking, since we cannot learn anything from ordinal data about
the distribution of the latent variable within a given response category, making suitable
assumptions about that distribution allows us to conclude almost anything. More strikingly,
Bond and Lang (2019) find that the distributions which are commonly employed in the
literature do not have to be twisted too much to reverse the empirical findings. For instance,
plausible lognormal transformations that generate happiness distributions which resemble
income or wealth distributions are sufficient to overturn standard results.1

In this paper, we argue that the use of survey response time data could help to solve
the identification problem. Response time is the duration that a survey participant needs
to answer a given question. To understand the logic of our argument, consider a happiness
survey with just two response categories, “unhappy” and “happy” (we will discuss the case
of more categories later). Suppose you answer this survey at a moment when you feel very
happy. Most likely, you will find it easy to respond “happy,” and you will do so quickly. Now
suppose you answer the survey at a moment when you feel at best moderately satisfied. You
may still end up responding “happy,” but most likely it will take you longer to decide. The
observable distribution of response times among the survey participants who respond to be
happy then contains information about the unobservable distribution of happiness within
that response category (and analogously for the “unhappy” category). Response time data
can provide precisely the evidence that was missing for identification.

The idea that subjects respond faster when a stimulus is farther away from an indecision
threshold is not new. This chronometric effect has been documented in many studies in
psychology, neuroscience and economics. In some of these studies, the stimulus is objective,
such as the difference in brightness between two lights. Kellogg (1931) has first shown that
subjects identify the brighter light faster (and more accurately) if the difference in brightness
becomes larger. The same is true in tasks where the larger of two objects has to be identified
(Moyer and Bayer, 1976), or the direction of random dot motion (Palmer et al., 2005).
Making the decision easier, by magnifying the stimulus away from the indecision threshold,
always shortens response times. In other studies, the stimulus is subjective, for example the
utility difference between two options in an economic choice task. Moffatt (2005) has shown

1Bond and Lang (2019) also discuss that the traditional models make strong assumptions in addition
to specific happiness distributions, for instance that happiness is interpersonally comparable and that all
survey participants employ the same reporting thresholds. The identification problem exists despite these
additional assumptions.
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that choice between two lotteries becomes faster when the utility difference between the
lotteries becomes larger. The same has been documented for intertemporal choices (Chabris
et al., 2009; Konovalov and Krajbich, 2019) and choices between food items (Krajbich et al.,
2010). Again, making the decision easier, by increasing the strength of preference away from
the indifference point, shortens response times.2

In the theoretical part of the paper, we show how response times can be integrated into
an otherwise conventional ordered response model, in a way that reflects the chronometric
effect. Following Bond and Lang (2019), we aim at comparing two groups (e.g., the rich
and the poor) based on their responses in a survey (e.g., about happiness). The latent
variable h (e.g., true happiness) follows continuous distributions in each group, but these
distributions are unknown to the analyst. Individual responses are generated by reporting
thresholds τ 1 < τ 2 < . . . < τn, which are also unknown but assumed to be the same for all
survey participants. A participant with happiness h ≤ τ 1 responds in the lowest category
0, a participant with happiness τ i < h ≤ τ i+1 responds in intermediate category i, and a
participant with happiness τn < h responds in the highest category n. Bond and Lang (2019)
have asked whether we can learn from survey response data that the happiness distribution
in one group first-order stochastically dominates that in the other group. They show that
this is possible only under extremely stringent conditions. For instance, in a survey with
two response categories, all participants in one group must respond to be happy and all
participants in the other group must respond to be unhappy. If there are more than two
categories, the condition is stronger than first-order stochastic dominance of the observed
response distributions of the groups, and there still cannot be any responses in the lowest
(highest) category from the group that is more happy (more unhappy). The same conditions
apply when merely asking about a ranking of average happiness between the groups, instead
of first-order stochastic dominance.

Now assume that responses display the chronometric effect. As before, consider first
a happiness survey with two response categories. The response time of a participant with
happiness h is c(|h−τ 1|), where c is a strictly decreasing but unknown chronometric function,
reflecting that the answer becomes easier and thus quicker for a participant when the distance
|h− τ 1| between the stimulus h and the indecision threshold τ 1 becomes larger. We assume
here that the chronometric function c is the same for all participants. This is analogous to
the assumption of identical reporting thresholds for all participants in traditional ordered
response models, but it can be relaxed substantially (we will discuss this in detail later).

2There are many more studies documenting the chronometric effect in a variety of domains, which we
cannot summarize here. See Alós-Ferrer et al. (2021) for a more detailed discussion of studies that find the
chronometric effect in economic choices, and Clithero (2018b) for an excellent survey of the use of response
times in economics.
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Then, if the distribution of response times is observed in addition to the survey responses,
the conditions for identifying first-order stochastic dominance of the happiness distributions
become substantially weaker. Suppose the fraction of participants in group A who respond
to be happy and do so at response time t or earlier, denoted rhappyA (t), is larger than the
corresponding fraction in group B, denoted rhappyB (t). We can conclude that the fraction of
participants with happiness h ≥ τ 1+c−1(t) is larger in group A than in group B. If this holds
for all t, then the participants who respond to be happy in group A are happier than in group
B in the first-order stochastic dominance sense. Combined with the analogous argument for
participants who respond to be unhappy, we ultimately obtain that rhappyA (t) ≥ rhappyB (t) and
runhappyA (t) ≤ runhappyB (t) for all t is both necessary and sufficient for identification. These
conditions are much weaker than the conditions in Bond and Lang (2019). For t → ∞,
they merely imply that the fraction of participants who respond to be happy must be higher
in group A than in group B, and not that these fractions have to be one and zero. Our
conditions are stricter than those with traditional ordered response models, because the
inequalities have to hold conditional on all response times.

We derive analogous conditions for the identification of a ranking of average happiness of
the groups, which turn out to be even weaker, thanks to the additional constraint on the set
of admissible data-generating processes imposed by response time data. We also show that
our criterion always detects first-order stochastic dominance if it actually exists, for instance
when ordered probit is the correct model. The true ranking of average happiness is always
detected under some additional conditions.

When a survey has more than two response categories, chronometric effects are not
straightforward in the intermediate categories. As the stimulus h varies within an interval
[τ i, τ i+1], it moves away from one indecision threshold but closer towards the other. Hence,
any plausible specification of the chronometric effect generates response times that are not
monotone in h between two interior reporting thresholds. As a consequence, response times
from intermediate response categories are uninformative, and our identification condition
coincides with that in Bond and Lang (2019) for these categories. Our condition remains
substantially weaker for the lowest and the highest category. Also, we will argue later that the
identification condition for intermediate categories can be relaxed if simple binary follow-up
questions are included in the survey.

The above arguments rest on the assumption that the chronometric function is the same
for all survey participants, which may not be satisfied in reality. Fortunately, this assumption
can be relaxed. First, our main results continue to hold if there is individual heterogeneity
in the chronometric function that is independent of happiness. The argument is similar to
the observation that independent heterogeneity in the reporting thresholds is not a problem
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for traditional ordered response models (see e.g. Di Tella and MacCulloch, 2006, p. 29f).
Second, for some results we can allow heterogeneity that correlates with happiness, as long as
monotonicity of the chronometric function is preserved within the lowest and the highest re-
sponse category. This may be relevant because the literature has documented that unhappy
people can be slower responding, generating an additional effect of absolute happiness on
response times (Studer and Winkelmann, 2014). Third, we will present a condition for iden-
tifying the ranking of group averages with arbitrary group-specific chronometric functions.
Finally, most surveys ask more than one question. It is therefore possible to normalize in-
dividual response times using the response time from a baseline question. In our empirical
application, we will use this procedure to account for individual fixed-effects in the speed of
reading, deciding, and clicking on a response.

In summary, survey response times contain information that is lacking for identification
of traditional ordered response models. Based on the well-established chronometric effect,
the observable distribution of response times allows us to check whether the latent distribu-
tions are so strongly skewed that standard results are reversed. In the words of Bond and
Lang (2019), response times may help analysts “justify their particular cardinalization or
parametric assumption relative to other plausible alternatives” (p. 1639).

Our theoretical analysis is related to a recent paper by Alós-Ferrer et al. (2021), which
studies the problem of eliciting preferences from choice data when choice is stochastic. While
surprising at first glance, the identification problem in ordered response models is similar to
the revealed preference problem in random utility models. In the latter, the utility difference
between two choice options of an agent is an unobserved random variable which generates
stochastic choices. Without assumptions on its distribution (e.g. logistic in a logit model) it
is not possible to deduce the agent’s underlying deterministic utility function from observed
choices. Alós-Ferrer et al. (2021) propose using response time data to solve that problem,
exploiting the chronometric effect. Our methodology also relies on the chronometric effect,
but our questions and results are different from Alós-Ferrer et al. (2021). Most importantly,
revealed preference questions are questions about the properties of a single distribution (of
the utility difference between the choice options). The identification questions considered in
this paper are questions about the comparison of two distributions (of the latent variable in
two groups).

In the empirical part of the paper, we report results from an online survey that we
conducted on Amazon Mechanical Turk (MTurk). We first asked several socio-demographic
questions, followed by substantive questions about happiness, preferences, trust, and political
attitudes. These questions were adopted from the GSS and from Falk et al. (2018). We
implemented two versions of the survey, one with two answer categories and one with three
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answer categories. Based on the responses of about 4,000 participants, we compare different
socio-demographic groups and, for each substantive question, check whether it is possible
to identify a difference between the groups, for example whether participants with children
are happier than those without, or whether the old are more risk-averse than the young.
Our goal is not to make claims about causality, but rather to show how our techniques can
be applied and to get a first impression whether the distributional assumptions made in
traditional models will be confirmed or rejected.

Conducting the survey online makes it easy to record response times, which we define as
the time between the display of the question and the moment when the participant clicked
on her answer. To account for individual fixed-effects, we normalize the raw response times
using each individual’s response time in the socio-demographic question about marital status,
which was answered quickest on average. We then work with non-parametric kernel density
estimates of the normalized response time distributions.

Not surprisingly, the conditions for identification without response time data are never
satisfied; for none of the substantive questions, no group comparison, and neither the binary
nor the trinary version of the survey. In the trinary survey, the condition that applies
to the intermediate response categories is always violated. Since our response-time-based
conditions coincide with the conventional ones for intermediate categories, we are unable to
achieve identification in the trinary survey even with response time data.

In the binary version of the survey, our results vary across the different questions. On the
one hand, for the overall life happiness question we obtain identification of either first-order
stochastic dominance or a ranking of the averages in a majority of all group comparisons.
We interpret this as first cautious evidence that happiness follows distributions for which the
results of traditional ordered response models are valid. On the other hand, identification
is never achieved for the question about political attitudes. This may suggest that the
underlying distributions of political attitudes are much more skewed than what is postulated
by traditional ordered response models. Finally, the preference and trust questions are
somewhere in between, with identification being possible in about half of the cases.

Overall, our empirical findings support the idea that surveys with just two response
categories may be preferable to surveys with multiple categories, and that response times,
due to their continuous and cardinal nature, may be no less important than responses.

The paper is organized as follows. Section 2 presents our theoretical results. Section 3
reports the empirical results from our survey. A more in-depth literature discussion can be
found in Section 4. Section 5 concludes. Some omitted proofs, extensions, and the complete
questionnaires of our survey experiment are in the Appendix.
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2 Theory

2.1 Ordered Response Model

Consider two groups j = A,B of individuals. The distribution of happiness h̃ within group
j is described by a cumulative distribution function Gj : R→ [0, 1], which is assumed to be
continuous and to have a well-defined expected value

EGj
[h̃] =

∫
R
h dGj(h).

A data analyst does not observe individual happiness but observes only the individuals’
survey responses on a finite ordered scale, with categories labelled i = 0, . . . , n for some n ≥ 1.
The latent variable h̃ generates responses through reporting thresholds τ = (τ 1, τ 2, . . . , τn) ∈
Rn, which are the same for all individuals in both groups and satisfy τ 1 < τ 2 < . . . < τn. In
particular, an individual with happiness h responds in category i when τ i < h ≤ τ i+1. This
is applicable also to categories i = 0, n with the convention that τ 0 = −∞ and τn+1 = +∞.
Hence, the fraction of individuals within group j who respond in category i is given by

rij = Gj(τ
i+1)−Gj(τ

i). (1)

This is again applicable also to i = 0, n with the convention Gj(−∞) = 0 and Gj(+∞) = 1.
Given ordered response data rj = (r0j , r

1
j , . . . , r

n
j ) ∈ [0, 1]n+1 with

∑n
i=0 r

i
j = 1, the analyst

would like to learn about properties of the underlying distributions Gj. In particular, she
is interested in comparing the happiness between the two groups. The following definition
formalizes the idea of non-parametric identification of first-order stochastic dominance.

Definition 1. Given data (rA, rB), group A is identified to be rank-order-happier than group
B if

GA(h) ≤ GB(h) for all h ∈ R,

for all (GA, GB, τ) that satisfy (1) for i = 0, . . . , n and j = A,B.

Rank-order identification requires GA to weakly first-order stochastically dominate GB,
written GA FOSD GB, for all pairs of happiness distributions and reporting thresholds that
could have generated the observed survey data. This is a strong requirement, but note that
first-order stochastic dominance is implicitly assumed in applications of, e.g., the classical
ordered probit model. A conceptually weaker requirement is the following.
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Definition 2. Given data (rA, rB), group A is identified to be on-average-happier than group
B if

EGA
[h̃] ≥ EGB

[h̃],

for all (GA, GB, τ) that satisfy (1) for i = 0, . . . , n and j = A,B.

In words, on-average identification only requires the average happiness to be weakly larger
in group A than in group B, but again for all pairs of happiness distributions and reporting
thresholds that could have generated the data.

Recall the well-known fact that FOSD is equivalent to EGA
[q(h̃)] ≥ EGB

[q(h̃)] for all
weakly increasing functions q : R → R. Hence, the definition of rank-order identification
could be rephrased accordingly. As we show in Appendix A.1, the definition of on-average
identification is equivalent to the requirement that EGA

[q(h̃)] ≥ EGB
[q(h̃)] for all strictly

increasing functions q : R → R. This is because we do not restrict the class of admissible
distributions beyond the property of continuity, so that for any distributions (GA, GB) and
any strictly increasing q, the induced distributions (ĜA, ĜB) of happiness under transforma-
tion q are also admissible distributions that could have generated the same data. Hence,
on-average identification implies a ranking of averages no matter which strictly increasing
“cardinalization” (Bond and Lang, 2019, p. 1630) we choose to transform the scale of hap-
piness (provided the expectations are well-defined).

We now state a first result about rank-order identification. This result is not new (see
e.g. Bond and Lang, 2019, and the discussion therein) and we include a proof only for
completeness and later reference.

Proposition 1. Given (rA, rB), group A is identified to be rank-order-happier than group B
if and only if

(i) r0A = 0,

(ii) rnB = 0, and

(iii)
∑k

i=0 r
i
A ≤

∑k−1
i=0 r

i
B for all k = 1, . . . , n− 1.

Proof. If-statement. Let (GA, GB, τ) satisfy (1) for i = 0, . . . , n and j = A,B. It follows
that Gj(τ

i+1) = Gj(τ
i) + rij. Hence, for any k = 0, . . . , n and h ∈ (τ k, τ k+1] we obtain

GA(h) ≤ GA(τ k+1) = GA(τ k) + rkA = GA(τ k−1) + rk−1A + rkA = . . . =
k∑
i=0

riA, and
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GB(h) ≥ GB(τ k) = GB(τ k−1) + rk−1B = GB(τ k−2) + rk−2B + rk−1B = . . . =
k−1∑
i=0

riB.

Conditions (i)− (iii) thus imply GA(h) ≤ GB(h) for all h ∈ R.
Only-if-statement. Suppose at least one of conditions (i) − (iii) is violated. Suppose

first that there exists k∗ = 1, . . . , n − 1 for which
∑k∗

i=0 r
i
A >

∑k∗−1
i=0 riB. Therefore, any

(GA, GB, τ) that satisfies (1) for i = 0, . . . , n and j = A,B must have GA(τ k
∗+1) > GB(τ k

∗
).

Starting from any such (GA, GB, τ), construct (ĜA, ĜB, τ) by setting Ĝj(h) = Gj(h) for all
h /∈ (τ k

∗
, τ k

∗+1). For h ∈ (τ k
∗
, τ k

∗+1), let ĜA(h) = ĜA(τ k
∗+1) when h ≥ τ ∗ := (τ k

∗
+τ k

∗+1)/2,
and ĜB(h) = ĜB(τ k

∗
) when h ≤ τ ∗. Complete the construction of each Ĝj in an arbitrary

increasing and continuous way. It follows that (ĜA, ĜB, τ) satisfies (1) for i = 0, . . . , n and
j = A,B, and

ĜA(τ ∗) = ĜA(τ k
∗+1) = GA(τ k

∗+1) =
k∗∑
i=0

riA >
k∗−1∑
i=0

riB = GB(τ k
∗
) = ĜB(τ k

∗
) = ĜB(τ ∗),

so that ĜA FOSD ĜB is not true. The case where r0A > 0 is immediate, because it is always
possible to shift the probability mass GA(τ 1) > 0 in GA to the left to obtain a contradiction
to FOSD, and analogously when rnB > 0.

Observe that conditions (i) – (iii) apply for any number n of categories, whether small
or large. They are essentially never satisfied in real-world data, as demonstrated by Bond
and Lang (2019). We obtain a particularly striking corollary for the binary response case.

Corollary 1. Given (rA, rB) for n = 1, group A is identified to be rank-order-happier than
group B if and only if r0A = r1B = 0.

One may wonder whether the issue can be solved by weakening the notion of identifica-
tion. Unfortunately, as we show in the next result (which is new to the best of our knowledge),
the on-average notion of identification is not more admissible than the rank-order notion.

Proposition 2. Given (rA, rB), group A is identified to be on-average-happier than group
B if and only if group A is identified to be rank-order-happier than group B.

Proof. If-statement. This follows because GA FOSD GB implies EGA
[h̃] ≥ EGB

[h̃].
Only-if-statement. Suppose group A is not identified to be rank-order-happier than group

B, so at least one of conditions (i) − (iii) in Proposition 1 is violated. Suppose first that
there exists k∗ = 1, . . . , n− 1 for which

∑k∗

i=0 r
i
A >

∑k∗−1
i=0 riB. Define τ k∗ = 0 and τ k∗+1 = 1.

Let the other thresholds be ε-spaced for some ε ∈ (0, 1), i.e., τ k∗+2 = 1 + ε, τ k∗+3 = 1 + 2ε,

. . ., and τ k∗−1 = −ε, τ k∗−2 = −2ε, . . .. Construct Gj by setting Gj(τ
k) =

∑k−1
i=0 r

i
j for each
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k = 1, . . . , n, and Gj(τ
n + ε) = 1 and Gj(τ

1 − ε) = 0. Then define GA(ε) = GA(1) and
GB(1 − ε) = GB(0), and complete the construction of each Gj by connecting the defined
points in a piece-wise linear way. It follows that (GA, GB, τ) satisfies (1) for i = 0, . . . , n and
j = A,B, for all values of ε ∈ (0, 1). It also follows that

lim
ε→0

EGA
[h̃] = 1−GA(1) = 1−

k∗∑
i=0

riA, and lim
ε→0

EGB
[h̃] = 1−GB(0) = 1−

k∗−1∑
i=0

riB.

Hence for sufficiently small ε > 0 we obtain EGA
[h̃] < EGB

[h̃]. The cases where r0A > 0

or rnB > 0 are again immediate, because expected values can be decreased or increased
arbitrarily.

To better understand this result, observe that any violation of the conditions (i) – (iii)

in Proposition 1 makes it possible to construct a data-generating process for which the
average happiness is higher in group A than in group B. This is obvious for the conditions
concerning the extreme categories, but it can also be shown for the condition concerning the
intermediate categories. Response data alone is not able to rule out such constructions.

2.2 Ordered Response Model with Response Times

Assume the analyst also measures the speed of the individuals’ survey responses. Denote the
smallest and largest possible response times by t and t, respectively (where we allow for t = 0

and t = +∞). Response times are related to the latent variable h̃ through a chronometric
function c : R++ → [t, t). This function is assumed to be continuous, strictly decreasing in
δ whenever c(δ) > t, and to satisfy limδ→0 c(δ) = t and limδ→+∞ c(δ) = t. The chronometric
function is for now assumed to be the same for all individuals in both groups, analogous to
the assumption of identical reporting thresholds. The assumption can be relaxed, and we
will discuss this in dedicated remarks after each of our following results.

To understand how response times are generated, consider the binary case (n = 1) first.
An individual with happiness h < τ 1 responds in category i = 0 at response time c(τ 1 − h).
This reflects the idea that a happiness level closer to the reporting threshold means that
the individual finds it more difficult to determine whether the appropriate response category
is i = 0 (“unhappy”) or i = 1 (“happy”), resulting in a longer response time. Similarly, an
individual with happiness h > τ 1 responds in category i = 1 at response time c(h−τ 1). Note
that this approach attaches cardinal meaning to happiness h, but since we do not restrict
the set of distributions Gj and chronometric functions c, we implicitly allow for all possible
cardinalizations (see the related arguments in the previous section).
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τ 1 τ 2 Happiness

Response time

Figure 1: Example of response times with n = 2, τ 1 = −2, τ 2 = 2, and c(δ) = 1/(δ + 1).

There are various ways how the chronometric effect could be modelled for intermediate
response categories i = 1, . . . , n − 1 when n ≥ 2. In the following, we adopt a simple
symmetric specification where response time is driven by the distance between happiness and
the closest reporting threshold. Our results are robust to various other specifications, which
we will discuss after each result. Thus, an individual with happiness h exhibits a response
time of c(mini |h − τ i|). This formulation implicitly assumes h 6= τ i for all i = 1, . . . , n.
Since h̃ follows a continuous distribution, we do not need to specify the response time of
individuals with h = τ i, but we could set it to t (whenever finite). Figure 1 depicts an example
of response times arising from a data-generating process that satisfies all our requirements.

In summary, among the individuals of group j who respond in category i, provided that
they exist, the fraction responding at time t ∈ (t, t) or earlier is

F i
j (t) =

max {0, Gj(τ
i+1 − c−1(t))−Gj(τ

i + c−1(t))}
Gj(τ i+1)−Gj(τ i)

. (2)

Note that the maximum operator is required because too small response times t, for which
c−1(t) > (τ i+1 − τ i)/2, cannot arise in category i, with our present specification.

Given data on responses rj = (r0j , r
1
j , . . . , r

n
j ) and response times Fj = (F 0

j , F
1
j , . . . , F

n
j ),

where each cumulative distribution function F i
j is assumed to be continuous and to satisfy

F i
j (t) = 0 and F i

j (t) = 1,3 the analyst can again ask the previous identification questions.
At the risk of creating redundancy, we state these again as formal definitions.

3If rij = 0, we can specify F i
j to be an arbitrary cumulative distribution function with these properties.
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Definition 3. Given data (rA, rB, FA, FB), group A is identified to be rank-order-happier
than group B if

GA(h) ≤ GB(h) for all h ∈ R,

for all (GA, GB, τ, c) that satisfy (1) and (2) for i = 0, . . . , n, j = A,B, and all t ∈ (t, t).

Definition 4. Given data (rA, rB, FA, FB), group A is identified to be on-average-happier
than group B if

EGA
[h̃] ≥ EGB

[h̃],

for all (GA, GB, τ, c) that satisfy (1) and (2) for i = 0, . . . , n, j = A,B, and all t ∈ (t, t).

We start with a complete characterization of rank-order identification using response
times, which is the first main result of our paper.

Proposition 3. Given (rA, rB, FA, FB), group A is identified to be rank-order-happier than
group B if and only if

(i) r0AF
0
A(t)− r0BF 0

B(t) ≤ 0 for all t ∈ (t, t),

(ii) rnAF
n
A(t)− rnBF n

B(t) ≥ 0 for all t ∈ (t, t), and

(iii)
∑k

i=0 r
i
A ≤

∑k−1
i=0 r

i
B for all k = 1, . . . , n− 1.

Proof. If-statement. Let (GA, GB, τ, c) satisfy (1) and (2) for i = 0, . . . , n, j = A,B, and all
t ∈ (t, t). For i = 0 this implies

r0jF
0
j (t) = Gj(τ

1 − c−1(t))

for all t ∈ (t, t). Thus, condition (i) implies GA(τ 1 − c−1(t)) ≤ GB(τ 1 − c−1(t)) for all
t ∈ (t, t). We claim that this implies GA(h) ≤ GB(h) for all h ≤ τ 1. This is immediate for
any h for which there exists t ∈ (t, t) such that h = τ 1 − c−1(t). For h = τ 1 it follows from
continuity of Gj. For any h with c(τ 1 − h) = t it follows because Gj(h) = 0 in that case,
as there is no atom at response time t. By an analogous argument, condition (ii) implies
GA(h) ≤ GB(h) for all h > τn. The proof that condition (iii) implies GA(h) ≤ GB(h) for
τ 1 < h ≤ τn is exactly like in the proof of Proposition 1.

Only-if-statement. Suppose at least one of conditions (i) − (iii) is violated. Suppose
first that r0AF 0

A(t∗) − r0BF 0
B(t∗) > 0 for some t∗ ∈ (t, t). Any (GA, GB, τ, c) that satisfies (1)

12



and (2) for i = 0, . . . , n, j = A,B, and all t ∈ (t, t) must then have GA(τ 1 − c−1(t∗)) >

GB(τ 1 − c−1(t∗)), so that GA FOSD GB is not true. An analogous argument applies when
rnAF

n
A(t∗) − rnBF

n
B(t∗) < 0 for some t∗ ∈ (t, t). Finally, suppose that there exists k∗ =

1, . . . , n− 1 for which
∑k∗

i=0 r
i
A >

∑k∗−1
i=0 riB. Starting from any (GA, GB, τ, c) that generates

the data, we then construct Ĝj exactly like in the proof of Proposition 1. However, here we
complete ĜA for h ∈ (τ k

∗
, τ ∗), where τ ∗ := (τ k

∗
+ τ k

∗+1)/2, in a specific way:

ĜA(τ k
∗

+ z) = GA(τ k
∗

+ z) +GA(τ k
∗+1)−GA(τ k

∗+1 − z)

for all z ∈ (0, (τ k
∗+1 − τ k∗)/2). It is easy to see that this construction yields a continuous

and non-decreasing ĜA. It also follows that ĜA generates F k∗
A , because

ĜA(τ k
∗+1 − z)− ĜA(τ k

∗
+ z) = GA(τ k

∗+1 − z)−GA(τ k
∗

+ z)

for all z ∈ (0, (τ k
∗+1 − τ k

∗
)/2), and since GA satisfies (2) for i = k∗ and all t ∈ (t, t), so

does ĜA. Similarly, we can complete ĜB for h ∈ (τ ∗, τ k
∗+1) to generate the distribution F k∗

B .
It then follows that (ĜA, ĜB, τ, c) satisfies (1) and (2) for i = 0, . . . , n, j = A,B, and all
t ∈ (t, t), but ĜA FOSD ĜB is not true.

Remarkably, the previous strong requirements r0A = 0 and rnB = 0 in Proposition 1 are
now replaced by weaker conditions (i) and (ii) that rely on response times. For t → t,
these conditions imply r0A ≤ r0B and rnA ≥ rnB, which means that the fraction of responses
in the lowest category must be lower in group A than in group B, and conversely for the
highest category. More generally, the conditions require that this must also hold when
considering only those responses that took a response time of t or less, for all t. Intuitively,
there must be fewer and slower “most unhappy” responses in group A than in group B,
and conversely for the “most happy” responses. By contrast, condition (iii) is unaffected by
the availability of response time data. Intuitively, since response times are not monotone
between two reporting thresholds, as illustrated in Figure 1, response times are uninformative
in intermediate response categories. Nevertheless, we will argue later that condition (iii) can
be weakened if we include simple binary follow-up questions in the survey.

Remark. Our specific formulation of the chronometric function in intermediate response
categories is not essential for the conclusion that response times are uninformative in these
categories. Proposition 3 holds unaltered as long as response time is continuous between
any two interior reporting thresholds and approaches t as h approaches any of the thresh-
olds. For instance, the chronometric function could differ across the different intermediate
response categories. Importantly, conditions (i) and (ii) also do not make comparisons across
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response categories. Hence Proposition 3 would hold for arbitrary category-specific chrono-
metric functions ci(.). This is important, because the literature has argued that absolute
happiness levels could directly affect response times, with e.g. more unhappy people being
slower (Studer and Winkelmann, 2014). Our results apply as long as such effects do not
reverse the monotone chronometric relation within the extreme categories.

The power of our weaker conditions becomes apparent when considering the case of binary
survey responses, as we summarize in the following corollary.

Corollary 2. Given (rA, rB, FA, FB) for n = 1, group A is identified to be rank-order-happier
than group B if and only if r0AF 0

A(t)− r0BF 0
B(t) ≤ 0 ≤ r1AF

1
A(t)− r1BF 1

B(t) for all t ∈ (t, t).

In fact, if one is interested in rank-order identification, there is no need to consider surveys
with more than two response categories, as the next result shows.

Proposition 4. Suppose that the true happiness distribution of group A first-order stochasti-
cally dominates that of group B. For n = 1, the generated data (rA, rB, FA, FB) then satisfies
that r0AF 0

A(t)− r0BF 0
B(t) ≤ 0 ≤ r1AF

1
A(t)− r1BF 1

B(t) for all t ∈ (t, t).

Proof. Suppose GA FOSD GB and consider a survey with n = 1. Let τ 1 and c be the
reporting threshold and the chronometric function of the true data-generating process. Then
it follows that

r0jF
0
j (t) = Gj(τ

1 − c−1(t)) and r1jF
1
j (t) = 1−Gj(τ

1 + c−1(t)),

for j = A,B and all t ∈ (t, t). Since GA(h) ≤ GB(h) for all h ∈ R, we obtain

r0AF
0
A(t)− r0BF 0

B(t) = GA(τ 1 − c−1(t))−GB(τ 1 − c−1(t)) ≤ 0

and

r1AF
1
A(t)− r1BF 1

B(t) = GB(τ 1 + c−1(t))−GA(τ 1 + c−1(t)) ≥ 0,

for all t ∈ (t, t).

In words, whenever the true distributions of happiness of the two groups can be ranked
according to first-order stochastic dominance, as assumed e.g. in the ordered probit model,
our techniques applied to binary survey data will detect the dominance relation.4

4When the conditions for rank-order identification are violated, the data from binary surveys allows us
to pin down the percentiles of the distributions for which the dominance relation does not hold. For instance,
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Remark. We can extend the model and assume that response times are stochastic, modelled
by adding i.i.d. zero-mean noise to the log response times that are generated by the deter-
ministic process considered so far. An alternative interpretation is that individuals differ
in their chronometric functions, and this heterogeneity is uncorrelated with happiness (but
recall our discussion of the possibility of category-specific chronometric functions). Formally,
suppose the response time for an individual with happiness h is c(|h− τ 1|) · η̃, where η̃ is a
non-negative random variable with mean one, assumed to be i.i.d. according to a continuous
distribution function Z. The multiplicative structure is equivalent to adding noise to log
response times and ensures that response times remain non-negative. Now, the fraction of
individuals who respond in each of the two categories at time t ∈ (t, t̄) or earlier is

F 0
j (t) =

∫ +∞
0

Gj(τ
1 − c−1(t/η)) dZ(η)

Gj(τ 1)
, F 1

j (t) =
1−

∫ +∞
0

Gj(τ
1 + c−1(t/η)) dZ(η)

1−Gj(τ 1)
,

which replaces equation (2). It is easy to adapt the proof of Proposition 4 to this specification.
Hence, if the true happiness distributions of the groups can be ranked by first-order stochastic
dominance, the data generated by the model with noisy or heterogeneous chronometric
functions still satisfies the condition in Corollary 2, so that our techniques will continue to
detect the dominance relation.

The next proposition, which is the second main result of our paper, gives a weaker
sufficient condition for on-average identification, which is implied by but does not imply
the previous condition in Proposition 3. This shows shows that the on-average notion of
identification is indeed weaker than the rank-order notion when response times are being
used.5

Proposition 5. Given (rA, rB, FA, FB), group A is identified to be on-average-happier than
group B if

(i) r0AF
0
A(t)− r0BF 0

B(t) ≤ rnAF
n
A(t)− rnBF n

B(t) for all t ∈ (t, t), and

(ii)
∑k

i=0 r
i
A ≤

∑k−1
i=0 r

i
B for all k = 1, . . . , n− 1.

suppose that r0AF
0
A(t) > r0BF

0
B(t) for some t > 0. Since any (GA, GB , τ, c) that could have generated the

data must satisfy r0jF 0
j (t) = Gj(τ

1 − c−1(t)), we can conclude that the r0BF
0
B(t)-percentile of GA must be

strictly lower than that of GB .
5Intuitively, the additional requirement (2) for response times implies that not all distributions (ĜA, ĜB)

which are obtained by monotonically transforming some distributions (GA, GB) that could have generated
the data are themselves admissible data-generating processes. Therefore, in contrast to the case without
response times, there are constraints on the ranking of expected values even when the conditions for rank-
order identification are violated.
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Proof. Let (GA, GB, τ, c) satisfy (1) and (2) for i = 0, ..., n, j = A,B, and all t ∈ (t, t).
Condition (i) implies that

GA(τ 1 − c−1(t))−GB(τ 1 − c−1(t)) ≤ [1−GA(τn + c−1(t))]− [1−GB(τn + c−1(t))],

for all t ∈ (t, t). Arguing like in the proof of Proposition 3, this implies that

GB(τn + h) +GB(τ 1 − h)−GA(τn + h)−GA(τ 1 − h) ≥ 0 (3)

for all h ≥ 0. In addition, exactly like in the proof of Proposition 1, condition (ii) implies

GA(h) ≤ GB(h) (4)

for all h ∈ (τ 1, τn]. Therefore, using the fact that

EG[h̃] = −
∫ 0

−∞
G(h)dh+

∫ +∞

0

[1−G(h)]dh,

we have

EGA
[h̃]− EGB

[h̃]

=

∫ 0

−∞
[GB(h)−GA(h)]dh+

∫ +∞

0

[1−GA(h)− 1 +GB(h)]dh

=

∫ +∞

−∞
[GB(h)−GA(h)] dh

=
n∑
k=0

∫ τk+1

τk
[GB(h)−GA(h)] dh

≥
∫ +∞

τn
[GB(h)−GA(h)] dh+

∫ τ1

−∞
[GB(h)−GA(h)] dh

=

∫ +∞

0

[GB(τn + h)−GA(τn + h)] dh+

∫ 0

−∞

[
GB(τ 1 + h)−GA(τ 1 + h)

]
dh

=

∫ +∞

0

[GB(τn + h)−GA(τn + h)] dh+

∫ +∞

0

[
GB(τ 1 − h)−GA(τ 1 − h)

]
dh

=

∫ +∞

0

[
GB(τn + h) +GB(τ 1 − h)−GA(τn + h)−GA(τ 1 − h)

]
dh

≥ 0,

where the first inequality follows from (4) and the second inequality follows from (3).
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There is no difference between these new and the previous conditions when it comes to
the intermediate response categories. Hence, the difference between rank-order identification
and on-average identification is most evident for the case of binary surveys.

Corollary 3. Given (rA, rB, FA, FB) for n = 1, group A is identified to be on-average-happier
than group B if r0AF 0

A(t)− r0BF 0
B(t) ≤ r1AF

1
A(t)− r1BF 1

B(t) for all t ∈ (t, t).

For t→ t, this again just implies r0A ≤ r0B and r1A ≥ r1B. More generally, it requires that
the response difference between groups A and B is larger in category i = 1 than in category
i = 0, but considering the responses that took place before time t, for all t. In contrast to the
condition for rank-order identification, fast “most unhappy” responses in group A relative to
group B can be compensated by even faster “most happy” responses. Note that this argument
involves a comparison of response times across response categories, hence category-specific
chronometric functions are not admissible here.

Unlike for rank-order identification, if one is interested in on-average identification, it
can be useful to consider surveys with more than two response categories. The following
example illustrates this point.

Example. Suppose that the true distribution of happiness in group A is given by

GA(h) =



0 if h < −1.2,

ε(h+ 1.2) if − 1.2 ≤ h < 0.2,

(1.75ε− 1.25)(1− h) + 1 if 0.2 ≤ h < 1,

1 if h ≥ 1,

where ε ∈ (0, 5/7), so GA is well-defined. For the happiness of group B, the distribution is

GB(h) =


0 ifh < −1,

h
2

+ 1
2

if − 1 ≤ h < 1,

1 ifh ≥ 1.

We assume that ε is sufficiently small such that EGA
[h̃] > 0 = EGB

[h̃], so group A is happier
than group B on average. Consider first a survey with n = 1. Suppose that τ 1 = 0 is the
reporting threshold and c(δ) = 1/δ the chronometric function of the true data-generating
process. Then, for response time t = 1, we have

r0AF
0
A(1)− r0BF 0

B(1) = GA(τ 1 − c−1(1))−GB(τ 1 − c−1(1)) = GA(−1)−GB(−1) = 0.2δ
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and

r1AF
1
A(1)− r1BF 1

B(1) = GB(τ 1 + c−1(1))−GA(τ 1 + c−1(1)) = GB(1)−GA(1) = 0.

Hence, the data generated by the binary survey will violate the condition in Proposition 5
(or Corollary 3), leading to a failure in achieving on-average identification. Now consider a
survey with n = 2. Suppose that in this case the reporting thresholds are τ 1 = −0.5 and
τ 2 = 0.2 (so one threshold is larger and one smaller than the unique threshold considered
in the binary case), while the chronometric function is still c(δ) = 1/δ. Condition (ii) in
Proposition 5 then requires

r0A + r1A = GA(τ 2) = 1.4ε < r0B = GB(τ 1) = 1/4,

which is satisfied whenever ε is sufficiently small. We show in Appendix A.2 that, if ε is
sufficiently small, condition (i) in Proposition 5 is also satisfied. Hence, the data generated
from the survey with n = 2 will satisfy the conditions in Proposition 5, and we can correctly
identify that group A is on-average happier than group B.

However, if one is willing to make the assumption that the happiness distribution of each
group is symmetric around its mean (which was not the case for group A in the example
above), and that in a binary survey the reporting threshold lies between the two groups’
average happiness levels, then the generated data will necessarily satisfy the condition in
Corollary 3.

Proposition 6. Suppose that the true average happiness of group A is larger than that of
group B, and that the happiness distribution of each group is symmetric around its mean.
For n = 1 and τ 1 ∈ [EGB

[h̃],EGA
[h̃]], the generated data (rA, rB, FA, FB) then satisfies that

r0AF
0
A(t)− r0BF 0

B(t) ≤ r1AF
1
A(t)− r1BF 1

B(t) for all t ∈ (t, t).

Proof. Denote µj = EGj
[h̃] for j = A,B. Suppose µB ≤ µA and consider a survey with

n = 1. Let τ 1 ∈ [µB, µA] be the reporting threshold and c the chronometric function of the
true data-generating process. Then, for all t ∈ (t, t̄),

r0AF
0
A(t)− r0BF 0

B(t) = GA(τ 1 − c−1(t))−GB(τ 1 − c−1(t))

=
[
1−GA(2µA − τ 1 + c−1(t))

]
−
[
1−GB(2µB − τ 1 + c−1(t))

]
= GB(2µB − τ 1 + c−1(t))−GA(2µA − τ 1 + c−1(t))

≤ GB(τ 1 + c−1(t))−GA(τ 1 + c−1(t))

= r1AF
1
A(t)− r1BF 1

B(t),
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where the second equality follows from the symmetry assumption, and the inequality follows
from the fact that τ 1 ∈ [µB, µA].

The requirement of symmetry is strong, even though conventional models also make that
assumption. A useful aspect of Proposition 6 is that it provides a partial test of symmetry.
If the condition for on-average identification is violated in a binary survey, then the true
happiness distributions cannot be symmetric, or the reporting threshold cannot lie between
the groups’ average happiness levels.6

Remark. Like for Proposition 4, the result in Proposition 6 continues to hold with i.i.d. noise
in response times or independent heterogeneity in the chronometric function. Our condition
in Corollary 3 continues to detect the correct ranking of happiness averages and to serve as
a partial test of symmetry.

Finally, we provide an additional sufficient condition for on-average identification in the
binary case, which is stronger than in Corollary 3 but is neither implied by nor implies the
conditions for rank-order identification in Corollary 2.

Proposition 7. Given (rA, rB, FA, FB) for n = 1, group A is identified to be on-average-
happier than group B if r1BF 1

B(t)− r0BF 0
B(t) ≤ 0 ≤ r1AF

1
A(t)− r0AF 0

A(t) for all t ∈ (t, t).

Proof. It follows exactly like in the proof of Theorem 1 in Alós-Ferrer et al. (2021) that
EGB

[h̃] ≤ τ 1 ≤ EGA
[h̃] must hold under the stated condition, for every (GA, GB, τ, c) that

generates the data.

For t → t, this condition implies r0A ≤ r1A and r0B ≥ r1B. More generally, it requires that
in group A there are more responses in the high than in the low category when considering
only those responses that took place before any time t, and conversely for group B.

Remark. The condition in Proposition 7 has the advantage that it does not make direct
comparisons of the response time distributions across the two groups. As argued in the
proof, if the condition is satisfied, the average happiness of group A must be larger than the
reporting threshold and the average happiness of group B must be smaller. A ranking of
the averages then obtains from the conventional assumption that both groups use the same
reporting threshold. It follows that the condition would continue to achieve identification
even if we allowed for arbitrary group-specific chronometric functions cj(·).

6It is indeed possible to construct an example with symmetric distributions and an extreme reporting
threshold which violates the condition for on-average identification. This means that none of the assumptions
in Proposition 6 is redundant.
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3 Empirical Application

3.1 Survey Description

We now provide an empirical application of our method, to show how it can be implemented
in practice and gives rise to new insights. To this end, we designed and conducted a survey
experiment on the online platform MTurk. MTurk has become increasingly popular among
behavioral scientists in economics (e.g. Kuziemko et al., 2015; DellaVigna and Pope, 2018),
marketing (e.g. Goodman and Paolacci, 2017), and psychology (e.g. Paolacci and Chandler,
2014). Conducting the survey on an online platform like MTurk has the advantage of allowing
accurate records of the response times of participants.

Our survey was programmed using the software Qualtrics and was conducted in October
2019 through the ETHZ Decision Science Laboratory. The survey consisted of two parts.
After the participants gave their informed consent, the first part included 5 standard socio-
demographic questions concerning gender, age, education, marital status, and the number of
children currently living in the household. In the second part, the survey participants were
asked 7 substantive questions. These questions elicit information about (i) job satisfaction,
(ii) social life satisfaction, (iii) overall happiness, (iv) trust attitude, (v) political attitude,
(vi) time preference, and (vii) risk preference. The questions for (i)–(v) were adapted from
the General Social Survey, which is the primary source for U.S. evidence on a broad set of
social science issues (Davis and Smith, 1991). For (vi) and (vii), the questions were adapted
from the Global Preference Survey introduced by Falk et al. (2018).

We implemented two different versions of the survey, to which we randomly assigned
the participants. In one version, the possible response to each substantive question was
binary (e.g., “rather happy” and “rather unhappy” for the overall happiness question). In
the other version, there were three response categories (e.g., “rather happy”, “neither happy
nor unhappy”, and “rather unhappy”). The two versions of the survey allow us to investigate
whether intermediate response categories are helpful or harmful for the goal of identifying
group differences. The full version of both questionnaires can be found in Appendix C.

Figure 2 provides an example of the survey screen displayed to the participants. Before
choosing the submission button “→” at the right bottom of the screen and moving on to the
next page, the participants first had to select one of the available responses to the question
(there was no default answer). The participants were allowed to change their response as
long as the current page had not been submitted, but they could not go back to a previous
question after submission of the answer. In addition to the responses to the questions, we
collected data on response times, which we define as the total amount of time between the
initial display of the question and a participant’s last click before submission. This “time to
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Figure 2: Example of survey screen.

final response” captures most closely the duration of a participant’s decision process, which
may involve changing an initial response by clicking on a different button. According to our
theoretical analysis, the duration of the decision process is the key ingredient for eliciting
cardinal information from the ordinal responses of the survey participants.

3.2 Summary Statistics

We recruited 4,000 participants from the U.S. with an MTurk approval rate of at least 98%.
In the initial sample, 34 subjects failed an attention check at the end of the survey (“What
is 7 times 2?”). No click and time data were recorded for 94 subjects, presumably because
they used keyboard navigation to answer the questions. Finally, one subject asked to have
his/her answer removed because he/she did not like the question about political attitude.
All these subjects were dropped, so our final sample contains 1,939 subjects in the binary
survey and 1,932 subjects in the trinary survey. Roughly 85% of the participants completed
the survey within 2 minutes (the median duration was 70s, the average duration was 110s).
The participants received a compensation of 50 cents.7

Table 1 shows that the demographics of the participants in the two survey versions are
very similar, as should be expected given the random assignment. Overall, our sample is in
line with the U.S. population regarding gender, marital status, and children in the house-
hold. However, the sample is somewhat younger and more educated than the general U.S.

7The compensation for the first 100 subjects was 1 dollar. We reduced the payment afterwards because
it was very high given the short duration of the survey.
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binary survey trinary survey
# subjects 1939 1932

female 53.74% 51.55%

male 46.26% 48.45%

age
< 20 0.88% 0.78%

20− 29 27.08% 25.10%

30− 39 35.59% 36.23%

40− 49 17.48% 18.37%

50− 59 11.60% 12.27%

60− 69 6.45% 6.11%

≥ 70 0.93% 1.14%

highest education
high school 28.47% 27.33%

college or higher 71.27% 72.41%

none 0.26% 0.26%

married 46.26% 45.13%

unmarried 53.74% 54.87%

kids 41.05% 39.23%

no kids 58.95% 60.77%

Table 1: Summary of subject demographics.

population, which is consistent with previous studies on the representativeness of MTurkers
(e.g., Paolacci et al., 2010; Huff and Tingley, 2015).

Table 2 summarizes the median response times for each question. The socio-demographic
questions and their possible response categories were the same in the two survey versions,
and hence the median response times are also approximately the same. The quickest median
responses are for the gender question and the marital status question, reflecting that these
questions are short and for many participants easy to answer. The average response time is
smaller for the marital status question (2.18s) than for the gender question (4.87s). Therefore,
we will use the response time in the marital status question for individual normalization in
our later analysis, i.e., we will subtract (in logs) this response time from the response times
in each of the substantive questions. This way we can account for individual differences
in the speed of reading or decision-making more generally. Note finally that the median
response times for the substantive questions are smaller in the binary survey than in the
trinary survey, reflecting that the latter involves more answer categories that have to be
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binary survey trinary survey
complete survey 67 73

demographic questions
gender 1.36 1.40

age 1.79 1.81

education 1.90 1.90

marital status 1.40 1.41

kids 1.60 1.61

substantive questions
work happiness 2.55 3.18

social happiness 1.91 2.39

overall happiness 3.29 4.29

trust 3.54 4.87

conservatism 1.97 2.16

patience 4.84 5.48

risk-aversion 2.38 2.72

Table 2: Median response times, in seconds.

read, understood, and considered by the participants.

3.3 Analysis of Binary Survey

We start by applying our techniques to the binary survey. We divide the sample into socio-
demographic groups and, for each of the substantive questions, make pairwise comparisons
between the groups to check whether the conditions in Corollaries 2 and 3 are satisfied by the
data. We do this separately for each socio-demographic characteristic, e.g. we compare the
happiness between females and males, and between the young and the middle-aged. Finer
divisions of the sample can of course be made, but since our focus here is on identification
rather than a causal interpretation of the results, we prefer to keep the number of pairwise
comparisons low.

The key step in the application is to construct the empirical counterparts of rijF i
j (·) for

each demographic group j and each response category i, given the substantive survey question
being considered. For rij, we simply use the empirical frequency of responses. For F i

j (·), we
first normalize each participant’s log response time by subtracting his/her log response time
in the marital status question. As explained before, responses were quickest in the marital
status question, and hence we use them as a proxy for general response speed, allowing us to
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Figure 3: r0AF 0
A(t)− r0BF 0

B(t) (red) and r1AF 1
A(t)− r1BF 1

B(t) (blue).

control for individual heterogeneity. We then replace each cumulative distribution function
F i
j (·) by a non-parametric kernel density estimate (Epanechnikov kernel, optimal adaptive

bandwidth) of the distribution of normalized log response times. Estimating the distribution
of log response times ensures that the non-negativity constraint t ≥ 0 is never violated.

Consistent with Bond and Lang (2019), the conditions of Proposition 1 are never satisfied
by our survey data. In particular, the number of participants responding in each category
is non-negligible for all demographic groups and all substantive questions. Our results thus
confirm that little can be learned within the traditional ordered response framework without
making distributional assumptions.

Fortunately, our conditions based on survey response times do have bite. To illustrate,
consider the survey question about overall happiness (“Taken all together, how would you
say things are these days? Would you say that you are rather happy or rather unhappy?”).
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Compare the groups of participants who have children living in the household (group A)
and who have not (group B). The blue curve in Figure 3(a) plots r1AF 1

A(t)− r1BF 1
B(t), with

t varying on the x-axis. The blue curve always lies above zero, meaning that the fraction
of participants with kids who responded to be happy is always larger than the fraction of
participants without kids who responded to be happy, even when restricting the sample to
responses which took place before any time t. Similarly, the red curve in Figure 3(a) plots
r0AF

0
A(t) − r0BF 0

B(t). It always lies below zero, so the fraction of participants with kids who
responded to be unhappy is always smaller than the fraction of participants without kids
who responded to be unhappy, again for all response times. Taken together, participants who
have children are identified to be rank-order happier than those who have not, by Corollary
2. The timing of responses rules out that the latent happiness variable follows distributions
for which the findings of traditional ordered response models would be reversed.

As a second example, consider the relationship between risk-attitudes and age. The
survey question was “In general, how willing are you to take risks?” and the possible answers
were “rather willing” and “rather unwilling.” We think of the latent variable for this question
as being a coefficient of risk-aversion, such that higher values capture higher risk-aversion
and tend to generate responses in the “rather unwilling” category. Compare the groups of
middle-aged participants (group A, age from 40 to 59) and young participants (group B, age
below 40). Figure 3(b) shows that there is no rank-order identification of differences in risk-
aversion between these two groups. The blue curve falls below zero for some intermediate
values of t, meaning that there are some systematically faster “rather unwilling” responses
in the young group than in the middle-aged group. Hence, while the overall fraction of
participants who responded to be unwilling to take risks is higher in the middle-aged group,
we cannot rule out that some young participants are so strongly risk-averse as to reverse the
traditional assumption of first-order stochastic dominance in the distributions of risk-aversion
coefficients. Nevertheless, the fast “rather unwilling” responses in the young group are offset
by even faster and more frequent “rather willing” responses, reflected in the fact that the red
curve always lies below the blue curve in Figure 3(b). Thus, middle-aged participants are
still identified to be on-average more risk-averse than young participants, by Corollary 3.

Figure 3(c) illustrates that sometimes even on-average identification fails. While the over-
all fraction of participants who report to be “rather satisfied” with their work is higher for
females than for males, the quickest responses in this category are predominantly given by
males (blue curve), reflecting a particularly large happiness with their work situation among
many males, based on the chronometric relationship. Conversely, the quickest responses in
the “rather unsatisfied” category are predominantly given by females (red curve), reflecting
that some females are particularly unhappy about their work. Hence, we cannot identify
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from the binary survey data whether it is true that women are on-average happier with
their work than men. The results that traditional models like ordered probit generate thus
depend on distributional assumptions which we cannot confirm in the data. Similarly, since
the two curves in Figure 3(d) also cross, we cannot compare time preferences (as captured
by our survey question on the willingness to postpone rewards) between married and unmar-
ried participants, without relying on assumptions on the distribution of the latent patience
variable in the population.

Table 3 summarizes the outcomes of our identification check for each substantive survey
question and each socio-demographic characteristic, contrasting them with the results of
traditional ordered probit estimation. In each cell of the table, the number is the ordered
probit coefficient obtained by regressing the dependent variable of the column on a dummy
for the demographic group A of the row (and a constant). Significance levels are indicated
by asterisks (∗10%,∗∗5%,∗∗∗1%). The color of each cell indicates whether identification is
achieved with our response time method (white: none, light-gray: on-average identification,
dark-grey: rank-order identification). For instance, consistent with Figure 3, the table shows
that participants with kids are rank-order happier than those without, young participants
are on-average less risk-averse than the middle-aged, and no identification is achieved when
comparing the work happiness between the genders, or the patience between the married
and the unmarried.8

Since identification and estimation are distinct problems,9 it is not surprising that there
seems to be no strong connection between the ability of identification and the significance
of the estimated ordered probit coefficient. For instance, we sometimes achieve on-average
identification but not significance (e.g. for the relation between gender and happiness about
social life), and sometimes significance but not identification (e.g. for the relation between
education and trust). Notice, however, that in all cases where rank-order identification is
achieved, the ordered probit parameter is highly significant.

For the overall life happiness question, our response time method broadly supports tradi-
tional assumptions (rank-order or on-average identification in 4 out of 6 cases). Things look
slightly worse for the two more specific happiness questions, the two preference questions,
and the trust question. The politics question (“Would you say you are a rather liberal or a
rather conservative person?”) performs worst, with no identification achieved at all.

8If systematic inter-group heterogeneity in chronometric effects is a concern, even after our individual
normalization, we can invoke Proposition 7. The empirical implementation is straightforward. In our survey,
however, the condition is never satisfied.

9The former asks whether a certain property of the data-generating process can be unambiguously learned
from the data, the latter asks which data-generating process can best fit the data.
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work
happiness

social
happiness

overall
happiness trust

conserv-
atism patience

risk-
aversion

A: female
B: male

0.043 −0.047 −0.047 −0.124∗∗ −0.090 −0.307∗∗∗ 0.480∗∗∗

A: young
B: middle-age

−0.260∗∗∗ −0.004 −0.098 −0.200∗∗∗ −0.370∗∗∗ 0.038 −0.252∗∗∗

A: middle-age
B: old

0.008 −0.104 0.102 −0.083 0.003 0.086 −0.174

A: highschool
B: college

−0.372∗∗∗ −0.254∗∗∗ −0.256∗∗∗ −0.216∗∗∗ 0.045 −0.292∗∗∗ 0.129∗∗

A: married
B: unmarried

0.474∗∗∗ 0.481∗∗∗ 0.536∗∗∗ 0.192∗∗∗ 0.413∗∗∗ 0.215∗∗∗ 0.112∗∗

A: kids
B: no kids

0.389∗∗∗ 0.204∗∗∗ 0.368∗∗∗ 0.026 0.306∗∗∗ 0.103 0.034

Table 3: Binary survey. Numbers are ordered probit coefficients, and asterisks indicate sig-
nificance (∗10%,∗∗5%,∗∗∗1%). Colors indicate identification based on response times (white:
none, light-gray: on-average identification, dark-grey: rank-order identification).

3.4 Analysis of Trinary Survey

We now turn to the analysis of the survey version with three response categories. Not too
surprisingly, the conditions of Proposition 1 are never satisfied, consistent with the findings
of Bond and Lang (2019). In all cases, condition (iii) from Proposition 1 is not satisfied,
showing that the problems highlighted by Bond and Lang (2019) are not only due to extreme
assumptions on the distribution of happiness in the lowest or highest response category.

Our general approach is the same as for the binary survey. The results are reported
in Table 4. The numbers in each cell of the table are again the estimated ordered probit
coefficients. Comparing the estimation results of the binary and the trinary survey versions,
we sometimes obtain different parameter signs (8 out of 42 times), but then at least one of
the two parameters is always insignificant.10 Overall, the two versions of the survey seem to
generate comparable results based on ordered probit estimation.

The picture is different for identification based on response times. All cells of Table 4 are
white, meaning that there is no case where we can learn a ranking of the underlying latent
distributions from the trinary survey and response time data. Observe that this can happen

10Each of the two survey versions is sometimes “more significant” than the other. The strongest difference
in significance is for the middle-age versus old comparison, where the trinary survey is often significant while
the binary survey is not.
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work
happiness

social
happiness

overall
happiness trust

conserv-
atism patience

risk-
aversion

A: female
B: male

0.029 0.048 0.133∗∗ −0.112∗∗ −0.050 −0.124∗∗ 0.308∗∗∗

A: young
B: middle-age

−0.039 −0.020 −0.096 0.067 −0.228∗∗∗ 0.039 −0.225∗∗∗

A: middle-age
B: old

−0.269∗∗ −0.292∗∗∗ −0.346∗∗∗ −0.245∗∗ −0.236∗∗ −0.082 −0.136

A: highschool
B: college

−0.298∗∗∗ −0.255∗∗∗ −0.281∗∗∗ −0.365∗∗∗ 0.100∗ −0.216∗∗∗ 0.186∗∗∗

A: married
B: unmarried

0.387∗∗∗ 0.367∗∗∗ 0.497∗∗∗ 0.293∗∗∗ 0.374∗∗∗ 0.082 0.108∗∗

A: kids
B: no kids

0.255∗∗∗ 0.158∗∗∗ 0.359∗∗∗ 0.134∗∗ 0.254∗∗∗ 0.110∗ −0.079

Table 4: Trinary survey. Numbers are ordered probit coefficients, and asterisks indicate sig-
nificance (∗10%,∗∗5%,∗∗∗1%). Colors indicate identification based on response times (white:
none, light-gray: on-average identification, dark-grey: rank-order identification).

even if the true distributions satisfy FOSD (Proposition 4 holds for binary but not for trinary
surveys), and hence it is not a contradiction when we obtain rank-order identification in the
binary but not in the trinary survey.

It is worthwhile emphasizing again that identification fails because condition (iii) from
Propositions 3 or 5 is never satisfied, so there is no need to even construct the empirical
response time distributions. The stringency of this condition (iii) obviously does not apply
to binary surveys, where intermediate categories do not exist. Given this important advan-
tage, we expect the combination of binary surveys and response time analysis to have great
potential in future research.

4 Related Literature

The use of self-reported survey data has long been controversial among economists (see, e.g.,
Boulier and Goldfarb, 1998; Bertrand and Mullainathan, 2001). A major concern was usu-
ally the fear that self-reported data is not reliable. However, recent studies have shown that
surveys can be a reliable source of data. For instance, Falk et al. (2018) have experimentally
validated their survey questions, showing that survey responses about preferences predict
actual behavior in the lab. In a similar vein, Tannenbaum et al. (2020) have used behavioral
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data from field experiments to validate survey measures of social capital. The problem force-
fully demonstrated by Bond and Lang (2019) is not non-reliability of self-reported data, but
that standard econometric techniques used to analyse ordinal data suffer from a fundamen-
tal identification problem. Bond and Lang (2013) and Schroeder and Yitzhaki (2017) make
the related point that ordinal data cannot simply be treated as cardinal, and they conclude
that results from test score and subjective well-being research, respectively, can be highly
sensitive to the choice of the cardinal scale.

Some recent papers have provided responses to the startling critique of Bond and Lang
(2019). For example, Kaiser and Vendrik (2020) argue that, although theoretically possible,
reversing standard estimation results using Bond and Lang (2019)’s method may involve
conditions that are empirically implausible. Kaplan and Zhuo (2019) show that partial
identification of group differences can be possible with semi-parametric assumptions on the
latent distributions (e.g. symmetry, unimodality). Chen et al. (2019) propose that analysis
of ordinal data should focus on the median instead of the mean, since the ranking of medians
between groups is invariant to monotone transformations. In contrast to all these studies,
we aim at learning the necessary distributional properties from extended data, rather than
judging the plausibility of (semi-)parametric assumptions or reformulating the question.

We are not the first to investigate response times in surveys. For example, Hess and
Strathopoulos (2013) assume that survey participants differ in their unobservable engagement
with the survey, and that engagement influences both response time (for completing the
entire survey) and the individual response scale. Response time data is then useful to
control for individual scale heterogeneity. Studer andWinkelmann (2014) show that unhappy
participants tend to respond more slowly. Furthermore, they illustrate that including survey
response times in happiness regressions modulates the effect of income, but not of other
explanatory variables.

More generally, there is a growing interest among economists to explore what information
can be learned from response times. For instance, Rubinstein (2007, 2016) proposes a typol-
ogy of choices and players in strategic games based on response times. Achtziger and Alós-
Ferrer (2014) show that response time can measure the extent to which an agent’s decision-
making process under uncertainty is consistent with the rational paradigm of Bayesian belief-
updating. The literature has also suggested that response time data can be used to reveal
how decision-makers allocate their limited attention between different problems (Avoyan and
Schotter, 2020), to facilitate social learning by serving as an observable signal of agents’ pri-
vate information (Frydman and Krajbich, 2020), to alleviate misspecification bias in the
estimation of structural preference parameters (Webb, 2019), and to improve out-of-sample
predictions of behavior (Clithero, 2018a; Alós-Ferrer et al., 2021), among several others.
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5 Conclusion

In this paper, we have shown that response time data can solve a fundamental identification
problem of ordered response models. Since ordered response data are ordinal, while com-
paring averages across groups requires cardinal information, traditional ordered response
models must rely on assumptions about the distribution of a latent variable. By contrast,
response time distributions reveal cardinal information about the distribution of the latent
variable, based on the chronometric effect, and can therefore be used to replace unjustified
assumptions.

We have repeatedly advocated the use of binary surveys, combined with a measurement of
response times. Our empirical analysis confirms that identification is possible that way, while
surveys with multiple categories fail in achieving identification, even with response time data,
due to the non-monotonicity of response times in intermediate response categories. Existing
surveys usually have more than two answer categories, and applied researchers may therefore
prefer working with multiple categories. We formally show in Appendix B that identification
can be improved in such surveys with simple binary follow-up questions. For instance, when
an individual initially responds in the intermediate category “pretty happy,” the survey may
in a second step ask which adjacent category the individual feels closer to, “not too happy”
or “very happy.” The condition for rank-order identification using response time data then
becomes weaker than condition (iii) in Propositions 3 or 5.

We have in mind two different ways in which our results can be used. First, surveys are
increasingly conducted online, and recording response times is easy and costless in that case.
Hence we think that response time data should be collected on par with response data, and
their analysis could become a natural part of any investigation. Of course, causal analysis
will be an important concern in many applications, which implies that the groups to be
compared will typically have to be much finer than in our simple empirical illustration. We
leave to future research the question how to integrate response time data into a full-fledged
multivariate regression analysis. Second, one could use our novel techniques in auxiliary
studies, with the goal of verifying in a representative sample that the latent variable of
interest typically follows distributions for which traditional ordered response models are
appropriate. Our empirical illustration goes in that direction, showing that happiness often
seems to be distributed in a way for which the ordered probit results are correctly identified.
Once enough evidence of this type has been accumulated, the analyst can proceed as usual
and does not have to bother about response time data any more.
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A Omitted Proofs

A.1 On-Average Identification with Ordered Responses

On-average identification requires that

EGA
[h̃] ≥ EGB

[h̃],

for all (GA, GB, τ) that generate the data. A conceptually stronger requirement would be

EGA
[q(h̃)] ≥ EGB

[q(h̃)],

for all (GA, GB, τ) that generate the data and all strictly increasing q : R → R. We claim,
however, that these two requirements are equivalent.

The second requirement obviously implies the first by using q(h) = h. To see why the
first requirement implies the second, assume that EGA

[q(h̃)] < EGB
[q(h̃)] for some (GA, GB, τ)

that generates the data and some strictly increasing q. Let Ĝj describe the distribution of
q(h̃) under Gj, which exists and is continuous because q is strictly increasing. It satisfies
EĜj

[h̃] = EGj
[q(h̃)] by construction. Define τ̂ = (τ̂ 1, τ̂ 2, . . . , τ̂n) by τ̂ i = q(τ i). It follows that

Ĝj(τ̂
i+1)− Ĝj(τ̂

i) = Pr[q(h̃) ≤ τ̂ i+1]− Pr[q(h̃) ≤ τ̂ i]

= Pr[h̃ ≤ τ i+1]− Pr[h̃ ≤ τ i]

= Gj(τ
i+1)−Gj(τ

i),

so that (ĜA, ĜB, τ̂) generates the data and satisfies EĜA
[h̃] < EĜB

[h̃], which implies that the
first requirement is also violated.

A.2 Example with n = 2

Consider the survey with n = 2, reporting thresholds τ 1 = −0.5 and τ 2 = 0.2, and the
chronometric function c(δ) = 1/δ. We distinguish two cases.

Case 1: t ∈ [10/7,+∞). In this case we have −1.2 ≤ τ 1 − c−1(t) < −0.5, and therefore

r0AF
0
A(t)− r0BF 0

B(t) =GA(τ 1 − c−1(t))−GB(τ 1 − c−1(t))

≤GA(−0.5− 1/t)

= ε(0.7− 1/t).
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Furthermore, 0.2 < τ 2 + c−1(t) ≤ 0.9, and therefore

r2AF
2
A(t)− r2BF 2

B(t) =GB(τ 2 + c−1(t))−GA(τ 2 + c−1(t))

=GB(0.2 + 1/t)−GA(0.2 + 1/t)

=
1.2 + 1/t

2
− (1.75ε− 1.25)(0.8− 1/t)− 1

=
1.2 + 1/t

2
+

1.75ε− 1.25

t
− 1.4ε

= 0.6− 0.75

t
+ ε

(
1.75

t
− 1.4

)
.

Since t ≥ 10/7, it follows that

lim
ε→0

[
0.6− 0.75

t
+ ε

(
1.75

t
− 1.4

)
− ε(0.7− 1/t)

]
=

3

5
− 3

4t

≥ 3

5
− 21

40

= 0.075.

Therefore, if ε is sufficiently small, we have, for all t ∈ [10/7,+∞),

r0AF
0
A(t)− r0BF 0

B(t) ≤ r2AF
2
A(t)− r2BF 2

B(t).

Case 2: t ∈ (0, 10/7). In this case we have τ 1 − c−1(t) < −1.2, and therefore

r0AF
0
A(t)− r0BF 0

B(t) =GA(τ 1 − c−1(t))−GB(τ 1 − c−1(t)) = 0.

Furthermore, 0.9 < τ 2 + c−1(t), and therefore

r2AF
2
A(t)− r2BF 2

B(t) =GB(τ 2 + c−1(t))−GA(τ 2 + c−1(t)) ≥ 0,

where the inequality follows for 0.9 < τ 2 + c−1(t) < 1 because(
h

2
+

1

2

)
− (1.75ε− 1.25)(1− h)− 1 = (1.75− 1.75ε)(1− h) > 0

whenever 0.9 < h < 1, and it follows trivially when 1 ≤ τ 2 + c−1(t).
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B Follow-Up Questions

In the main text, we pointed out that response times in intermediate response categories
are not helpful for identification, as they are not monotone in the latent variable. This
appendix shows that responses in intermediate categories become more informative if we
include simply binary follow-up questions in the survey.

Specifically, suppose that whenever an individual responds in an intermediate category
i = 1, . . . , n− 1, she will be asked a binary follow-up question which requires her to indicate
whether she feels closer to category i − 1 or to category i + 1. Let rij be the fraction of
individuals within group j who first respond in category i in the initial question and then
report to be closer to category i−1 in the follow-up question. The response time distribution
of these individuals in the follow-up question is denoted by F i

j. Similarly, we use rij to denote
the fraction of individuals within group j who respond to be closer to i+ 1 in the follow-up
question, and we let F i

j be the corresponding distribution of response times. Our extended
dataset now contains rj = (r0j , (r

i
j, r

i
j, r

i
j)i, r

n
j ) and Fj = (F 0

j , (F
i
j , F

i
j, F

i

j)i, F
n
j ).

We assume that the follow-up questions generate data in a way that is similar to the
initial questions, so the data-generating process is augmented with reporting thresholds
τ̌ i ∈ (τ i, τ i+1) and chronometric functions či : R++ → (t, t̄) for the follow-up questions
of each intermediate category i. It is straightforward to extend the definition of rank-
order identification accordingly. In what follows, we provide a characterization of rank-order
identification using response times and binary follow-up questions.

Proposition 8. Consider a survey with binary follow-up questions. Given (rA, rB, FA, FB),
group A is identified to be rank-order happier than group B if and only if

(i) r0AF 0
A(t)− r0BF 0

B(t) ≤ 0 for all t ∈ (t, t̄),

(ii) rnAF n
A(t)− rnBF n

B(t) ≥ 0 for all t ∈ (t, t̄),

and, for all k = 1, ..., n− 1,

(iii)
∑k−1

i=0 r
i
A + rkAr

k
AF

k
A(t) ≤

∑k−1
i=0 r

i
B + rkBr

k
BF

k
B(t) for all t ∈ (t, t̄), and

(iv)
∑n

i=k+1 r
i
A + rkAr

k
AF

k

A(t) ≥
∑n

i=k+1 r
i
B + rkBr

k
BF

k

B(t) for all t ∈ (t, t̄).

Proof. Let (GA, GB, τ, c, (τ̌
i, či)i) be any data-generating process that could have generated

the data. Exactly as in the proof of Proposition 3, conditions (i) and (ii) are equivalent to
GA(h) ≤ GB(h) for all h ≤ τ 1 and h > τn. We argue that conditions (iii) and (iv) are jointly
necessary and sufficient for concluding that we also have GA(h) ≤ GB(h) for all h ∈ (τ 1, τn].
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To see this, note that for all j = A,B, k = 1, ..., n− 1, and t ∈ (t, t̄),

k−1∑
i=0

rij + rkj r
k
jF

k
j (t)

=Gj(τ
k) +

(
Gj(τ

k+1)−Gj(τ
k)
)
·
Gj

(
τ̌ k − (čk)−1(t)

)
−Gj(τ

k)

Gj(τ k+1)−Gj(τ k)

=Gj

(
τ̌ k − (čk)−1(t)

)
,

and, similarly,

n∑
i=k+1

rij + rkj r
k
jF

k

j (t)

= 1−G(τ k+1) +
(
Gj(τ

k+1)−Gj(τ
k)
)
· Gj(τ

k+1)−Gj(τ̌
k + (čk)−1(t))

Gj(τ k+1)−Gj(τ k)

= 1−Gj

(
τ̌ k + (čk)−1(t)

)
.

Hence, conditions (iii) and (iv) are equivalent to

GA

(
τ̌ k − (čk)−1(t)

)
≤ GB

(
τ̌ k − (čk

)−1
(t))

and

GA

(
τ̌ k + (čk

)−1
(t)) ≤ GB

(
τ̌ k + (čk)−1(t)

)
for all k = 1, ..., n and t ∈ (t, t̄). It then follows as in the proof of Proposition 3 that (iii) and
(iv) are necessary and sufficient for obtaining that GA(h) ≤ GB(h) for all h ∈ (τ 1, τn].

The introduction of follow-up questions does not affect the extreme categories, so con-
ditions (i) and (ii) remain the same as in Proposition 3. The novel parts in Proposition
8 are conditions (iii) and (iv). It is an easy exercise to show that they are weaker than
the condition for intermediate response categories in Proposition 3. Intuitively, the binary
structure of the follow-up questions allows us to fully exploit monotonicity of response times.
Hence, we can use the data generated from these additional questions to examine dominance
relations between the happiness distributions of the two groups also within intermediate
response categories.
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C Questionnaires

This appendix contains the exact phrasing of all questions and possible answers from our
MTurk survey, in the order in which they appeared. A difference between the binary and
the trinary version of the survey exists only for the substantive questions.

1. Welcome Screen

Welcome!

This survey is carried out for a research project at the University of Zurich, Switzerland.
The survey is for scientific purposes only.

There are no known risks for you if you decide to participate in this survey, nor will
you experience any costs when participating in the survey. This survey is anonymous.
The information you provide will not be stored or used in any way that could reveal
your personal identity.

For more information please contact descil@ethz.ch.

Answer possibilities:

• I have read and understood the consent form and agree to participate in this
survey.

2. Socio-Demographic Question 1: Gender

What is your gender?

Answer possibilities:

• Female

• Male

3. Socio-Demographic Question 2: Age

What is your age?

Answer possibilities:

• younger than 20

• 20− 29

• 30− 39

• 40− 49
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• 50− 59

• 60− 69

• 70 or older

4. Socio-Demographic Question 3: Education

What is the highest level of education that you completed?

Answer possibilities:

• High school

• College degree or higher

• None of the above

5. Socio-Demographic Question 4: Marital Status

What is your current marital status?

Answer possibilities:

• Married

• Unmarried

6. Socio-Demographic Question 5: Children

Are there any children currently living in your household?

Answer possibilities:

• Yes

• No

7. Substantive Question 1: Work Happiness

How satisfied are you with the work you do?

Answer possibilities binary:

• Rather satisfied

• Rather unsatisfied

Answer possibilities trinary:

• Rather satisfied
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• Neither satisfied nor unsatisfied

• Rather unsatisfied

8. Substantive Question 2: Social Happiness

How satisfied are you with your social life?

Answer possibilities binary:

• Rather satisfied

• Rather unsatisfied

Answer possibilities trinary:

• Rather satisfied

• Neither satisfied nor unsatisfied

• Rather unsatisfied

9. Substantive Question 3: Overall Happiness

Taken all together, how would you say things are these days? Would you say that you
are rather happy or rather unhappy?

Answer possibilities binary:

• Rather happy

• Rather unhappy

Answer possibilities trinary:

• Rather happy

• Neither happy nor unhappy

• Rather unhappy

10. Substantive Question 4: Trust

Generally speaking, would you say that people can be trusted or that you can’t be too
careful in dealing with people?

Answer possibilities binary:

• Most people can be trusted

• Need to be very careful
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Answer possibilities trinary:

• People can almost always be trusted

• People can sometimes be trusted

• You can’t be too careful in dealing with people

11. Substantive Question 5: Political Attitude

Would you say you are a rather liberal or a rather conservative person?

Answer possibilities binary:

• Rather liberal

• Rather conservative

Answer possibilities trinary:

• Rather liberal

• Moderate

• Rather conservative

12. Substantive Question 6: Time Preferences

How willing are you to give up something that is beneficial for you today in order to
benefit more from that in the future?

Answer possibilities binary:

• Rather willing

• Rather unwilling

Answer possibilities trinary:

• Rather willing

• Neither willing nor unwilling

• Rather unwilling

13. Substantive Question 7: Risk Preferences

In general, how willing are you to take risks?

Answer possibilities binary:

• Rather willing
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• Rather unwilling

Answer possibilities trinary:

• Rather willing

• Neither willing nor unwilling

• Rather unwilling

14. Attention Check

What is 7 times 2?

Answer possibilities:

• 2

• 7

• 9

• 14

• 16

• 49
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