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Abstract

We study the role of information structures in mechanism design problems

with limited commitment. In each period, a principal offers a “spot” contract

to a privately informed agent without committing to future spot contracts, and

the agent responds to the contract. In contrast to the classical approach in

which the information structure is fixed, we allow for all admissible information

structures. We represent the information structure as a fictitious mediator and

re-interpret the model as a mechanism design problem by the mediator with

commitment. The mediator collects the agent’s private information and then, in

each period, privately recommends the principal’s spot contract and the agent’s

response in an incentive-compatible manner (both in truth-telling and obedi-

ence). We provide several examples to identify why new equilibrium outcomes

can arise once we allow for general information structures. We next develop a

durable-good monopoly application. We show that trading outcomes and wel-

fare consequences can substantially differ from those in the classical model with

a fixed information structure. In the seller-optimal mechanism, the seller offers

a discounted price to the high-valuation buyer only in the initial period, followed

by the high, surplus-extracting price until some endogenous deadline, when the

buyer’s information is revealed and hence fully extracted. As a result, the Coase

conjecture fails: even in the limiting case of perfect patience, the seller makes a

positive surplus, and the trading outcome is not the first best. We also charac-

terize mediated and unmediated implementation of the seller-optimal outcome.
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1 Introduction

We provide a systematic analysis of information structures in mechanism design

problems with limited commitment. A durable-good monopoly problem by a

limited-committed seller is a classical application and also central in this paper:

in each period, a seller (he) who owns a good and a buyer (she) may trade; if

they trade, the game ends; otherwise, the game continues to the next period. The

buyer’s willingness to pay for the good is her private information and does not

vary over time. With full commitment, the seller’s optimal long-term mechanism

takes the form of a perfectly rigid posted price (see, for example, Baron and

Besanko, 1984). That is, the seller sets a price for the good at the beginning of

the interaction, and the buyer buys in the initial period (resp., never buys) if her

willingness to pay for the good is above (resp., below) that price. Accordingly,

trade is inefficient, and both parties earn some ex ante surplus. With limited

commitment, the celebrated Coase conjecture (Coase, 1972) argues that the seller’s

rent is diluted relative to the full-commitment case; in particular, in the limiting

case of perfect patience, the buyer earns the entire trade surplus. The Coase

conjecture is first formally shown by Stokey (1981), Fudenberg, Levine, and Tirole

(1985), and Gul, Sonnenschein, and Wilson (1986) for the case in which the seller

can only offer posted-price mechanisms. Skreta (2006) shows that this conclusion

is robust even if the seller’s feasible set of contracts is larger.

Some recent contributions observe that the standard model of mechanism de-

sign with limited commitment (such as that in the above papers) imposes an

implicit assumption on the players’ information structure. Thus, they study how

the conclusion changes under alternative, but a specific class of, informational as-

sumptions. For example, Doval and Skreta (2021a,b) consider the case in which, in

each period, the seller can garble the information input by the buyer (namely, the

report of her willingness-to-pay) in that period. On the one hand, such garbling

can be costly for the seller because the allocation in the current period becomes

less customized than without garbling. On the other hand, garbling can be bene-

ficial because the next-period seller has more limited information and so a smaller

set of deviations.1 Indeed, they show that, with a fixed patience parameter, the

seller’s expected payoff can be strictly greater than that in the classical case in

which information cannot be garbled. However, in the limiting case of perfect pa-

1See Bester and Strausz (2001, 2007) as earlier papers that point out this trade-off. This
trade-off implies the failure of the revelation principle in the sense that it can be with loss of
generality to focus on direct mechanisms in which the agent reports her type truthfully to the
principal in each period.
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tience, the Coase conjecture survives, and the buyer earns the entire trade surplus.

Brzustowski, Georgiadis, and Szentes (2021) consider a more sophisticated class of

contracts in which the seller sets up a long-term contract—subject to the constraint

that he would not want to revise it in the future, reflecting the limited commitment

nature of the problem. The contract determines the entire sequence of allocations

as a function of the buyer’s initial type report, but without revealing any infor-

mation to the seller than that revealed through each period’s trading outcome. In

particular, the buyer’s report can affect allocations in the far future, simultane-

ously keeping the seller in the dark. Brzustowski et al. (2021) show that with these

“smart contracts”, the Coase conjecture now fails: even in the limiting case of per-

fect patience, the seller can guarantee himself a non-vanishing expected revenue.2

As such, the recent literature points out that the information structure plays a

crucial role in the predictions of mechanism design with limited commitment and,

in particular, in a durable-good monopoly setting. Although each of the above

papers considers some specific classes of information structures and studies their

implications, a more systematic study of the entire class of admissible (in the sense

formalized below) information structures seems important. For example, whereas

Brzustowski et al. (2021) show that keeping the buyer’s type report undisclosed to

a limited-committed seller can be beneficial for the seller’s ex ante expected rev-

enue, is this the only way in which the seller deviates from the Coase conjecture?

What is the optimal information structure from the seller’s (or the buyer’s or the

society’s) viewpoint? What about the efficiency properties? The goal of our paper

is precisely this systematic analysis of information structures in mechanism design

with limited commitment.

We begin by formalizing a general model of mechanism design with limited

commitment in which any information structure that satisfies the following con-

ditions is considered admissible. First, a player’s private information in the game

remains private whenever the player would like to do so. In the durable-good

monopoly application, this means that the buyer’s willingness to pay for the good

is her private information in any admissible information structure.3 Second, each

period’s realized allocation is publicly observed in that period. In the durable-good

2The above discussion is about the “gap case”, in which the Coase conjecture holds in any
equilibrium in the classical model of price-posting sellers. In the “no-gap case,” the Coase
conjecture fails even with posted prices if buyers use non-stationary strategies (Ausubel and
Deneckere, 1989).

3Without this restriction, the seller’s optimal information structure is trivially the one in
which he knows the buyer’s willingness to pay.
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monopoly application, observability of whether trade happens and, if so, at which

price seems a natural assumption.4 Third, the contract chosen by the principal in

each period is publicly observed in that period. This assumption is natural in many

applications and also reflects the idea of limited commitment. Indeed, if the infor-

mation structure is such that the agent cannot observe a principal’s deviation, then

the commitment outcome as in (as in Baron and Besanko, 1984) can be sustained.

Otherwise, our dynamic game form is standard: in every period, the principal

offers the best contract from the feasible set given his information at that point;

then, after observing the chosen contract, the agent chooses a message to input

to the contract. The allocation of that period is publicly observed, and the game

moves to the next period.

After introducing our general model, we provide three examples that show how

the set of equilibrium outcomes expands once we allow for general information

structures in mechanism design settings with limited commitment. Our examples

identify three reasons for why this can be the case: delayed disclosure of stored

information; punishing a principal’s future self who deviates to a non-equilibrium

contract by deleting any planned disclosure of stored information; punishing a

principal’s current or future self who deviates to a non-equilibrium contract by

selecting a suboptimal continuation equilibrium.5

Next, we move to the characterization of the set of all equilibrium outcomes un-

der all possible admissible information structures. To do so, we build on the notion

of (sequential) communication equilibrium of Forges (1986), Myerson (1986), and

Sugaya and Wolitzky (2021). They consider mediated communication in (finite)

extensive-form games and establish various versions of revelation principle results

depending on the equilibrium concepts of interest. Roughly, these results state

that any equilibrium outcome given any information structure is attainable as an

equilibrium outcome with the canonical information structure. In the canonical

information structure, in each period: (i) a (fictitious) mediator (he) privately asks

each player’s private information and then privately recommends each player’s ac-

tion for the period; and (ii) players truthfully report their private information to

the mediator and obey the mediator’s recommendation. In a sense, we apply the

concepts of (sequential) communication equilibrium to the environment in which

one of the players is a limited-committed principal.

4In other applications, alternative assumptions might be more appropriate. For example, in
a repeated auction environment, only the winner might surely be able to observe the winning
price of that period. We believe that our framework is flexible in such dimensions.

5Of course, additional reasons may be possible.
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However, precisely the point that the principal is one of the players is the main

challenge we face. To see this, observe that a naive application of the revelation

principle results would imply that, in the canonical information structure, the me-

diator recommends one of the feasible contracts to the principal, and the principal

prefers obeying to deviating to any other contract. This statement, however, is not

so useful in characterizing possible outcomes because the set of feasible contracts is

too large to be tractably handled. First, recall that the revelation principle is not

applicable for the principal’s contract space. Potentially, the contract the mediator

should recommend to the principal in each period might be a very complex indi-

rect contract. Second, the set of obedience constraints could be large for the same

reason, and there is not much guidance as to which constraints would be relevant.6

To circumvent this difficulty, we propose an alternative indirect approach.

First, we consider an auxiliary game in which the mediator—not the principal—

proposes an allocation in each period after he privately asks each player’s infor-

mation at the beginning of that period. This outcome-based approach avoids the

first complication related to the seller’s contract recommendations because the set

of allocations is much more well-structured than the unrestricted set of contracts.

Second, we identify necessary conditions on outcomes to form an equilibrium of

the game. In particular, for the principal’s obedience, we focus on a small subset

of contracts as potential deviations. In the durable-good monopoly application,

we focus only on the seller’s deviations to the constant contact that ends the game

by allocating the good to all buyers types at a price equal to the smallest buyer’s

valuation. We ignore all the other obedience constraints. This result, formalized

by Theorem 1, can be interpreted as a relaxed revelation principle. The theorem

allows us to characterize candidate equilibrium outcomes by solving an upper-

bound problem that is a much simpler relaxation of the original problem.

Of course, the converse need not be true. In particular, the choice of deviation

contracts that implies the converse is not necessarily trivial in general. Thus, as

a third step, we identify sufficient conditions on outcomes to form an equilibrium

of the game. Theorem 2 shows that if an outcome satisfies the seller’s obedience

with respect to the sequence of contracts corresponding to the Coasean outcome

of the game, then we can ignore all his other obedience constraints. Theorem 2

allows us to focus on a lower-bound problem that is simple enough to provide

implementation results. First, Theorems 6 and 6 show that the seller-optimal

outcome that solves the lower-bound problem is attainable in the original problem

in which the mediator recommends a contract rather than an allocation, and all

6To the best of our knowledge, this challenge is novel in the literature.

5



the obedience constraints are considered. We call it the mediated implementation

result. Next, in Section 4.3.2, we show that the seller-optimal outcome that solves

the lower-bound problem is also attainable without the mediator as long as, in each

period, the seller himself can garble the information provided to each of his future

selves (not only to his next-period self, as in Doval and Skreta, 2021a,b) about the

buyer’s report at that period. We call this the unmediated implementation result.

Which of the two implementation results is most useful may depend on the context.

Our characterization of the seller-optimal information structure in the durable-

good monopoly application is summarized by Theorems 3, 4, and 5 and uncovers

the following results of economic substance. First, in general, the seller finds it

beneficial if the information input by the buyer arrives precisely (i.e., without gar-

bling) but with delay. More formally, the optimal information structure specifies

the time at which the buyer’s private information report is made public; until then,

no information—except whether a trade has happened or not—is revealed. This

timing depends on the model’s parameters, such as the distribution of the buyer

type and the discount factor. That delayed information disclosure is beneficial to

the seller is consistent with Brzustowski et al. (2021). However, our result shows

that the seller can do strictly better than in Brzustowski et al. (2021)—even in

the limiting case of perfect patience—and, in addition, that is the best possible

he can do. Our result also implies that the seller’s optimal information structure

always makes the trade outcome inefficient, as the low-value buyer can trade with

a significant delay (even in the limiting case of perfect patience).

Intuitively, delayed (but precise) information disclosure makes the seller’s bar-

gaining power stronger. Relative to the case in which no such information arrives,

the seller’s incentive to offer a more aggressive price is higher because even if the

buyer did not buy at that aggressive price, full extraction would be possible once

the time comes. Furthermore, once the seller of some period becomes aggressive,

then the seller of the previous period can also be more aggressive because the

buyer has less continuation payoff conditional on no trading. In this sense, the

aggressiveness of each period’s seller is a strategic complement to each other. In-

deed, except for the initial period, the seller continues to offer the commitment

price every period until the time of revelation. This price pattern is completely

different from the classical Coase-conjecture pattern of decreasing prices: our case

may rather be interpreted as the initial “fire sale” followed by the rigid high price.
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1.1 Related literature

Our paper contributes to the literature on mechanism design with limited com-

mitment. The failure of the revelation principle is well-known since the seminal

contributions of Laffont and Tirole (1988) and Bester and Strausz (2001), fur-

ther developed in Bester and Strausz (2000) and Bester and Strausz (2007). The

mediator approach based on Forges (1986) and Myerson (1986) is first proposed

by Bester and Strausz (2007) in the context of mechanism design with limited

commitment. In Bester and Strausz (2007), the game has two periods, and the

mechanism design is only in the initial period; in the second period, the principal

just selects an action from a given set. Therefore, the main challenge we face in

our long-horizon setting—namely, how to handle potentially large sets of contracts

for the principal (both on-path and off-path)—does not arise. This challenge also

makes our problem a non-trivial application of the (sequential) communication

equilibrium notion of Forges (1986), Myerson (1986), and Sugaya and Wolitzky

(2021). As we briefly discuss in the conclusion, we hope that our approach would

be useful in other potential applications of (sequential) communication equilibrium

in which some players’ action spaces may be complicated.

Several papers study durable-good monopoly (or, equivalently, bargaining with

one-sided incomplete information) as a representative application.7 As explained

above, classically, the literature of durable-good monopoly implicitly assumes that

the seller’s action is simply a price offer, but the (limited-committed) mechanism-

design perspective adds by allowing for more general contracts (see the above dis-

cussion about Skreta, 2006; Doval and Skreta, 2021a,b; Brzustowski et al., 2021).

In contrast to these papers, which consider specific classes of contracts and/or

information structures, we propose a more systematic treatment of them.

Our paper also relates to the literature that checks the robustness of the Coase

conjecture or documents its failure. For instance, a monopolist could relax its com-

mitment problem and increase its profit by renting the good rather than selling it

(Bulow, 1982), by introducing best-price provisions (Butz, 1990), or by introduc-

ing new updated versions of the durable good over time (Levinthal and Purohit,

1989; Waldman, 1993, 1996; Choi, 1994; Fudenberg and Tirole, 1998; Lee and

Lee, 1998). Other studies have analyzed environments which preclude the market

from fully deteriorating. These include environments with capacity constraints

(Kahn, 1986; McAfee and Wiseman, 2008), with arrival of new traders (Sobel,

7Other than durable-good monopoly, Liu, Mierendorff, Shi, and Zhong (2019) consider
posted prices in dynamic auction, and Gerardi and Maestri (2020) consider repeated production.
Strulovici (2017) and Maestri (2017) study renegotiation with limited commitment.
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1991; Inderst, 2008; Fuchs and Skrzypacz, 2010) or information (Daley and Green,

2019; Duraj, 2020; Lomys, 2021; Laiho and Salmi, 2021), with time-varying costs

(Ortner, 2017), in which buyers’ valuations are subject to idiosyncratic stochas-

tic shocks (Biehl, 2001; Deb, 2014; Garrett, 2016), in which buyers can exercise

an outside option (Board and Pycia, 2014), in which goods depreciate over time

(Bond and Samuelson, 1987), and in which demand is discrete (Bagnoli, Salant,

and Swierzbinski, 1989; von der Fehr and Kuhn, 1995; Montez, 2013). In contrast

to these papers, we consider the same basic game as that in the classical seminal

contributions. Instead, we examine alternative information structures.

1.2 Road Map

In Section 2, we present the general model, which illustrates the mediator ap-

proach to mechanism design with limited commitment. In Section 3, we provide

several examples to motivate our approach to the topic. In Section 4, we study

durable-good monopoly as a representative application of the mediator approach

to mechanism design with limited commitment. In Section 5, we conclude. Omit-

ted proofs and additional details are in the Appendices.

2 Model

In this section, we present the general model, which illustrates the mediator ap-

proach to mechanism design with limited commitment.

Primitives. There are three players: a principal (he, player P ), an agent (she,

player A), and a mediator (he, player M). Time is discrete and periods are indexed

by t ∈ T := {0, . . . , T}, where 2 ≤ T ≤ ∞. Let T0 := T \{0} and T1 := T \{0, 1}.
At the beginning of period t = 0, the agent observes her private information (type)

θ ∈ Θ, which is distributed according to a full-support probability distribution µ.

The agent’s type does not change over time. Each period t ∈ T0, as a result of

the interaction between the players, an allocation at ∈ At is determined; the set of

admissible allocations may be time dependent—hence, its dependence on t. Each

allocation set At contains the element ∅, corresponding to the non-participation

allocation (or, equivalently, to the agent’s outside option). For all t ∈ T0, let

At := ×tτ=1Aτ be the set of all allocation sequences of the form at := (aτ )
t
τ=1. For

all t ∈ T1, there is a correspondence At : At−1 ⇒ At such that, for all at−1 ∈ At−1,

At(at−1) ⊆ At describes the set of all allocations that the principal can offer in
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period t given the allocations he has offered through period t− 1. This allows for

the case in which past allocations restrict what the principal can offer the agent

in the future. We assume that ∅ ∈ At(at−1) for all t ∈ T1 and at−1 ∈ At−1.

The set of all payoff-relevant pure outcomes of the game is Θ × AT . The

principal’s (resp., agent’s) preferences are represented by a bounded payoff func-

tion UP : Θ × AT → R (resp., UA : Θ × AT → R). The mediator is indifferent

over payoff-relevant pure outcomes—that is, his preferences are represented by

a constant payoff function UM : Θ × AT → R. All players are expected-payoff

maximizers. Thus, the mediator can commit to any strategy.

In each period t ∈ T0, the principal offers a spot contract Ct := (Mt, αt) to the

agent, where: (i) Mt is a set of input messages to the contract; (ii) αt : Mt → ∆(At)

is an allocation rule. We write αt(mt) for the probability distribution on At when

the input message to the contract is mt and αt(at |mt) for the probability of allo-

cation at when the input message to the contract is mt. We endow the principal

with a class of input message setsM := {M i}i∈I , where I is an index set; each M i

contains element ∅, interpreted as non-participation message. For all t ∈ T0, let

Ct := {Ct := (Mt, αt) ∈ M×∆(At)
Mt : αt(∅ |∅) = 1, αt(∅ |mt) = 0 for all mt 6=

∅} be the set of all admissible spot contracts in period t. Let C := {Ct}t∈T0 be the

set of all admissible spot contracts. Finally, for all t ∈ T0, let Mt := ×tτ=1M and

Ct := ×tτ=1Ct. Hereafter, we refer to spot contract simply as contracts.

In period t = 0, the agent has a set of possible private reports to send to

the mediator, denoted by R, with |R| ≥ |Θ|. In each period t ∈ T0, the principal

(resp., the agent) has a set of possible private signals to receive from the mediator,

denoted by SP,t (resp., SA,t). For all t ∈ T0, let StP := ×tτ=1SP,t and StA := ×tτ=1SA,t.

Timing. The timing of events within period t = 0 is the following:

0.1 The agent privately observes her type θ ∈ Θ;

0.2 The agent sends a private report r ∈ R to the mediator.

The timing of events within each period t ∈ T0 is the following:

t.1 The mediator sends a private signal sP,t ∈ SP,t to the principal;

t.2 The principal offers a contract Ct ∈ Ct to the agent with the property that∑
at∈At(at−1) αt(at |mt) = 1 for all t ∈ T1, at−1 ∈ At−1, and mt ∈Mt;

t.3 After both the mediator and the agent observe Ct, the mediator sends a

private signal sA,t ∈ SA,t to the agent;
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t.4 The agent sends input message mt ∈ Mt to the contract, where mt is ob-

served by the mediator, but not by the principal;

t.5 An allocation at is drawn from αt(mt), the allocation at is publicly observed,

and the game proceeds to the next period.

For all t ∈ T and n ∈ {1, . . . , 5}, we refer to t.n as “stage t.n” of the game.

Histories. For all t ∈ T , and n ∈ {1, . . . , 5}, we denote by ht.n a history at the

beginning of stage t.n and by H t.n the set of all possible such histories. Then,

we have H0.1 = {∅}, H0.2 = Θ, H1.1 = Θ × R, H1.2 = Θ × R × S1
P , H1.3 =

Θ×R×S1
P ×C1, H1.4 = Θ×R×S1

P ×C1×S1
A, H1.5 = Θ×R×S1

P ×C1×S1
A×M,

and, for all t ∈ T1,

H t.1 = Θ×R× St−1
P × Ct−1 × St−1

A ×Mt−1 × At−1,

H t.2 = Θ×R× StP × Ct−1 × St−1
A ×Mt−1 × At−1,

H t.3 = Θ×R× StP × Ct × St−1
A ×Mt−1 × At−1,

H t.4 = Θ×R× StP × Ct × StA ×Mt−1 × At−1,

and H t.5 = Θ×R× StP × Ct × StA ×Mt × At−1.

For all t ∈ T0, we denote by ht a history at the end of period t and by H t the sets

of all possible such histories, with H t = Θ × R × StP × Ct × StA ×Mt × At. We

denote by HT the set of all terminal histories of the game.

Information Sets. For all i ∈ {P,A,M}, t ∈ T , and n ∈ {1, . . . , 5}, let ht.ni

denote player i’s information set at the beginning of stage t.n and by H t.n
i the

set of all possible such information sets. In particular, we have that: H1.2
P is

the projection of H1.2 on S1
P and, for all t ∈ T1, H t.2

P is the projection of H t.2 on

StP×Ct−1×At−1; H0.2
A = H0.2, H1.4

A is the projection of H1.4 on Θ×R×C1×S1
A, and,

for all t ∈ T1, H t.4
A is the projection of H t.4 on Θ×R×Ct×StA×Mt−1×At−1; H1.1

M

is the projection of H1.1 on R, H1.3
M is the projection of H1.3 on R×S1

P ×C1, and,

for all t ∈ T1, H t.1
M is the projection of H t.1 on R×St−1

P ×Ct−1×St−1
A ×Mt−1×At−1

and H t.3
M is the projection of H t.3 on R× StP × Ct × St−1

A ×Mt−1 × At−1.

Mediated Contract-Selection Game. The above defines an extensive-form

game, which we dub the mediated contract-selection game (hereafter, MCS game)

and denote by G. Game G is common knowledge among the players.
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Strategies. A behavioral strategy for the principal is a collection of functions

σP := (σt.2P )
T
t=1, where σt.2P : H t.2

P → ∆(Ct). A behavioral strategy for the agent

is a collection of functions σA :=
(
σ0.2
A , (σt.4A )

T
t=1

)
, where σ0.2

A : H0.2
A → ∆(R) and

σt.4A : H t.4
A → ∆(Mt). A behavioral strategy for the mediator is a collection of func-

tions σM :=
(
σt.1M , σ

t.3
M

)T
t=1

, where σt.1M : H t.1
M → ∆

(
SPt
)

and σt.3M : H t.3
M → ∆

(
SAt
)
. A

profile of behavioral strategies is σ := (σP , σA, σM).

A prior µ and a profile of behavioral strategies σ induce a probability distri-

bution over payoff-relevant pure outcomes. We extend players’ payoff functions

from payoff-relevant pure outcomes (θ, aT ) ∈ Θ×AT to outcomes ν ∈ ∆(Θ×AT )

in the usual way. For i ∈ {P,A}, we denote by Ui(ν) player i’s ex ante expected

payoff at the beginning of the MCS game under outcome ν.

Beliefs. A principal’s belief is a collection of functions βP := (βt.2P )
T
t=1, where

βt.2P : H t.2
P → ∆(H t.2). Similarly, an agent’s belief is a collection of functions βA :=(

β0.2
A , (βt.4A )

T
t=1

)
, where β0.2

A : H0.2
A → ∆(H0.2) and βt.4A : H t.4

A → ∆(H t.4). Since the

mediator is indifferent over payoff-relevant pure outcomes, there are no optimality

conditions on the mediator’s strategy, and hence no need to introduce beliefs for

the mediator. A belief system is a pair β := (βP , βA).

Solution Concept. We refer to a profile of behavioral strategies and a belief

system (σ, β) as an assessment. The equilibrium notion we adopt is weak perfect

Bayesian equilibrium (hereafter, wPBE), which is defined as follows.

Definition 1. An assessment (σ, β) is a weak perfect Bayesian equilibrium of G if:

1. σP is sequentially rational given (σM , σA) and β;

2. σA is sequentially rational given (σM , σP ) and β; and

3. β is on-path consistent given σ.

We say that ν ∈ ∆(Θ×AT ) is a wPBE outcome of G if there is a wPBE (σ, β)

of G that (together with µ) induces ν. We denote by E (resp., O) the set of all

wPBEs (resp., wPBE outcomes) of G.

Notation and Terminology. A contract Ct ∈ Ct is constant if, for some

at ∈ At, we have αt(at |mt) = 1 for all mt ∈Mt \{∅}. A contract Ct ∈ Ct is direct

if Mt = {∅}∪Θ. Suppose E 6= ∅ and that arg maxν∈O UP (ν) 6= ∅; we say that ν∗ ∈
∆(Θ× AT ) is a principal-optimal wPBE outcome of G if ν∗ ∈ arg maxν∈O UP (ν).
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Discussion. Our approach to mechanism design with limited commitment builds

on the notion of (sequential) communication equilibrium in multistage games with

communication (Forges, 1986; Myerson, 1986; Sugaya and Wolitzky, 2021, here-

after FMSW). As in the literature on communication equilibrium, we interpret the

mediator as a fictitious player who has commitment power and designs the entire

information structure (or communication protocol) of the game. We follow this

approach because, by the revelation-principle results in FMSW (several versions

depending on the specific solution concept), any admissible information structure

of the underlying multistage game without a mediator and its equilibrium outcome

can be represented by the mediated version of that game and its corresponding

equilibrium outcome. An information structure is admissible if it satisfies the

two following conditions. First, the agent’s type remains private unless the agent

wants to disclose it. Second, the exogenously given basic game—hence, the exten-

sive form and the principal’s limited commitment—is respected; in particular, in

each period, the contract chosen by the principal and the realized allocation are

publicly observed.

3 Motivating Examples

In this section, we provide three examples to motivate the mediator approach to

mechanism design with limited commitment. The examples show that the set of all

wPBE outcomes under our approach can be larger than that under the alternative

approaches in the literature. We identify three reasons why this can be the case.

1. Information Storing and Delayed Disclosure. In the MCS game, the

mediator can store a given period’s information—namely, the agent’s report to the

mediator—and disclose it to the principal in future periods. Example 1 shows that

the principal’s ex ante expected wPBE payoff when information storing and de-

layed disclosure are possible can be greater than when a given period’s information

can only be either (noisily) disclosed in the current period or never disclosed.

2. Deletion of Stored Information. In the MCS game, because of the pos-

sibility of information storing and delayed disclosure, the information provided to

the principal’s future selves can depend on their contract choices. In particular, the

mediator can punish a principal’s future self who deviates to a non-equilibrium

contract by deleting any planned disclosure of stored information. Example 2

shows that the deletion of stored information can serve as an effective threat to

12



prevent the principal’s future selves from deviating to non-equilibrium contracts.

As a result, the principal’s ex ante expected wPBE payoff can be greater than

when such punishments are not possible.

3. Equilibrium Multiplicity and Equilibrium Selection. Principal-optimal

wPBE outcomes may necessarily require suboptimal continuation equilibrium se-

lection from the viewpoint of some of the principal’s future selves. Such subopti-

mal equilibrium selection is possible in the MCS game. In particular, the mediator

can punish a principal’s current or future self who deviates to a non-equilibrium

contract by suboptimal equilibrium selection. Example 3 shows that suboptimal

continuation equilibrium selection can serve as an effective threat to prevent the

principal from deviating to non-equilibrium contracts. As a result, the principal’s

ex ante expected wPBE payoff can be greater than when such punishments are

not possible.

3.1 Example 1

Let T = {0, 1, 2, 3}. The principal is a seller who owns one unit of a durable,

indivisible good to which he assigns value 0 (normalization). The agent is a buyer

whose private type θ ∈ Θ = {1, 2} corresponds to her valuation for the good. Let

µ = 9
10

be the probability that θ = 2 at t = 0. If the agent participates in period t,

an allocation for the period is a pair (xt, pt) ∈ {0, 1}×R, where xt indicates whether

the good is traded (xt = 1) or not (xt = 0) and pt is a transfer from the agent to

the principal. If xt = 1 for some t < 3, by convention, allocation (xτ , pτ ) = (0, 0)

is implemented for all τ ∈ T with τ > t. Thus, the allocation set in period t is

At = {∅}∪ ({0, 1}×R). If at = ∅, the principal’s and the agent’s flow payoffs are

0; if at = (xt, pt), flow payoffs are θxt−pt for the agent and pt for the principal. The

principal and the agent share a common discount factor δ = 1
2
. The principal’s and

the agent’s payoffs, UP (θ, a) and UA(θ, a), are the discounted sum of flow payoffs.

Information Storing and Delayed Disclosure. The following events corre-

spond to a principal-optimal wPBE outcome the MCS game (see Section 4 for the

complete equilibrium characterization):

• Period t = 0. The agent truthfully reports her type θ to the mediator.

• Period t = 1. The mediator recommends to the principal to offer a menu

with two options: (i) trade with probability 17
18

at price 59
34

; (ii) do not trade.

The mediator recommends to type θ = 2 to choose option (i) and to type

13



θ = 1 to choose option (ii). The principal and the agent obey the mediator’s

recommendation.

• Period t = 2. Conditional on no trade before, the mediator recommends to

the principal to offer a menu with two options: (i) trade with probability 1

at price 2; (ii) do not trade. The mediator recommends to type θ = 2 to

choose option (i) and to type θ = 1 to choose option (ii). The principal and

the agent obey the mediator’s recommendation.

• Period t = 3. Conditional on no trade before, the mediator fully discloses

the agent’s type report θ to the principal. The principal offers to trade at

price θ and type θ trades with probability 1 at price θ.

The mediator’s key role in this principal-optimal wPBE of the MCS game is

to store the agent’s type report in period t = 0 and fully disclose it in period t = 3

to the principal. Note that the mediator’s recommendation to the principal in

periods t = 1 and t = 2 does not depend on the agent’s report.

To better understand the scope of information storing and delayed disclosure,

we contrast the previous principal-optimal wPBE outcome the MCS game with

a principal-optimal wPBE outcome of the game in which a given period’s in-

formation can only be either (noisily) disclosed in the current period or never

disclosed. In particular, the following events correspond to a principal-optimal

wPBE outcome of the BS/DS game (see Doval and Skreta (2021b) for the com-

plete equilibrium characterization):

• Period t = 1. Type θ = 2 trades with probability 8
9

at price 7
4
, while type

θ = 1 does not trade.

• Period t = 2. Conditional on no trade before, type θ = 2 trades with

probability 1 at price 3
2
, while type θ = 1 does not trade.

• Period t = 3. Conditional on no trade before, both types trades with prob-

ability 1 at price 1.

Let x`,t (resp., xh,t) denote the probability with which type θ = 1 (resp., θ = 2)

trades in period t; moreover, let p`,t (resp., ph,t) denote the transfer from type θ = 1

(resp., θ = 2) to the principal conditional on trade in period t. Table 1 summa-

rizes the two principal-optimal wPBE outcomes of the MCS game and the BS/DS

game described above.

In both wPBE outcomes, type θ = 2 trades gradually over time (i.e., with

positive probability over multiple periods), whereas type θ = 1 trades only in

the last period, when the principal becomes sufficiently pessimistic. Crucially,
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Table 1: Summary of the Equilibrium Outcomes

Period t = 1 Period t = 2 Period t = 3

x`,1 p`,1 xh,1 ph,1 x`,2 p`,2 xh,2 ph,2 x`,3 p`,3 xh,3 ph,3

MCS Game 0 0 17
18

59
34

0 0 1
18

2 1 1 0 0

BS/DS Game 0 0 8
9

7
4

0 0 1
9

3
2

1 1 0 0

however, price paths and trade probabilities are different in the two wPBEs: first,

the price path is not decreasing over time in the MCS game, whereas it is so in

the BS/DS game; second, the probability of trade in period t = 1 (resp., t = 2) is

greater (resp., less) in the MCS game than in the BS/DS game.

The intuition behind the different equilibrium dynamics is the following. In the

MCS game, in period t = 3, the principal can fully extract the surplus from the

transaction thanks to the mediator’s disclosure of the agent’s type report (made in

period t = 0). Such surplus extraction is not possible without information storing.

In period t = 2, the principal offers price 2 in the MCS game and price 3
2

in

the BS/DS game. In the MCS game, the principal has no incentive to lower the

price below 2 because he knows that, even if type θ = 2 does not buy the good,

he can still sell it at price 2 (and fully extract the surplus) in period t = 3 thanks

to the mediator’s disclosure of the agent’s type report. The principal’s (posterior)

belief on θ = 2 at the beginning of period t = 2 is less than 1
2
, and so the ability of

storing information and delaying its disclosure to the principal is crucial to sustain

a price of 2; without such ability, sequential rationality would require the principal

to post a price equal to 1 whenever his (posterior) belief on θ = 2 at the beginning

of period t = 2 is less than 1
2
. In other words, information storing and its delayed

disclosure increases the principal’s bargaining power in period t = 2.

In period t = 1, in the MCS game, the price is lower but the probability of

trade is greater than in the BS/DS game. The probability of trade in the BS/DS

game must be small enough for the principal’s (posterior) belief on θ = 2 at the

beginning of period t = 2 to be no less than 1
2

and sell only to type θ = 2 at a

price greater than 1; otherwise, sequential rationality would require the principal

to sell to both types with probability 1 at price 1.

The principal’s ex ante expected payoff in a principal-optimal wPBE outcome

of the MCS game, denoted by U∗P , is

U∗P = µ

(
3∑
t=1

δt−1xh,tph,t

)
+ (1− µ)

(
3∑
t=1

δt−1x`,tp`,t

)
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=
9

10

[
17

18

59

34
+

1

2

1

18
2

]
+

1

10

1

4
1

=
558

360
.

The principal’s ex ante expected payoff in a principal-optimal wPBE outcome of

the BS/DS game, denoted by Û∗P , is

Û∗P = µ

(
3∑
t=1

δt−1xh,tph,t

)
+ (1− µ)

(
3∑
t=1

δt−1x`,tp`,t

)

=
9

10

[
8

9

7

4
+

1

2

1

9

3

2

]
+

1

10

1

4
1

=
540

360
.

Thus, we have

U∗P − Û∗P =
1

20
> 0,

showing that information storing and delayed disclosure are beneficial from the

principal’s ex ante viewpoint.

3.2 Example 2

Let T = {0, 1, 2, 3}. The agent’s type θ is uniformly distributed over Θ = {−1, 1}.
The allocation sets are A1 = A3 = {∅,−1, 1} and A2 = {∅, e, n}, where a2 = e

is interpreted as “extract” and a2 = n is interpreted as “not extract”. Non-

participation in any period t is an irreversible option for the agent (i.e., it implies

non-participation in all future periods). The principal’s payoff is

UP (θ, a) =


0 if a1 = ∅ or a2 = ∅
1{a2=e} if a1 6= ∅, a2 6= ∅, and a3 = ∅
1{a2=e} − θa3λ otherwise

and the agent’s payoff is

UA(θ, a) =



0 if a1 = ∅
θa1λ−K if a1 6= ∅ and a2 = ∅
−1−K if a1 6= ∅, a2 = e, and a3 = ∅
θa1λ−K if a1 6= ∅, a2 = n, and a3 = ∅
−1 if a1 6= ∅, a2 = e, and a3 6= ∅
θa1λ+ θa3 if a1 6= ∅, a2 = n, and a3 6= ∅

,

where λ ∈ (1, 2) and K > 0 is large enough for participation in periods 2 and 3

to be optimal for the agent.
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Deletion of Stored Information. If the principal could commit to the al-

location sequence (a1, a2, a3) = (θ, n,−θ), the agent would be truthful and the

principal’s payoff would be λ > 0. However, without commitment power and

without the possibility of storing information, the principal’s ex ante expected

payoff in any wPBE of the resulting game is 0. To establish this point, it suffices

to show that, in any wPBE, the agent never participate to any contract in period

t = 1. By contradiction, suppose the agent participates in period t = 1. Then,

in period t = 2, the principal offers a constant contract which allocates a2 = e

(and the agent participates), because it increases the principal’s payoff without

affecting the agent’s incentive constraint in period t = 3; thus, the agent’s flow

payoff in period t = 2 is -1. In period t = 3, the principal’s expected flow payoff

is non-negative because he can always offer any constant contract guaranteeing 0

expected flow payoff; thus, the agent’s flow payoff in period t = 3 is non-positive.

Therefore, the agent’s expected payoff from participating in period t = 1 is −1.

This is a contradiction because the agent can always guarantee herself a payoff of

0 by not participating in period t = 1.

The next claim shows that the MCS game has a wPBE in which the princi-

pal’s ex ante expected payoff is λ. As in Example 1, the mediator again stores

the agent’s type report in period t = 0 and fully disclose it in period t = 3 to

the principal, but his role is different. In particular, the mediator’s role is now

to prevent the principal deviation to the constant contract allocating a2 = e in

period t = 2; this is achieved by the mediator’s threat of not disclosing the agent’s

type report in period t = 3 if the principal deviates in period t = 2. The next

claim and its proof formalize these ideas.

Claim 1. The MCS game has a wPBE in which the principal’s ex ante expected

payoff is λ.

Proof. We begin by describing a candidate wPBE of the MCS game. On-path

events are the following:

• Period t = 0. The agent truthfully report her type θ to the mediator.

• Period t = 1. The mediator sends signal sP,1 = θ with probability α and

signal sP,1 = −θ with probability 1−α to the principal, where (1 +λ)/2λ <

α < (2λ − 1)/2λ. The principal offers a constant contract which allocates

a1 = sP,1. The agent participates to the contract.

• Period t = 2. The principal offers a constant contract which allocates a2 = n.

The agent participates to the contract.
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• Period t = 3. The mediator fully discloses the agent’s type report θ (made

in period t = 0) to the principal. The principal offers a constant contract

which allocates a3 = −θ. The agent participates to the contract.

Off-path events are the following:

• If the principal observes any off-path event by period t = 2, then he offers a

constant contract which allocates a2 = e.

• If the principal deviates in period t = 1 or t = 2 (which is observed by the

mediator by assumption), then the mediator does not reveal the agent’s type

report θ (made in period t = 0) to the principal in period t = 3.

• If the principal observes any off-path event by period t = 3, then he offers

any best responding contract in period t = 3.

The principal’s ex ante expected payoff in the candidate wPBE is λ. Thus, it

remains to show that the candidate wPBE is indeed a wPBE of the MCS game.

We begin with the agent’s incentives. The agent’s participation in periods t = 2

and t = 3 is optimal. In period t = 0, the agent’s expected continuation payoff

from truthfully reporting her type to the mediator is λ(α− (1− α))− 1, whereas

her expected continuation payoff from lying to the mediator is λ(−α+(1−α))+1;

since the former is greater than the latter for α > (1 + λ)/2λ, the agent finds it

optimal to be truthful. In period t = 1, the agent’s expected continuation payoff

from participating to the mechanism is λ(α− (1−α))−1, whereas the agent’s ex-

pected continuation payoff from non-participation is 0; since the former is greater

than the latter for α > (1 + λ)/2λ, the agent finds it optimal to participate.

Next, we consider the principal’s incentive. First, in period t = 3, the principal

has no incentive to deviate since the allocation a3 = −θ is the best one from the

period-3 principal’s viewpoint. The principal’s continuation payoff from following

the candidate equilibrium strategy in period t = 1 and t = 2 is λ. If the principal

deviates in period t = 1 or t = 2, then the mediator does not reveal the agent’s

type report to the principal in period t = 3. Accordingly, at the beginning of

period t = 3, the principal has only the partial information sP,1 about the agent’s

type θ. Thus, the principal in period t = 3 can do no better than offering a

constant contract which allocates a3 = sP,1. Therefore, the principal’s expected

continuation payoff from deviating in period t = 1 or t = 2 is at most 1+λ(2α−1).

Since λ > 1 + λ(2α − 1) for α < (2λ − 1)/2λ, the principal has no incentive to

deviate from the candidate equilibrium strategy in periods t = 1 and t = 2. �
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3.3 Example 3

Let T = {0, 1, 2}. There are two agents, denoted by i = 1, 2.8 In each period t ∈
T0, the principal allocates at = (a1,t, a2,t) ∈ At = {∅,−1, 1}2, where ai,t = ∅ if and

only if agent i does not participate in period t. Each agent i has a type θi ∈ Θ =

{−1, 1}, equally likely and independent across players. The principal’s payoff is

UP ((θ1, θ2), a) =


0 if a1,1 = ∅ or a2,1 = ∅∑

i ai,1θi if a1,1 6= ∅, a2,1 6= ∅, and a1,2 = ∅ or a2,2 = ∅∑
i(ai,1θi + ai,2ε) otherwise

,

where ε ∈ (0, 1). Agent i’s payoff is

Ui(θi, a) =


0 if ai,1 = ∅
1 if ai,1 6= ∅, and a1,2 = ∅ or a2,2 = ∅
2− ai,1θi otherwise

.

Each agent finds it optimal to participate in the contract in period t = 1. The

best continuation events from the period-2 principal’s viewpoint is such that both

agents participate in period t = 2 and the allocation is (a1,2, a2,2) = (1, 1); the

worst continuation event from the period-2 principal’s viewpoint is such that (at

least) one agent does not participate in period t = 2. If (at least) one agent does

not participate in period t = 2, the principal and agent i have the same preferences

regarding ai,1 for i = 1, 2; in contrast, if both agents participate in period t = 2,

the principal and agent i have opposite preferences regarding ai,1 for i = 1, 2.

Equilibrium Multiplicity and Equilibrium Selection. The MCS game has

a wPBE in which the principal’s ex ante expected payoff is 1; such wPBE re-

quires the worst continuation equilibrium selection from the period-2 principal’s

viewpoint. The next claim and its proof formalize these ideas.

Claim 2. The MCS game has a wPBE in which the principal’s ex ante expected

payoff is 2.

Proof. Regardless of what happens in period t = 1, a continuation equilibrium in

period t = 2 is as follows: neither agent participates in whatever contract is offered

by the principal (if agent −i does not participate, then agent i’s participation is

payoff irrelevant and so it is a best response for i not to participate); for i = 1, 2,

the principal offers any constant contract if agent i participates. Given this, each

8Although the main model only considers a single agent, a simple extension with two agents
should not introduce any confusion.

19



agent i’s continuation payoff in period t = 1 (upon participation, which is optimal

for each agent) is 1; thus, for i = 1, 2, the principal offers a direct contract with

allocation rule αi,1(ai,1 = mi,1 |mi,1) = 1 for i = 1, 2, and agents’ truth-telling is

incentive compatible. As a result, the principal’s ex ante expected payoff in this

wPBE is 2. �

The next claim shows that if the best continuation equilibrium from the period-

2 principal viewpoint is selected, then the principal’s ex ante expected payoff in

a wPBE cannot exceed 2ε. Since ε ∈ (0, 1), such payoff is less than that in

the wPBE of the MCS game characterized by Claim 2; thus, the principal-optimal

wPBE outcome necessarily requires suboptimal continuation equilibrium selection

from the period-2 principal viewpoint.

Claim 3. If the best continuation equilibrium from the period-2 principal’s view-

point is selected, then the principal’s ex ante expected wPBE payoff is at most 2ε.

Proof. Regardless of what happens in period t = 1, the best continuation equi-

librium from the period-2 principal’s viewpoint is as follows: for i = 1, 2, the

principal offers a constant contract which allocates ai,2 = 1 if agent i participates;

both agents participate. Given this, each agent i’s continuation payoff in period

t = 1 (upon participation, which is optimal for each agent) is 2− ai,1θi; thus, for

i = 1, 2, the principal finds it optimal to offer any constant contract in period

t = 1. As a result, the principal’s ex ante expected payoff in this wPBE is 2ε.�

4 Durable-Good Monopoly

In this section, we study durable-good monopoly as a representative application

of the mediator approach to mechanism design with limited commitment. The

setting is as in Example 1, with the following generalizations: the time horizon

is infinite (T = ∞); the seller and the buyer share a common discount factor

δ ∈ (0, 1); the buyer’s private valuation for the good is θ ∈ Θ = {θ`, θh}, where

0 < θ` < θh; the probability that θ = θh at t = 0 is µ ∈
(
θ`
θh
, 1
)
.9 Hereafter, G

refers to the durable-good monopoly MCS game and E (resp., O) to all its wPBEs

(resp., wPBE outcomes).

9If µ ∈
(
0, θ`θh

]
, then a fully committed seller would post a price equal to θ` in order to

trade with both buyer types in period t = 1; this is also a seller-optimal wPBE outcome of the
durable-good monopoly MCS game.
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The rest of this section is organized as follows. In Section 4.1, we present our

indirect approach to characterize the set O. In Section 4.2, we build on the indi-

rect approach to characterize a seller-optimal wPBE outcome of G. In Section 4.3,

we discuss both mediated and unmediated implementation of the seller-optimal

wPBE outcome of G characterized in Section 4.2.

4.1 Indirect Approach

To characterize the set O, we could rely on (some versions of) the revelation prin-

ciple in FMSW. Informally, when applied to our setting, the FMSW revelation

principle says that it is without loss to assume the following:

(i) In period t = 0, the buyer’s report to the mediator is her type, that is,

R = Θ.

(ii) In each period t ∈ T0: the mediator’s signal to the seller is a recommenda-

tion of an admissible contract, that is, SP,t = Ct; the mediator’s signal to

the buyer is a recommendation of an input message to the contract, that is,

SA,t = Mt.

(iii) In period t = 0, the buyer truthfully reports her type to the mediator; in each

period t ∈ T0, the seller and the buyer obey the mediator’s recommendation.

The revelation principle in FMSW simplifies the characterization of the set O
relative to the original setting in which any indirect reports and signals are al-

lowed. However, its literal application is still challenging. In particular, when the

set C is large, there are two challenges: (i) identify the sequence of contracts that

the seller offers on the equilibrium path; and (ii) verify seller’s obedience to the

on-path contracts for all possible deviations to off-path contracts. We circumvent

these issues by following an indirect approach based on the insights we develop in

the remaining part of this section.

4.1.1 Outcome-Based Approach

We take an outcome-based approach. We represent any (equilibrium and non-

equilibrium) outcome of G by a sequence of trade probabilities and expected trans-

fers

(x,p) := (x`,t, xh,t, p`,t, ph,t)
∞
t=1,

where x`,t (resp., xh,t) denotes the probability with which the seller trades with

type θ` (resp., θh) in period t, and p`,t (resp., ph,t) denotes the expected transfer
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from type θ` (resp., θh) to the seller in period t. To form an outcome of G, a se-

quence of trade probabilities and expected transfers (x,p) must satisfy the obvious

feasibility constraints: xk,t ≥ 0 for all k ∈ {`, h} and t ∈ T0, and
∑∞

t=1 xk,t ≤ 1 for

all k ∈ {`, h}.
Given an outcome (x,p):

• For any k ∈ {`, h}, we denote by xk,t(x,p) the probability with which type

θk trades in period t in outcome (x,p) conditional on not having traded in

the previous periods.

• For any k ∈ {`, h}, we denote by pk,t(x,p) the expected transfer from type

θk to the principal in period t in outcome (x,p) conditional on not having

traded in the previous periods.

• We denote by C(x,p) := (Ct(x,p))∞t=1 sequence of direct contracts corre-

sponding to outcome (x,p). That is, Ct(x,p) is the direct contract allocat-

ing

(xt, pt) =

{
(1, pk,t(x,p)) with probability xk,t(x,p)

(0, pk,t(x,p)) with probability 1− xk,t(x,p)

if the input message to the direct contract is θk for all k ∈ {`, h}.
Thus, one can think of the mediator’s strategy as directly recommending

outcomes—or, equivalently, direct contracts to the seller and input messages (i.e.,

type reports) to the direct contract to the buyer—instead of sending signals to

the seller and the buyer.

4.1.2 Upper-Bound Problem

Let C` denote the constant contract allocating (x, p) = (1, θ`). To form a wPBE

outcome of G, an outcome (x,p) must be such that: (i) the buyer’s incentive

compatibility constraint when sending a report to the mediator in period t = 0

is satisfied; (ii) in each period t ∈ T0, the buyer’s expected continuation payoff is

non-negative; (iii) in each period t ∈ T0, the seller’s expected continuation payoff

must be no less than that from ending the game by offering the constant contract

C` in period t. Requirements (i) and (ii) are obvious. To understand requirement

(iii), it is enough to note that, in any wPBE of G, if the seller offers contract C`,

both buyer types accept the contract, and the game ends.

The next theorem formalizes the previous discussion by identifying necessary

conditions on outcomes (x,p) to form a wPBE outcome of G.
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Theorem 1 (Upper-Bound Problem). Consider any (x,p) ∈ O. Then, there

exists (σ, β) ∈ E that induces (x,p) and satisfies the following properties:

1. For all θ, θ′ ∈ Θ, at history h0.2
A = {θ}, the buyer’s expected continuation

payoff by playing σ0.2
A (θ) is at least as large as that by playing σ0.2

A (θ′).

2. For all t ∈ T0 and ht.4A ∈ H t.4
A , the buyer’s expected continuation payoff is

non-negative.

3. For all t ∈ T0 and ht.2P ∈ H t.2
P , the seller’s expected continuation payoff is not

less than that from ending the game by offering the constant contract C` in

period t.

The outcome-based approach and Theorem 1 together can be interpreted as

a relaxed revelation principle. They allow us to characterize a superset of the set

O—hence, candidate elements of O—by solving a problem that is a much simpler

relaxation of the original problem. First, the space of all outcomes (i.e., trade

probabilities and expected transfers) is much more well-structured than the unre-

stricted set of all admissible contracts C. Second, the set of incentive compatibility

and obedience constraints is much smaller; in particular, for the seller’s obedience,

we can focus only on deviations to a single contract (i.e., the constant contract

C`), ignoring all the other obedience constraints.

The outcome-based approach and the relaxed revelation principle can be useful

not only for mechanism design problems with limited commitment—and, in par-

ticular, the current durable-good monopoly application—but also more generally

(see the discussion in Section 5).

4.1.3 Lower-Bound Problem

For all µ̃ ∈ (0, 1), let (xc(µ̃),pc(µ̃)) denote the Coasean outcome of G when the

seller’s initial belief that θ = θh is µ̃. That is, outcome (xc(µ̃),pc(µ̃)) corresponds

to the sequence of trade probabilities and expected transfers that would arise in the

equilibrium of G in which the mediator never communicates with the seller and the

buyer—except, possibly, for selecting the appropriate continuation equilibrium—

when the seller’s initial belief that θ = θh is µ̃. Moreover, let C(xc(µ̃),pc(µ̃)) :=

(Ct(x
c(µ̃),pc(µ̃)))∞t=1 be the corresponding sequence of direct contracts.

The next theorem identifies sufficient conditions on outcomes (x,p) to form a

wPBE outcome of G.

Theorem 2 (Lower-Bound Problem). Consider an outcome (x,p) of G and let
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(σ, β) be an assessment of G that induces (x,p) and such that β is on-path con-

sistent given σ. Suppose that the following properties hold:

1. For all θ, θ′ ∈ Θ, at history h0.2
A = {θ}, the buyer’s expected continuation

payoff by playing σ0.2
A (θ) is at least as large as that by playing σ0.2

A (θ′).

2. For all t ∈ T0 and θ, θ′ ∈ Θ, at history ht.4A , the buyer’s expected continuation

payoff by playing σt.4A (θ) is at least as large as that by playing σt.4A (θ′).

3. For all t ∈ T0 and ht.4A ∈ H t.4
A , the buyer’s expected continuation payoff is

non-negative.

4. For all t ∈ T0 and ht.2P ∈ H t.2
P , the seller’s expected continuation payoff is

not less than that he would obtain by offering the sequence of contracts

C(xc(µt),pc(µt)) thereafter, where µt is the seller’s belief on θ = θh at ht.2P
derived from (σ, β).

Then, (σ, β) ∈ E and (x,p) ∈ O.

The outcome-based approach and Theorem 2 together can be interpreted as

mediated implementation in direct contracts. Parts 1 and 3 of Theorem 2 corre-

spond to the necessary conditions in parts 1 and 2 of Theorem 1; part 2 of Theorem

2 requires that the buyer’s incentive compatibility constraint when sending an in-

put message to the contract in each period t ∈ T0 is satisfied. When parts 1–3 of

Theorem 2 hold, the buyer’s sequential rationality follows. Part 4 of Theorem 2

tells us that if an outcome satisfies seller’s obedience with respect to the sequence

of contracts C(xc(µt),pc(µt)), then we can ignore all his other obedience con-

straints. To see why it suffices to focus on such deviations, consider the following

mediator’s strategy at any t ∈ T0:

• At stage t.1, the mediator recommends the direct contract Ct(x,p) to the

seller.

• At stage t.3: (i) if the seller offered contract Ct(x,p) at stage t.2, the medi-

ator recommends the buyer to participate and to truthfully report her type;

(ii) if the seller offered contract Ct 6= Ct(x,p) at stage t.2, the mediator

remains silent forever after—except, possibly, for selecting the appropriate

continuation equilibrium.

Given the mediator’s strategy, the seller’s most profitable deviation in period t is

to the sequence of contracts C(xc(µt),pc(µt)).10 This guess-and-verify approach

10Skreta (2006) shows that posted prices are optimal in any wPBE of the contract selection
game without a mediator. Thus, by Gul et al. (1986), the Coasean outcome arises in the
(essentially) unique sequential equilibrium of the contract selection game without a mediator.
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works in the current durable-good monopoly setting; more sophisticated guesses

about the binding obedience constraints may be necessary in other applications.

4.2 Seller-Optimal wPBE Outcomes

In this section, we are interested in characterizing seller-optimal wPBE outcomes

of G. We denote by U∗P the seller’s ex ante expected payoff in a seller-optimal

wPBE outcome of G. Moreover, for all n ≥ 2, we denote by Rn∞ the set of all

sequences with values in Rn.

4.2.1 Upper-Bound Problem

Because of Theorem 1, to find a candidate for a seller-optimal wPBE outcome of

G, it suffices to solve the following linear program:

max
(x,p)∈R4∞

µ

(
∞∑
t=1

δt−1ph,t

)
+ (1− µ)

(
∞∑
t=1

δt−1p`,t

)
(P1)

s.t. x`,t, xh,t ≥ 0 for all t ∈ T0 (F1)

1 ≥
∞∑
t=1

x`,t (F2)

1 ≥
∞∑
t=1

xh,t (F3)

∞∑
t=1

δt−1(θ`x`,t − p`,t) ≥
∞∑
t=1

δt−1(θ`xh,t − ph,t) (IC`)

∞∑
t=1

δt−1(θhxh,t − ph,t) ≥
∞∑
t=1

δt−1(θhx`,t − p`,t) (ICh)

∞∑
t=τ

δt−τ (θ`x`,t − p`,t) ≥ 0 for all τ ∈ T0 (IR`)

∞∑
t=τ

δt−τ (θhxh,t − ph,t) ≥ 0 for all τ ∈ T0 (IRh)

µ

(
τ−1∑
t=1

θ`xh,t +
∞∑
t=τ

δt−τph,t

)
(O`)

+ (1− µ)

(
τ−1∑
t=1

θ`x`,t +
∞∑
t=τ

δt−τp`,t

)
≥ θ` for all τ ∈ T0.

The inequalities in (F1)–(F3) are the feasibility constraints. Inequalities (IC`) and

(ICh) are the buyer’s incentive compatibility constraints at t = 0 (corresponding

to part 1 of Theorem 1). The inequalities (IR`) and (IRh) are the buyer’s indi-
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vidual rationality (or participation) constraints for all τ ∈ T0 (corresponding to

part 2 of Theorem 1). Finally, the inequalities in (O`) are the seller’s obedience

constraints for all τ ∈ T0 with respect to the deviation that consists in ending the

game by offering contract C` (corresponding to part 3 of Theorem 1).

In Appendix B, by using duality arguments, we solve the linear program (P1)

and establish the following result.

Theorem 3 (Candidate for a Seller-Optimal wPBE Outcome). The following

characterizes a candidate for a seller-optimal wPBE outcome of G. For all δ ∈ (0, 1)

and µ ∈
(
θ`
θh
, 1), there exists a positive integer T (δ, µ) such that:

(a) The game ends in period t = T (δ, µ);

(b) Type θ` trades only (and with probability 1) in period t = T (δ, µ) at price θ`;

(c) Type θh trades with positive probability in all periods t ∈ {1, . . . , T (δ, µ)−1}
at price θh, except for period 1, when he trades at price lower than θh.

(d) As δ → 1, T (δ, µ)→∞.

4.2.2 Lower-Bound Problem

Let V c(µ̃; δ) denote the seller’s expected payoff from the sequence of contracts

C(xc(µ̃),pc(µ̃)) when the seller’s initial belief that θ = θh is µ̃. Moreover, let

(x,p) := (x`,t, xh,t, p`,t, ph,t)
∞
t=1 be a solution to program (P1). For all τ ∈ T0, let

µτ (x,p) :=

(
1−

τ−1∑
t=1

xh,t

)
µ(

1−
τ−1∑
t=1

xh,t

)
µ+

(
1−

τ−1∑
t=1

x`,t

)
(1− µ)

denote the seller’s belief that θ = θh at the beginning of stage τ.2 under un-

der (x,p). Therefore, under outcome (x,p), V c(µτ (x,p); δ) corresponds to the

seller’s expected continuation payoff at stage τ.2 from the sequence of contracts

C(xc(µτ (x,p)),pc(µτ (x,p))). By Theorem 2, if (x,p) also satisfies the following

constraints
∞∑
t=τ

δt−τ (θ`x`,t − p`,t) ≥
∞∑
t=τ

δt−τ (θ`xh,t − ph,t) for all τ ∈ T0, (IC`′)

∞∑
t=τ

δt−τ (θhxh,t − ph,t) ≥
∞∑
t=τ

δt−τ (θhx`,t − p`,t) for all τ ∈ T0, (ICh′)

µτ

(
∞∑
t=τ

δt−τph,τ

)
+ (O)
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(1− µτ )

(
∞∑
t=τ

δt−τp`,τ

)
≥ V c(µτ (x,p); δ) for all τ ∈ T0,

then (x,p) is a seller-optimal wPBE outcome of G. The inequalities in (IC`′)

and (ICh′) are the buyer’s incentive compatibility constraints for all τ ∈ T0 (cor-

responding to part 2. of Theorem 2). The inequalities in (O) are the seller’s

obedience constraints for all τ ∈ T0 with respect to the deviation that consists in

offering the sequence of contracts C(xc(µτ ),pc(µτ )) thereafter (corresponding to

part 4. of Theorem 2).

Let (x∗,p∗) be the solution to program (P1) we characterize in Appendix B

(and describe in Theorem 3). Appendix B also shows that (x∗,p∗) satisfies con-

straints (IC`′) and (ICh′). In Appendix C, we show that, for all δ ∈ (0, 1), there

exists µ(δ) ∈
(
θ`
θh
, 1
)

such that, for all µ ∈
(
θ`
θh
, µ(δ)

]
, µ2(x∗,p∗) ≤ θ`

θh
, and so

µτ (x
∗,p∗) ≤ θ`

θh
for all τ > 2. Hence, V c(µτ (x

∗,p∗); δ) = θ` for all τ ∈ T1. There-

fore, since (x∗,p∗) satisfies constraint (O`), it also satisfies constraint (O) for all

τ ∈ T1. Moreover, since (x∗,p∗) maximizes the seller’s ex ante expected payoff, it

also satisfies constraint (O) at time τ = 1. The next theorem follows.

Theorem 4 (A Seller-Optimal wPBE Outcome). For all δ ∈ (0, 1), there exists

µ(δ) ∈
(
θ`
θh
, 1
)

such that, for all µ ∈
(
θ`
θh
, µ(δ)

]
, the outcome characterized by

Theorem 3 is a seller-optimal wPBE outcome of G. Moreover, the threshold belief

µ(δ) satisfies the following properties: (i) µ(δ) is decreasing in δ; (ii) µ(δ)→ 1 as

δ → 0; and (iii) µ(δ) is bounded away from θ`
θh

as δ → 1.

For µ > µ(δ), the solution (x∗,p∗) to program (P1) need not satisfy the suffi-

cient condition (O) to be a seller-optimal wPBE outcome of G, as V c(µτ (x,p); δ) >

θ` can hold for τ ∈ T1. However, note that V c(µ̃; δ) is increasing in µ̃. Therefore,

by defining ε(δ) := V c(µ; δ) − θ`, we have that if an outcome (x,p) satisfies the

following constraint,

µτ

(
∞∑
t=τ

δt−τph,τ

)
+ (1− µτ )

(
∞∑
t=τ

δt−τp`,τ

)
≥ θ` + ε(δ) for all τ ∈ T0, (O′)

then it also satisfies constraint (O). Note that, by the Coase conjecture, for all

µ ∈
(
θ`
θh
, 1
)
, as δ → 1, V c(µ; δ)→ θ`, and so ε(δ)→ 0; that is, the right-hand side of

constraint (O′) converges to the right-hand side of constraint (O`) in program (P1).

Next, consider the following linear program:

max
(x,p)∈R4∞

µ

(
∞∑
t=1

δt−1ph,t

)
+ (1− µ)

(
∞∑
t=1

δt−1p`,t

)
(P2)
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s.t. (F1), (F2), (IR`), (IRh), (IC`′), (IC`′), (O′).

Denote by V (P2; δ) the optimal value of the linear program (P1a). Since

constraint (O′) is more demanding than constraint (O), we have that V (P2; δ) ≤
U∗P for all δ ∈ (0, 1). In Appendix D, we characterize a solution to program (P1a),

which we denote by (x∗(δ),p∗(δ)), and show that, as δ → 1, V (P2; δ) → U∗P and

(x∗(δ),p∗(δ))→ (x∗,p∗). The next theorem follows.

Theorem 5 (Failure of the Coase Conjecture). For all µ ∈
(
θ`
θh
, 1
)
, as δ → 1:

(a) Properties (a)–(d) in Theorem 3 approximate a seller-optimal wPBE out-

come of G;

(b) The outcome is bounded away from first-best efficiency;

(c) The seller’s ex ante expected payoff is bounded away from θ`;

(d) If, in addition, θ` → 0, the seller’s ex ante expected payoff approaches the

commitment payoff.

4.3 Implementation

4.3.1 Mediated Implementation

Suppose µ ∈
(
θ`
θh
, µ(δ)

]
. Let (x∗,p∗) be the solution to program (P1) we character-

ize in Appendix B (and describe in Theorem 3) and C(x∗,p∗) := {Ct(x∗,p∗)}∞t=1

the corresponding sequence of direct contracts. Then, we have the following.

Theorem 6 (Mediated Implementation of (x∗,p∗)). Suppose µ ∈
(
θ`
θh
, µ(δ)

]
.

Then, there exists a wPBE of G which satisfies the following properties:

1. The two buyer types fully separate from each other at stage 0.2.

2. The seller and the buyer always obey the mediator’s recommendations.

3. For all t ∈ T0:

• At stage t.1, the mediator recommends contract Ct(x
∗,p∗) to the seller;

• A stage t.3, the mediator recommends the buyer to participate and to

truthfully report her type.

Such wPBE induces outcome (x∗,p∗).

Any wPBE in which such properties hold induces outcome (x∗,p∗). Since

(x∗,p∗) satisfies the sufficient conditions in Theorem 2, properties 1.—3., Theorem

6 follows.
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Next, suppose µ ∈
(
θ`
θh
, 1
)
. Let (x∗(δ),p∗(δ)) be the solution to program (P1a)

we characterize in Appendix D and C(x∗(δ),p∗(δ)) := {Ct(x∗(δ),p∗(δ))}∞t=1 the

corresponding sequence of direct contracts. Then, we have the following.

Theorem 7 (Mediated Implementation of (x∗(δ),p∗(δ))). Suppose µ ∈
(
θ`
θh
, 1
)
.

Then, there exists a wPBE of G which satisfies the following properties:

1. The two buyer types fully separate from each other at stage 0.2.

2. The seller and the buyer always obey the mediator’s recommendations.

3. For all t ∈ T0:

• At stage t.1, the mediator recommends contract Ct(x
∗(δ),p∗(δ)) to the

seller;

• A stage t.3, the mediator recommends the buyer to participate and to

truthfully report her type.

Such wPBE induces outcome (x∗(δ),p∗(δ)).

Any wPBE in which such properties hold induces outcome (x∗(δ),p∗(δ)). Since

the solution (x∗(δ),p∗(δ)) to program (P1a) satisfies constraints (IR`), (IRh),

(IC`′), and (IC`′), it satisfies conditions 1.—3. in Theorem 2. Moreover, since the

solution (x∗(δ),p∗(δ)) to program (P1a) satisfies constraint (O′), which is more

stringent than constraint (O), it also satisfies condition 4. in Theorem 2. Thus,

Theorem 7 follows.

4.3.2 Unmediated Implementation

In Section 4.3.1, by considering the mediator, we allowed for arbitrary information

structures. However, it is also interesting to understand whether the seller-optimal

outcome is attainable without the mediator (i.e., by considering specific informa-

tion structures). In Appendix 4.3.2, inspired by Doval and Skreta (2021a,b) and

Brzustowski et al. (2021), we revisit the durable-good monopoly example of Sec-

tion 3.1 and show that the seller-optimal outcome is attainable as long as, in each

period, the seller himself can garble the information provided to each of his future

selves (not only to his next-period self, as in Doval and Skreta, 2021a,b) about

the buyer’s report in that period.

As in Section 3.1, suppose T = {0, 1, 2, 3}, Θ = {1, 2}, and µ = 9
10

. In the

mediated game, the mediator collects the buyer’s private information at t = 0,

and store that information until t = 3. Here instead, we let the seller design a

contract with imperfect communication in the following sense.
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Let the seller in period t = 1 choose a direct contract C1 and a signaling device

β1 : Θ→ ∆
(
S2

1 × S3
1

)
. In particular, the direct contract C1 allocates

(x1, p1) =

{ (
1, 59

36

)
with probability 17

18(
0, 59

36

)
with probability 1

18

if the input message is θ = 2, and (x1, p1) = (0, 0) with probability 1 if the input

message is θ = 1. The signaling device, instead, is such that S2
1 = {s}, S3

1 = Θ,

and β1 sends signal (
s2

1, s
3
1

)
= (s, θ)

with probability 1 given the input message is θ. The signaling device β1 is inter-

preted as follows. Although the buyer inputs her type to the contract at t = 1,

the seller does not observe it directly, and he only observes the realized allocation.

The signaling device, instead, generates a (possibly random) signal s2
1 ∈ S2

1 to the

seller at the beginning of period t = 2 and another signal s3
1 ∈ S3

1 (only) to the

seller at the beginning of period t = 3. Note that signals are correlated to each

other and to θ. This is what Doval and Skreta (2021a,b) consider, although they

only allow for s2
1 but not s3

1, that is, no information can be stored from period

t = 1 to period t = 3 without being disclosed in period t = 2. In the current

example, s3
1 is fully informative, while s2

1 is uninformative, and this combination

is important to replicated the mediated outcome.

In principle, in period t = 2, the seller can also offer a contract with a sig-

naling device. For simplicity, however, we let the seller to offer a direct con-

tract C2 without a signaling device. In particular, the direct contract C2 allocates

(x2, p2) = (1, 2) with probability 1 if the input message is θ = 2 and (x2, p2) = (0, 0)

with probability 1 if the input message is θ = 1. That is, in period t = 2, the seller

trades with the high-value buyer with probability one, extracting her full surplus.

In period t = 3, the seller obtains a signal s3
1 which fully informs the buyer’s

true value. Therefore, the seller sets price s3
1, extracting the buyer’s full surplus.

Note that the same outcome as in the mediated case is obtain. We next explain

why no one has a strict incentive to deviate. First, by the analysis in the mediated

case, the buyer has no incentive to misreport her type in period t = 1, as long

as she is truthful in period t = 2 (and no report is made in period t = 3). Since

the buyer has no incentive to misreport her type in period t = 2 regardless of her

behavior in period t = 1, the buyer’s truthfulness in period t = 1 follows.

The seller, obviously, has no incentive to deviate in periods t = 1 and t = 3.

At the beginning of period t = 2, conditional on no trade in period t = 1, the
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seller’s belief that θ = 2 is
1
18

9
10

1 1
10

+ 1
18

9
10

=
1

3
<

1

2

Therefore, even if the seller had full commitment power from that point on, the

best he could do is to offer a posted-price contract with price 1, yielding payoff 1,

which is lower than the on-path expected payoff.

The previous argument suggests that a similar unmediated implementation

result is possible more generally. This is left for our next step.

4.4 Discussion

Our characterization of the seller-optimal information structure in the previous

sections uncovers the following results of economic substance. First, in general,

the seller finds it beneficial if the information input by the buyer arrives precisely

(i.e., without garbling) but with delay. More formally, the optimal information

structure specifies a time T (δ, µ) at which the buyer’s private information report

is made public; until then, no information—except whether a trade has happened

or not—is revealed. Our result also implies that the seller’s optimal information

structure always makes the trade outcome inefficient, as the low-value buyer can

trade with a significant delay (even in the limiting case of perfect patience).

Intuitively, delayed (but precise) information disclosure makes the seller’s bar-

gaining power stronger. Relative to the case in which no such information arrives,

the seller’s incentive to offer a more aggressive price is higher because even if the

buyer did not buy at that aggressive price, full extraction would be possible once

the time comes. Furthermore, once the seller of some period becomes aggressive,

then the seller of the previous period can also be more aggressive because the

buyer has less continuation payoff conditional on no trading. In this sense, the

aggressiveness of each period’s seller is a strategic complement to each other. In-

deed, except for the initial period, the seller continues to offer the commitment

price every period until the time of revelation. This price pattern is completely

different from the classical Coase-conjecture pattern of decreasing prices: our case

may rather be interpreted as the initial “fire sale” followed by the rigid high price.

5 Conclusion

We propose a mediator approach to mechanism design with limited commit-

ment. Our approach builds on the communication equilibrium notion in multistage
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games. The approach enables a systematic study of all equilibrium outcomes under

all admissible information structures by representing the information structure as

a fictitious mediator and re-interpreting the model as a mechanism design prob-

lem by the mediator with commitment. Using several examples, we show that

new equilibrium outcomes arise when all admissible information structures are

considered and identify why previous approaches fail to capture such outcomes.

In the durable-good monopoly application, we show that trading outcomes

and welfare consequences can substantially differ from those in the classical model

with a fixed information structure. In the seller-optimal mechanism, the seller

offers a discounted price to the high-valuation buyer only in the first period, fol-

lowed by the high, surplus-extracting price until an endogenous deadline, when

the buyer’s information is revealed and hence fully extracted. As a result, the

Coase conjecture fails.

A key challenge we face is to deal with the complexity of the principal’s con-

tact space. To circumvent this challenge, we first take an outcome-based approach.

Next, we propose two simpler auxiliary problems and show that the values of those

problems provide an upper- and a lower-bound to the value of the original prob-

lem. We interpret the two problems as relaxed revelation principle and mediated

implementation in direct contracts. In the durable-good monopoly application,

those bounds suffice to characterize seller-optimal equilibrium outcomes. We also

discuss the unmediated implementation of the seller-optimal outcome.

Our approach to mechanism design with limited commitment can be used to

characterize robust predictions in bargaining games with one-sided incomplete

information—i.e., to characterize the set of equilibrium outcomes that can arise

under any admissible information structure. Moreover, our approach is potentially

useful in other problems with a partially committed principal. A first example is

mechanism design with an informed-principal—where the principal can perfectly

commit to a mechanism, but only after observing a private signal, and so he is

subject to sequential rationality given each signal realization. A second example

is mechanism design with multiple principals—where each principal can perfectly

commit to the mechanism he offers but cannot control other principals’ mecha-

nisms. We plan to explore these ideas in future work.
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A Notation

Throughout the appendix, we use the following notation:

∆θ := θh − θ`, (1)

r :=
θh − δθ`
δ∆θ

, (2)

ρ := δr. (3)

Note that ∆θ > 0, r > 0, and ρ > 0. Moreover, note that

(2) =⇒ 1− r = −(1− δ)θh
δ∆θ

(4)

and

(3) =⇒ 1− ρ = −(1− δ)θ`
∆θ

. (5)

B Proof of Theorem 3

B.1 Simplifying the Primal Linear Program (P1)

In the primal linear program (P1):

• We ignore constraint (IC`); we will verify in Step 1 of Section B.5 that it is satisfied by the

solution to the relaxed version of the program.

• Constraints (ICh) and (IR`) for τ = 1, together with the assumption that θh > θ`, imply that

constraint (IRh) holds for τ = 1.

• That the seller’s payoff in a seller-optimal wPBE must be at least θ` implies that constraint

(O`) holds for τ = 1.

As a result, the relaxed version of program (P1) is the following:

max
(x,p)∈R4∞

µ

( ∞∑
t=1

δt−1ph,t

)
+ (1− µ)

( ∞∑
t=1

δt−1p`,t

)
(P1a)

s.t. x`,t, xh,t ≥ 0 for all t ∈ T0 (F1)

1 ≥
∞∑
t=1

x`,t (F2)

1 ≥
∞∑
t=1

xh,t (F3)

∞∑
t=1

δt−1(θhxh,t − ph,t) ≥
∞∑
t=1

δt−1(θhx`,t − p`,t) (ICh)

∞∑
t=τ

δt−τ (θ`x`,t − p`,t) ≥ 0 for all τ ∈ T0 (IR`)
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∞∑
t=τ

δt−τ (θhxh,t − ph,t) ≥ 0 for all τ ∈ T1 (IRh)

µ

(
τ−1∑
t=1

θ`xh,t +

∞∑
t=τ

δt−τph,t

)
(O`)

+ (1− µ)

(
τ−1∑
t=1

θ`x`,t +

∞∑
t=τ

δt−τp`,t

)
≥ θ` for all τ ∈ T1.

B.2 The Dual Linear Program of Program (P1a)

Let ξ :=
(
α, β, ζ, (λ`,τ , λh,τ+1, γτ+1

)∞
t=1

) ∈ R3 × R3∞, where: α (resp., β) is the Lagrange multiplier

associated to constraint (F2) (resp., (F3)) in program (P1a); ζ is the Lagrange multiplier associated

to constraint (ICh) in program (P1a); for all τ ∈ T0, λ`,τ is the Lagrange multiplier associated to

constraint (IR`) at time τ in program (P1a); for all τ ∈ T0, λh,τ+1 is the Lagrange multiplier associated

to constraint (IRh) at time τ + 1 in program (P1a); for all τ ∈ T0, γτ+1 is the Lagrange multiplier

associated to constraint (O`) at time τ + 1 in program (P1a).

The dual linear program of program (P1a) is the following:

min
ξ∈R3×R3∞

α+ β −
∞∑
t=2

θ`γt (P1b)

s.t. α ≥ 0, β ≥ 0, ζ ≥ 0, λ`,t, λh,t+1, γt+1 ≥ 0 for all t ∈ T0 (6)

α ≥ −δt−1θhζ +

t∑
τ=1

δt−τθ`λ`,τ +

∞∑
τ=t+1

(1− µ)θ`γτ for all t ∈ T0, (7)

β ≥ δt−1θhζ +
t∑

τ=2

δt−τθhλh,τ +
∞∑

τ=t+1

µθ`γτ for all t ∈ T0, (8)

δt−1ζ −
t∑

τ=1

δt−τλ`,τ +
t∑

τ=2

δt−τ (1− µ)γτ + δt−1(1− µ) = 0 for all t ∈ T0, (9)

− δt−1ζ −
t∑

τ=2

δt−τλh,τ +
t∑

τ=2

δt−τµγτ + δt−1µ = 0 for all t ∈ T0, (10)

where constraints (9) and (10) hold with equality because p`,t and ph,t are unrestricted (i.e., they can

be positive or negative) for all t ∈ T0 in the primal program (P1a).

B.3 A Candidate Solution to the Dual Linear Program (P1b)

In this section, we recover a candidate solution

ξ∗ :=
(
α∗, β∗, ζ∗,

(
λ∗`,τ , λ

∗
h,τ+1, γ

∗
τ+1

)∞
t=1

)
∈ R2 × R3∞

to program (P1b).
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Step 1. Solving equations (10) at successive values of t, starting with t = 1, we obtain

ζ∗ = µ and λ∗h,t = µγ∗t for all t ∈ T1. (11)

Next, solving equations (9) at successive values of t, starting with t = 1, we obtain

λ∗`,1 = 1 and λ∗`,t = (1− µ)γ∗t for all t ∈ T1. (12)

Step 2. Given equations (11) and (12), the dual program (P1b) simplifies as follows:

min
(α,β,(γt)

∞
t=2)∈R2×R∞

α+ β −
∞∑
t=2

θ`γt (P1c)

s.t. α ≥ 0, β ≥ 0, γt ≥ 0 for all t ∈ T1 (13)

α ≥ δt−1(θ` − µθh) + (1− µ)θ`

[
t∑

τ=2

δt−τγτ +
∞∑

τ=t+1

γτ

]
for all t ∈ T0, (14)

β ≥ δt−1µθh + µ

[
t∑

τ=2

δt−τθhγτ +

∞∑
τ=t+1

θ`γτ

]
for all t ∈ T0. (15)

Step 3. Since program (P1c) is a minimization problem, its solutions must satisfy

α∗ = max

{
0,max

t∈T0

{
δt−1(θ` − µθh) + (1− µ)θ`

[
t∑

τ=2

δt−τγ∗τ +
∞∑

τ=t+1

γ∗τ

]}}
(16)

and

β∗ = max

{
0,max

t∈T0

{
δt−1µθh + µ

[
t∑

τ=2

δt−τθhγ
∗
τ +

∞∑
τ=t+1

θ`γ
∗
τ

]}}
. (17)

Step 4. We guess that there exists T (δ, µ) ∈ T1 such that γ∗t = 0 for all t > T (δ, µ). Moreover, we

guess that

δt−1µθh + µ

[
t∑

τ=2

δt−τθhγ
∗
τ +

∞∑
τ=t+1

θ`γ
∗
τ

]
= δtµθh + µ

[
t+1∑
τ=2

δt+1−τθhγ
∗
τ +

∞∑
τ=t+2

θ`γ
∗
τ

]
(18)

for all t ∈ {1, . . . , T (δ, µ)− 1}.

Step 5. Solving equations (18) for γ∗t at successive values of t, starting with t = 1, we obtain

γ∗t =
(1− δ)θh
θh − θ`

(
θh − δθ`
θh − θ`

)t−2

=
(1− δ)θh

∆θ
ρt−2 for all t ∈ {2, . . . , T (δ, µ)}, (19)

where the last equality holds by definitions (1) and (3).
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Step 6. From equation (17), the guess in equations (18), and the guess that γ∗t = 0 for all t > T (δ, µ),

we obtain

β∗ = µθh + µθ`

(
T (δ,µ)∑
t=2

γ∗t

)
. (20)

Step 7. By using equation (16) and (19), definition (2), and the guess that γ∗t = 0 for all t > T (δ, µ),

constraint (14) becomes

α∗ = max
t∈{1,...,T (δ,µ)}

{
δt−1(θ` − µθh) +

(1− µ)θ`(1− δ)θh
∆θ

(
δt−2 1− rt−1

1− r
+
ρt−1 − ρT (δ,µ)−1

1− ρ

)}
, (21)

assuming that the right-hand side of equation (21) is non-negative (which we will show to be the case

in Step 9 of this section). The maximand on the right-hand side of equation of equation (21) simplifies

as follows:

δt−1(θ` − µθh) +
(1− µ)θ`(1− δ)θh

∆θ

(
δt−2 1− rt−1

1− r
+
ρt−1 − ρT (δ,µ)−1

1− ρ

)
= δt−1(θ` − µθh)− δt−1(1− µ)θ`

(
1− rt−1

)
− (1− µ)θh

(
ρt−1 − ρT (δ,µ)−1

)
= (1− µ)θhρ

T (δ,µ)−1 − δt−1µ∆θ − δt−1(1− µ)∆θrt−1

= (1− µ)θhρ
T (δ,µ)−1 − δt−1∆θ

(
µ+ (1− µ)rt−1

)
,

(22)

where the first equality holds by implications (4) and (5), and the third equality holds by definition

(3). Thus, by equation (22), equation (21) is equivalent to

α∗ = max
t∈{1,...,T (δ,µ)}

{
(1− µ)θhρ

T (δ,µ)−1 − δt−1∆θ
(
µ+ (1− µ)rt−1

)}
. (23)

Let t∗ denote the value of t ∈ {1, . . . , T (δ, µ)} that maximizes the maximand on the right-hand side

of equation (23). Moreover, let t be such that

δt−1∆θ
(
µ+ (1− µ)rt−1

)
= δt∆θ

(
µ+ (1− µ)rt

)
. (24)

Since the maximand on the right-hand side of equation (23) is concave in t and T (δ, µ) is yet to be

determined (and so can be chosen arbitrarily large), t∗ = inf{t ∈ T0 : t ≥ t}.

Note that

(24)⇐⇒ µ+ (1− µ)rt−1 = δ
(
µ+ (1− µ)rt

)
⇐⇒ µ(1− δ) = −rt−1(1− µ)(1− δr)

⇐⇒ µ(1− δ) = rt−1(1− µ)
(1− δ)θ`

∆θ

⇐⇒ rt−1 =
µ∆θ

(1− µ)θ`
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⇐⇒ t = 1 +
log
(

µ∆θ
(1−µ)θ`

)
log r

, (25)

where the third equivalence follows from implication (5). Since µ ∈
(
θ`
θh
, 1
)
, µ∆θ

(1−µ)θ`
> 1; moreover,

r > 1. Therefore, t > 1, which implies that t∗ = inf{t ∈ T0 : t ≥ t} ≥ 2.

Step 8. The choice of T (δ, µ) is part of the choice of the Lagrange multipliers (in particular, that

of (γ∗t )∞t=2). Thus, T (δ, µ) must be chosen to minimize the objective function of program (P1b).

Let V (P1b) denote the optimal value of program (P1b). Note that

V (P1b) = α∗ + β∗ −
∞∑
t=2

θ`γ
∗
t

= α∗ + µθh + µθ`

(
T (δ,µ)∑
t=2

γ∗t

)
−
T (δ,µ)∑
t=2

θ`γ
∗
t

= α∗ + µθh − (1− µ)θ`

(
T (δ,µ)∑
t=2

γ∗t

)

= α∗ + µθh − (1− µ)θ`

(
T (δ,µ)∑
t=2

(1− δ)θh
∆θ

ρt−2

)

= α∗ + µθh −
(1− µ)θ`(1− δ)θh

∆θ

(
T (δ,µ)∑
t=2

ρt−2

)

= α∗ + µθh −
(1− µ)θ`(1− δ)θh

∆θ

1− ρT (δ,µ)−1

1− ρ

= α∗ + µθh +
(1− µ)θ`(1− δ)θh

∆θ

∆θ

θ`(1− δ)

(
1− ρT (δ,µ)−1

)
= α∗ + µθh + (1− µ)θh

(
1− ρT (δ,µ)−1

)
= (1− µ)θhρ

T (δ,µ)−1 − δt∗−1∆θ
(
µ+ (1− µ)rt

∗−1
)

+ θh − (1− µ)θhρ
T (δ,µ)−1

= θh − δt
∗−1∆θ

(
µ+ (1− µ)rt

∗−1
)
,

(26)

where: the second equality follows from equation (20) and the guess that γ∗t = 0 for all t > T (δ, µ);

the fourth equality follows from equation (19); the seventh equality follows from implication (5); the

second-to-last equality follows from equation (23) and the definition of t∗.

Since V (P1b) does not depend on T (δ, µ), we take

T (δ, µ) = t∗. (27)

Step 9. Summing up, a candidate solution

ξ∗ := (α∗, β∗, ζ∗, (λ∗`,τ , λ
∗
h,τ+1, γ

∗
τ+1)∞

t=1
) ∈ R2 × R3∞
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to program (P1b) is as follows. For

T (δ, µ) = inf{t ∈ T1 : t ≥ t},

where

t = 1 +
log
(

µ∆θ
(1−µ)θ`

)
log r

,

we have:

α∗ = δT (δ,µ)−1
[
(1− µ)θ`r

T (δ,µ)−1 − µ∆θ
]
, (28)

β∗ = µθh + µθ`

(
T (δ,µ)∑
t=2

γ∗t

)
(29)

ζ∗ = µ (30)

λ∗`,t =

1 if t = 1

(1− µ)γ∗t otherwise
, (31)

λ∗h,t = µγ∗t , (32)

γ∗t =


(1−δ)θh

∆θ ρt−2 if t ∈ {2, . . . , T (δ, µ)}

0 if t > T (δ, µ)
. (33)

Except for α∗, all elements of ξ∗ are clearly non-negative. To see that α∗ is also non-negative, note that

α∗ ≥ δt−1
[
(1− µ)θ`r

t−1 − µ∆θ
]

= 0

where the inequality holds by definition of t and the equality holds by equation (25).

Hereafter, for simplicity, we take

T (δ, µ) = t = 1 +
log
(

µ∆θ
(1−µ)θ`

)
log r

(34)

or, equivalently,

rT (δ,µ)−1 =
µ∆θ

(1− µ)θ`
. (35)

From equations (26), (27), (34), and (35), we obtain

V (P1b) = θh − δt
∗−1∆θ

(
µ+ (1− µ)rt

∗−1
)

= θh − δT (δ,µ)−1

(
µ+

µ∆θ

θ`

)
= θh − δT (δ,µ)−1µ∆θθh

θ`

= θh

(
1− δT (δ,µ)−1µ∆θ

θ`

)
.

(36)
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B.4 A Candidate Solution to the Primal Linear Program (P1a)

In this section, we recover a candidate solution

(x∗,p∗) := (x∗`,t, x
∗
h,t, p

∗
`,t, p

∗
h,t)
∞
t=1

to program (P1a).

Step 1. Since λ∗`,t > 0 for all t ∈ {1, . . . , T (δ, µ)} (see equation (31)), constraint (IR`) is binding for

all such t. Thus,

p∗`,t = θ`x
∗
`,t for all t ∈ {1, . . . , T (δ, µ)}. (37)

Since λ∗h,t > 0 for all t ∈ {2, . . . , T (δ, µ)} (see equation (32)), constraint (IRh) is binding for all such

t. Thus,

p∗h,t = θhx
∗
h,t for all t ∈ {2, . . . , T (δ, µ)}. (38)

Moreover, we conjecture that the solution to program (P1a) is such that

x∗`,t =

{
1 if t = T (δ, µ)

0 otherwise
. (39)

From equation (37) and the conjecture in equation (39), we have that

p∗`,t =

{
0 if t ∈ {1, . . . , T (δ, µ)− 1}
θ` if t = T (δ, µ)

. (40)

Finally, we conjecture that

p∗`,t = 0 for all t > T (δ, µ). (41)

and

x∗h,t = p∗h,t = 0 for all t ≥ T (δ, µ). (42)

Step 2. Since ζ∗ > 0 (see equation (30)), constraint (ICh) is binding. This, together with equations

(38)–(42), implies that

θhx
∗
h,1 − p∗h,1 = δT (δ,µ)−1∆θ

or, equivalently,

p∗h,1 = θhx
∗
h,1 − δT (δ,µ)−1∆θ. (43)

Step 3. To find x∗h,t for all t ∈ {2, . . . , T (δ, µ) − 1}, we use that constraint (O`) is binding for all

such t (as γ∗t > 0 for all such t, see equation (33)). From constraint (O`) binding at t = T (δ, µ) − 1,

we obtain

µ
[
θ`

(
1− x∗h,T (δ,µ)−1

)
+ θhx

∗
h,T (δ,µ)−1

]
+ (1− µ)δθ` = θ`,
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or, equivalently

x∗h,T (δ,µ)−1 =
(1− δ)(1− µ)θ`

µ∆θ
.

Similarly, for all t ∈ {2, . . . , T (δ, µ)− 2}, we have

x∗h,t =
(1− δ)(1− µ)θ`

µ∆θ

(
θh − δθ`

∆θ

)T (δ,µ)−t−1

=
(1− δ)(1− µ)θ`

µ∆θ
ρT (δ,µ)−t−1,

where the second equality holds by definition (3). Finally, we have

x∗h,1 = 1−
T (δ,µ)−1∑
t=2

x∗h,t

= 1−
T (δ,µ)−1∑
t=2

(1− δ)(1− µ)θ`
µ∆θ

ρT (δ,µ)−t−1

= 1− (1− δ)(1− µ)θ`
µ∆θ

1− ρT (δ,µ)−2

1− ρ

= 1 +
1− µ
µ

(
1− ρT (δ,µ)−2

)
=

1

µ

(
1− (1− µ)ρT (δ,µ)−2

)
=

1

µ

(
1− (1− µ)

1

ρ
rT (δ,µ)−1δT (δ,µ)−1

)
=

1

µ

(
1− ∆θ

θh − δθ`
µ∆θ

θ`
δT (δ,µ)−1

)
,

(44)

where: the second-to-last equality holds by definition (3); the last equality holds by definitions (2)

and (3) and equation (35).

Step 4. It remains to show that x∗h,1 > 0 or, equivalently, that

∆θ

θh − δθ`
µ∆θ

θ`
δT (δ,µ)−1 < 1 for all µ ∈

(
θ`
θh
, 1

)
. (45)

The left-hand side of inequality (45) evaluated at µ = θ`
θh

is equal to

∆θ

θh − δθ`
∆θ

θh
δT (δ,µ)−1,

which is less than 1 because each term of the product is less than 1. Thus, it suffices to show that

µδT (δ,µ)−1 is decreasing in µ. Since

∂

∂µ

[
µδT (δ,µ)−1

]
= δT (δ,µ)−1

(
1 +

log δ

(1− µ) log r

)
,
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to show that µδT (δ,µ)−1 is decreasing in µ, it suffices to show that

1 +
log δ

(1− µ) log r
≤ 0. (46)

Since the left-hand side of inequality (46) is decreasing in µ (as δ ∈ (0, 1), and so log δ < 0), it suffices

to show that inequality (46) is satisfied for µ = θ`
θh

, i.e., that

1 +
log δ

∆θ
θh

log r
≤ 0

or, equivalently,
∆θ

θh
log r + log δ ≤ 0. (47)

Since inequality (47) is satisfied with equality if δ = 1 (as r = 1 if δ = 1, see (2)), it suffices to show

that its left-hand side is increasing in δ (so that, for δ < 1, the left-hand side is negative). To see this,

it suffices to note that

∂

∂δ

[
∆θ

θh
log r + log δ

]
=

∆θ

θh

1

r

∂r

∂δ
+

1

δ

= −∆θ

θh

δ∆θ

θh − δθ`
θh
δ2∆θ

+
1

δ

∝ 1− δ∆θ

θh − δθ`

=
(1− δ)θh
θh − δθ`

> 0,

where the second equality holds by recalling definition (2).

Step 5. Summing up, a candidate solution

(x∗,p∗) := (x∗`,t, x
∗
h,t, p

∗
`,t, p

∗
h,t)
∞
t=1

to program (P1a) is as follows. For

T (δ, µ) = inf{t ∈ T : t ≥ t} or T (δ, µ) = sup{t ∈ T : t ≤ t}, (48)

where

t = 1 +
log
(

µ∆θ
(1−µ)θ`

)
log r

, (49)

we have:

x∗`,t =

1 if t = T (δ, µ)

0 otherwise
, (50)
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x∗h,t =


1
µ

(
1− ∆θ

θ`
∆θ

θh−δθ`µδ
T (δ,µ)−1

)
if t = 1

(1−δ)(1−µ)θ`
µ∆θ ρT (δ,µ)−t−1 if t ∈ {2, . . . , T (δ, µ)− 1}

0 if t ≥ T (δ, µ)

, (51)

p∗`,t =

θ`x∗`,t if t ∈ {1, . . . , T (δ, µ)}

0 otherwise
, (52)

p∗h,t =


θhx
∗
h,1 − δT (δ,µ)−1∆θ if t = 1

θhx
∗
h,t if t ∈ {2, . . . , T (δ, µ)}

0 otherwise

. (53)

Clearly, all elements of x∗ are non-negative.

Step 6. Le V (P1a) be the optimal value of the primal linear program (P1a). In this step, we show

that V (P1a) = V (P1b), so that, by weak duality, the candidate solution to program (P1a) is indeed

a solution to the program.

Note that

V (P1a) = µ

( ∞∑
t=1

δt−1p∗h,t

)
+ (1− µ)

( ∞∑
t=1

δt−1p∗`,t

)

= µ

(
T (δ,µ)−1∑
t=1

δt−1p∗h,t

)
+ (1− µ)δT (δ,µ)−1p∗`,T (δ,µ)

= µ

[
θh
µ

(
1− ∆θ

θ`

∆θ

θh − δθ`
µδT (δ,µ)−1

)
− δT (δ,µ)−1∆θ

]

+ µ

[
T (δ,µ)−1∑
t=2

δt−1 (1− δ)(1− µ)θ`θh
µ∆θ

ρT (δ,µ)−t−1

]
+ (1− µ)δT (δ,µ)−1θ`

= θh

(
1− ∆θ

θ`

∆θ

θh − δθ`
µδT (δ,µ)−1

)
− µδT (δ,µ)−1∆θ

+
(1− δ)(1− µ)θ`θh

∆θ
δT (δ,µ)−2 1− rT (δ,µ)−2

1− r
+ (1− µ)δT (δ,µ)−1θ`

= θh

(
1− ∆θ

θ`

∆θ

θh − δθ`
µδT (δ,µ)−1

)
− µδT (δ,µ)−1∆θ

− (1− µ)δT (δ,µ)−1θ`

(
1− rT (δ,µ)−2

)
+ (1− µ)δT (δ,µ)−1θ`

= θh

(
1− ∆θ

θ`

∆θ

θh − δθ`
µδT (δ,µ)−1

)
− µδT (δ,µ)−1∆θ + (1− µ)θ`δ

T (δ,µ)−1rT (δ,µ)−2,

(54)

where: the second and third equalities hold by equations (50)–(53); the fourth equality holds because,

by definition (3), δt−1ρT (δ,µ)−t−1 = δT (δ,µ)−2rT (δ,µ)−t−1; the second-to-last equality holds by using
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implication (4). Therefore,

V (P1a)− V (P1b) = θh

(
1− ∆θ

θ`

∆θ

θh − δθ`
µδT (δ,µ)−1

)
− µδT (δ,µ)−1∆θ + (1− µ)θ`δ

T (δ,µ)−1rT (δ,µ)−2

− θh
(

1− δT (δ,µ)−1µ∆θ

θ`

)
= −∆θδT (δ,µ)

θh − δθ`
+ (1− µ)θ`δ

T (δ,µ)−1rT (δ,µ)−2

∝ − δ∆θ

θh − δθ`
µ∆θ + (1− µ)θ`r

T (δ,µ)−2

= −1

r
µ∆θ +

1

r
(1− µ)θ`r

T (δ,µ)−1

= −1

r
µ∆θ +

1

r
µ∆θ

= 0.

where: the first equality holds by equations (36) and (54); the second-to-last equality holds by equation

(35).

B.5 A Solution to the Primal Linear Program (P1)

Step 1. In this step, we show that the sequence (x∗,p∗) := (x∗`,t, x
∗
h,t, p

∗
`,t, p

∗
h,t)
∞
t=1

described in Step

5 of Section B.4 satisfies constraint (IC`) in the primal linear program (P1), so that (x∗,p∗) is also a

solution to program (P1).

By equations (50) and (52), the left-hand side of constraint (IC`) evaluated at (x∗,p∗) is equal to 0.

By equations (51) and (53), and since θh > θ`, the right-hand side of constraint (IC`) evaluated at

(x∗,p∗) is smaller than

θ`x
∗
h,1 − p∗h,1 = θhx

∗
h,1 − p∗h,1 −∆θx∗h,1

= δT (δ,µ)−1∆θ −∆θx∗h,1,

where the second equality holds by equation (43). Thus, to show that (x∗,p∗) satisfies constraint

(IC`), it suffices to show that

x∗h,1 ≥ δT (δ,µ)−1.

Note that

x∗h,1 ≥ δT (δ,µ)−1 ⇐⇒ 1

µ

(
1− ∆θ

θ`

∆θ

θh − δθ`
µδT (δ,µ)−1

)
− δT (δ,µ)−1 ≥ 0

⇐⇒ 1−
(

1 +
∆θ

θ`

∆θ

θh − δθ`

)
µδT (δ,µ)−1 ≥ 0, (55)

where the first equivalence holds by equation (51). Since µδT (δ,µ)−1 is decreasing in µ (see step 11),

it suffices to show that inequality (55) is satisfied at µ = θ`
θh

. By equation (34), if µ = θ`
θh

, then
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T (δ, µ) = 1. Therefore, it suffices to show that

1−
(

1 +
∆θ

θ`

∆θ

θh − δθ`

)
θ`
θh
≥ 0.

The desired result follows by observing that

1−
(

1 +
∆θ

θ`

∆θ

θh − δθ`

)
θ`
θh
∝ θh −

(
θ` + ∆θ

∆θ

θh − δθ`

)
∝ 1− ∆θ

θh − δθ`
∝ (1− δ)θ`

≥ 0.

Step 2. At the solution (x∗,p∗) := (x∗`,t, x
∗
h,t, p

∗
`,t, p

∗
h,t)
∞
t=1

to the primal linear program (P1) de-

scribed in Step 5 of Section B.4, properties (a), (b), and (c) in Theorem 3 hold true.

Step 3. From equations (48) and (49), we have that T (δ, µ) is finite for any δ ∈ (0, 1), and

lim
δ→1

T (δ, µ) ≥ lim
δ→1

log
(

µ∆θ
(1−µ)θ`

)
log r

= lim
δ→1

log
(

µ∆θ
(1−µ)θ`

)
log
(
θh−δθ`
δ(θh−θ`)

)
=∞,

where: the inequality holds by equations (48) and (49); the first equality holds by definitions (1) and

(2). Thus, also property (d) in Theorem 3 holds true at the solution to the primal linear program

(P1) described in Step 5 of Section B.4. This concludes the proof of Theorem 3. �

C Proof of Theorem 4

Let (x∗,p∗) := (x∗`,t, x
∗
h,t, p

∗
`,t, p

∗
h,t)
∞
t=1

denote the solution to program (P1) we characterize in Appendix

B (and describe in Theorem 3). By Theorem 2, a sufficient condition for (x∗,p∗) to wPBE outcome

of G is that µ2(x∗,p∗) ≤ θ`
θh

.

To begin, note that

µ2(x∗,p∗) ≤ θ`
θh
⇐⇒

(1− x∗h,1)µ

(1− x∗h,1)µ+ (1− µ)
≤ θ`
θh

⇐⇒
−(1− µ)

(
1− ρT (δ,µ)−2

)
−(1− µ)

(
1− ρT (δ,µ)−2

)
+ (1− µ)

≤ θ`
θh

⇐⇒ −1− ρT (δ,µ)−2

ρT (δ,µ)−2
≤ θ`
θh

⇐⇒ −θh + θhρ
T (δ,µ)−2 ≤ θ`ρT (δ,µ)−2
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⇐⇒ ∆θ

θh
ρT (δ,µ)−2 ≤ 1

⇐⇒ log

(
∆θ

θh

)
+ (T (δ, µ)− 2) log ρ ≤ 0

⇐⇒ log

(
∆θ

θh

)
+

(
log
(

µ∆θ
(1−µ)θ`

)
log r

− 1

)
log(δr) ≤ 0

⇐⇒ log

(
∆θ

θh

)
+ [log(µ∆θ)− log((1− µ)θ`)− log r]

log(δr)

log r
≤ 0, (56)

where: the second equivalence follows from the fourth equality in equation (44); the seventh inequality

follows from equation (34) and definition (3).

Next, note that the left-hand side of (56) is increasing in log(δr)
log r . In turn, the first derivative of log(δr)

log r

with respect to δ,

∂

∂δ

[
log(δr)

log r

]
= log

(
θh − δθ`

∆θ

)
+

δθ`
θh − δθ`

log δ,

approaches 0 as δ → 1. Moreover, the second derivative of log(δr)
log r with respect to δ,

∂2

∂δ2

[
log(δr)

log r

]
=

θ`θh

(θh − δθ`)2 log δ,

is negative (as δ < 1). Thus, log(δr)
log r is increasing in δ. Hence, to show that µ2(x∗,p∗) ≤ θ`

θh
, it suffices

to show the inequality in inequality (56) is satisfied for δ ' 1.

Since

lim
δ→1

log(δr)

log r
= lim

δ→1

∂
∂δ (log(δr))
∂
∂δ (log r)

= lim
δ→1

δθ` − (1− δ)θh
δθh

=
θ`
θh
,

where the first equality holds by de L’Hôpital’s rule, for δ ' 1 we have:

(56)⇐⇒ log

(
θh
∆θ

)
≥ [log(µ∆θ)− log((1− µ)θ`)− log r]

θ`
θh

⇐⇒
(
θh
∆θ

) θh
θ` ≥ µ∆θ

(1− µ)θ`r

⇐⇒ µ ≤

(
θh
∆θ

) θh
θ`

∆θ
θ`r

+
(
θh
∆θ

) θh
θ`

:= µ(δ).

Note that limδ→0 µ(δ) = 1. Moreover, µ(δ) is decreasing in ∆θ
θ`r

which, in turn, is decreasing in r.
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Moreover, r is decreasing in δ, and so µ(δ) is decreasing in δ. Finally, note that

lim
δ→1

µ(δ) =

(
θh
∆θ

) θh
θ`

∆θ
θ`

+
(
θh
∆θ

) θh
θ`

.

Since (
θh
∆θ

) θh
θ`

∆θ
θ`

+
(
θh
∆θ

) θh
θ`

>
θ`
θh
⇐⇒

(
θh
∆θ

) θh
θ`

> 1,

that limδ→1 µ(δ) is bounded away from θ`
θh

follows. This completes the proof of Theorem 4. �

D Proof of Theorem 5

Consider the following relaxation of the linear program (P2):

max
(x,p)∈R4∞

µ

( ∞∑
t=1

δt−1ph,t

)
+ (1− µ)

( ∞∑
t=1

δt−1p`,t

)
(P2a)

s.t. x`,t, xh,t ≥ 0 for all t ∈ T0 (F1)

1 ≥
∞∑
t=1

x`,t (F2)

1 ≥
∞∑
t=1

xh,t (F3)

∞∑
t=1

δt−1(θ`x`,t − p`,t) ≥
∞∑
t=1

δt−1(θ`xh,t − ph,t) (IC`)

∞∑
t=1

δt−1(θhxh,t − ph,t) ≥
∞∑
t=1

δt−1(θhx`,t − p`,t) (ICh)

∞∑
t=τ

δt−τ (θ`x`,t − p`,t) ≥ 0 for all τ ∈ T0 (IR`)

∞∑
t=τ

δt−τ (θhxh,t − ph,t) ≥ 0 for all τ ∈ T0 (IRh)

µ

(
τ−1∑
t=1

θ`xh,t +

∞∑
t=τ

δt−τph,t

)
(O′)

+ (1− µ)

(
τ−1∑
t=1

θ`x`,t +

∞∑
t=τ

δt−τp`,t

)
≥ θ` + ε(δ) for all τ ∈ T0.

The linear program (P2a) is obtained from program (P2) by ignoring the buyer’s incentive compati-

bility constraints at all τ ∈ T1.

In this section, we solve program (P2a) and show that its solution satisfies the omitted constraint of

program (P2). The approach to solve program (P2a) mimics that to solve program (P1) in Appendix B.
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D.1 Simplifying the Primal Linear Program (P2a)

In the primal linear program (P2a):

• We ignore constraints (IC`); we will verify in Step 1 of Section B.5 that it is satisfied by the

solution to the relaxed version of the program.

• Constraints (ICh) and (IR`) for τ = 1, together with the assumption that θh > θ`, imply that

constraint (IRh) holds for τ = 1.

• That the seller’s payoff in a seller-optimal wPBE must be at least V c(µ; δ) implies that constraint

(O`) holds for τ = 1.

As a result, the relaxed version of program (P2a) is the following:

max
(x,p)∈R4∞

µ

( ∞∑
t=1

δt−1ph,t

)
+ (1− µ)

( ∞∑
t=1

δt−1p`,t

)
(P2b)

s.t. x`,t, xh,t ≥ 0 for all τ ∈ T0 (F1)

1 ≥
∞∑
t=1

x`,t (F2)

1 ≥
∞∑
t=1

xh,t (F3)

∞∑
t=1

δt−1(θhxh,t − ph,t) ≥
∞∑
t=1

δt−1(θhx`,t − p`,t) (ICh)

∞∑
t=τ

δt−τ (θ`x`,t − p`,t) ≥ 0 for all τ ∈ T0 (IR`)

∞∑
t=τ

δt−τ (θhxh,t − ph,t) ≥ 0 for all τ ∈ T1 (IRh)

µ

(
τ−1∑
t=1

θ`xh,t +

∞∑
t=τ

δt−τph,t

)
(O′)

+ (1− µ)

(
τ−1∑
t=1

θ`x`,t +
∞∑
t=τ

δt−τp`,t

)
≥ θ` + ε(δ) for all τ ∈ T1.

D.2 The Dual Program of Program (P2b)

Let ξ := (α, β, ζ, (λ`,τ , λh,τ+1, γτ+1)∞t=1) ∈ R3 × R3∞, where: α (resp., β) is the Lagrange multiplier

associated to constraint (F2) (resp., (F3)) in program (P2b); ζ is the Lagrange multiplier associated

to constraint (ICh) in program (P2b); for all τ ∈ T0, λ`,τ is the Lagrange multiplier associated

to constraint (IR`) at time τ in program (P2b); for all τ ∈ T0, λh,τ+1 is the Lagrange multiplier

associated to constraint (IRh) at time τ + 1 in program (P2b); for all τ ∈ T0, γτ+1 is the Lagrange

multiplier associated to constraint (O′) at time τ + 1 in program (P2b).
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The dual linear program of program (P2b) is the following:

min
ξ∈R3×R3∞

α+ β −
∞∑
t=2

(θ` + ε(δ))γt (P2c)

s.t. α ≥ 0, β ≥ 0, γt ≥ 0 for all t ∈ T1 (57)

α ≥ −δt−1θhζ +
t∑

τ=1

δt−τθ`λ`,τ +
∞∑

τ=t+1

(1− µ)θ`γτ for all t ∈ T0, (58)

β ≥ δt−1θhζ +
t∑

τ=2

δt−τθhλh,τ +
∞∑

τ=t+1

µθ`γτ for all t ∈ T0, (59)

δt−1ζ −
t∑

τ=1

δt−τλ`,τ +

t∑
τ=2

δt−τ (1− µ)γτ + δt−1(1− µ) = 0 for all t ∈ T0, (60)

− δt−1ζ −
t∑

τ=2

δt−τλh,τ +

t∑
τ=2

δt−τµγτ + δt−1µ = 0 for all t ∈ T0, (61)

where constraints (60) and (61) hold with equality because p`,t and ph,t are unrestricted (i.e., they can

be positive or negative) for all t ∈ T0 in the primal program (P2b).

Let

ξ∗ :=
(
α∗, β∗, ζ∗,

(
λ∗`,τ , λ

∗
h,τ+1, γ

∗
τ+1

)∞
t=1

)
∈ R2 × R3∞

denote a candidate solution to program (P2c).

D.3 A Candidate Solution to the Dual Linear Program (P2c)

Step 1. Solving equations (60) at successive values of t, we obtain

ζ∗ = µ and λ∗h,t = µγ∗t for all t ∈ T1. (62)

Next, solving equations (61) at successive values of t, we obtain

λ∗`,1 = 1 and λ∗`,t = (1− µ)γ∗t for all t ∈ T1. (63)

Step 2. Given equations (62) and (63), the dual program (P1b) simplifies as follows:

min
(α,β,(γt)

∞
t=2)∈R2×R∞

α+ β −
∞∑
t=2

(θ` + ε(δ))γt (P2d)

s.t. α ≥ 0, β ≥ 0, γt ≥ 0 for all t ∈ T1 (64)

α ≥ δt−1(θ` − µθh) + (1− µ)θ`

[
t∑

τ=2

δt−τγτ +

∞∑
τ=t+1

γτ

]
for all t ∈ T0, (65)

β ≥ δt−1µθh + µ

[
t∑

τ=2

δt−τθhγτ +
∞∑

τ=t+1

θ`γτ

]
for all t ∈ T0. (66)
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Step 3. Since (P2d) is a minimization problem, its solutions must satisfy

α∗ = max

{
0,max

t∈T0

{
δt−1(θ` − µθh) + (1− µ)θ`

[
t∑

τ=2

δt−τγ∗τ +
∞∑

τ=t+1

γ∗τ

]}}
(67)

and

β∗ = max

{
0,max

t∈T0

{
δt−1µθh + µ

[
t∑

τ=2

δt−τθhγ
∗
τ +

∞∑
τ=t+1

θ`γ
∗
τ

]}}
. (68)

Step 4. We guess that there exists T (δ, µ) ∈ T1 such that γ∗t = 0 for all t > T (δ, µ). Moreover, we

guess that

δt−1µθh + µ

[
t∑

τ=2

δt−τθhγ
∗
τ +

∞∑
τ=t+1

θ`γ
∗
τ

]
= δtµθh + µ

[
t+1∑
τ=2

δt+1−τθhγ
∗
τ +

∞∑
τ=t+2

θ`γ
∗
τ

]
(69)

for all t ∈ {1, . . . , T (δ, µ)− 1}.

Step 5. From the guess in equation (69), we obtain that

γ∗t =
θh(1− δ)
θh − θ`

(
θh − δθ`
θh − θ`

)t−2

=
θh(1− δ)

∆θ
ρt−2 for all t ∈ {2, . . . , T (δ, µ)}, (70)

where the last equality holds by definitions (1) and (3).

Step 6. From equation (68), the guess in equation (69), and the guess that γ∗t = 0 for all t > T (δ, µ)

we obtain

β∗ = µθh + µθ`

(
T (δ,µ)∑
t=2

γ∗t

)
. (71)

Step 7. By using equations (67) and (70), definition (2), and the guess that γ∗t = 0 for all t > T (δ, µ),

constraint (65) becomes

α∗ = max
t∈{1,...,T (δ,µ)}

{
δt−1(θ` − µθh) +

(1− µ)θ`θh(1− δ)
∆θ

(
δt−2 1− rt−1

1− r
+
ρt−1 − ρT (δ,µ)−1

1− ρ

)}
, (72)

assuming that the right-hand side of equation (72) is non-negative (which we will show to be the case

in Step 9). The maximand on the right-hand side of equation of equation (72) simplifies as follows:

δt−1(θ` − µθh) +
(1− µ)θ`θh(1− δ)

∆θ

(
δt−2 1− rt−1

1− r
+
ρt−1 − ρT (δ,µ)−1

1− ρ

)
= δt−1(θ` − µθh)− δt−1(1− µ)θ`

(
1− rt−1

)
− (1− µ)θh

(
ρt−1 − ρT (δ,µ)−1

)
= (1− µ)θhρ

T (δ,µ)−1 − δt−1µ∆θ − δt−1(1− µ)∆θrt−1

= (1− µ)θhρ
T (δ,µ)−1 − δt−1∆θ

(
µ+ (1− µ)rt−1

)
,

(73)
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where the first equality holds by implications (4) and (5), and the third equality holds by definition

(3). Thus, by equation (73), equation (72) is equivalent to

α∗ = max
t∈{1,...,T (δ,µ)}

{
(1− µ)θhρ

T (δ,µ)−1 − δt−1∆θ
(
µ+ (1− µ)rt−1

)}
. (74)

Let t∗ denote the value of t ∈ {1, . . . , T (δ, µ)} that maximizes the maximand on the right-hand side

of equation (74). Moreover, let t be such that

δt−1∆θ
(
µ+ (1− µ)rt−1

)
= δt∆θ

(
µ+ (1− µ)rt

)
. (75)

Since the maximand on the right-hand side of equation (74) is concave in t and T (δ, µ) is yet to be

determined (and so can be chosen arbitrarily large), t∗ = inf{t ∈ T0 : t ≥ t}.

Note that

(75)⇐⇒ µ+ (1− µ)rt−1 = δ
(
µ+ (1− µ)rt

)
⇐⇒ µ(1− δ) = −rt−1(1− µ)(1− δr)

⇐⇒ µ(1− δ) = rt−1(1− µ)
(1− δ)θ`

∆θ

⇐⇒ rt−1 =
µ∆θ

(1− µ)θ`

⇐⇒ t = 1 +
log
(

µ∆θ
(1−µ)θ`

)
log r

, (76)

where the third equivalence follows from implication (5). Since µ ∈
(
θ`
θh
, 1
)
, µ∆θ

(1−µ)θ`
> 1; moreover,

r > 1. Therefore, t > 1, which implies that t∗ = inf{t ∈ T0 : t ≥ t} ≥ 2.

Step 8. The choice of T (δ, µ) is part of the choice of the Lagrange multipliers (in particular, that

of (γ∗t )∞t=2). Thus, T (δ, µ) must be chosen to minimize the objective function of program (P2c).

Let V (P2c; δ) denote the optimal value of program (P2c). Note that

V (P2c; δ) = α∗ + β∗ −
∞∑
t=2

(θ` + ε(δ))γ∗t

= α∗ + β∗ −
∞∑
t=2

θ`γ
∗
t −

∞∑
t=2

ε(δ)γ∗t

= θh − δt
∗−1∆θ

(
µ+ (1− µ)rt

∗−1
)
− θh(1− δ)ε(δ)

∆θ

1− ρT (δ,µ)

1− ρ
,

(77)

where the third equality holds by the parallels with the analysis in Section B.3, the guess that γ∗t = 0

for all t > T (δ, µ), and equation (70).
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Note that V (P2c; δ) is decreasing in

θh(1− δ)ε(δ)
∆θ

1− ρT (δ,µ)

1− ρ

which, in turn, is increasing in T (δ, µ). Thus, V (P2c; δ) is decreasing in T (δ, µ). Since T (δ, µ) must

be chosen in order to minimize the objective function of program (P2c), we set it as large as possible;

that is

T (δ, µ) = t∗. (78)

Step 9. Summing up, a candidate solution

ξ∗ := (α∗, β∗, ζ∗, (λ∗`,τ , λ
∗
h,τ+1, γ

∗
τ+1)∞

t=1
) ∈ R2 × R3∞

to program (P2c) is as follows. For

T (δ, µ) = inf{t ∈ T1 : t ≥ t},

where

t = 1 +
log
(

µ∆θ
(1−µ)θ`

)
log r

,

we have:

α∗ = δT (δ,µ)−1
[
(1− µ)θ`r

T (δ,µ)−1 − µ∆θ
]
, (79)

β∗ = µθh + µθ`

(
T (δ,µ)∑
t=2

γ∗t

)
(80)

ζ∗ = µ (81)

λ∗`,t =

1 if t = 1

(1− µ)γ∗t otherwise
, (82)

λ∗h,t = µγ∗t , (83)

γ∗t =


θh(1−δ)

∆θ ρt−2 if t ∈ {2, . . . , T (δ, µ)}

0 if t > T (δ, µ)
. (84)

Except for α∗, all elements of ξ∗ are clearly non-negative. To see that α∗ is also non-negative, note that

α∗ ≥ δt−1
[
(1− µ)θ`r

t−1 − µ∆θ
]

= 0

where the inequality holds by definition of t and the equality holds by equation (25).
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Hereafter, for simplicity, we take

T (δ, µ) = t = 1 +
log
(

µ∆θ
(1−µ)θ`

)
log r

(85)

or, equivalently,

rT (δ,µ)−1 =
µ∆θ

(1− µ)θ`
. (86)

From equations (77), (78), (85), and (86), and the parallels with the analysis in Section B.3, we obtain

V (P2c) = θh

(
1− δT (δ,µ)−1µ∆θ

θ`

)
− θh(1− δ)ε(δ)

∆θ

1− ρT (δ,µ)

1− ρ
. (87)

D.4 A Solution to Programs (P2a) and (P2)

Step 11. In this step, we recover a candidate solution

(x∗(δ),p∗(δ)) := (x∗`,t(δ), x
∗
h,t(δ), p

∗
`,t(δ), p

∗
h,t(δ))

∞
t=1

to program (P2a) and show that x∗h,1(δ) > 0 as δ → 1.

Since λ∗`,t > 0 for all t ∈ {1, . . . , t∗}, (IR`) is binding for all such t. Thus,

p∗`,t(δ) = θ`x
∗
`,t(δ) for all t ∈ {1, . . . , t∗}. (88)

Similarly, since λ∗h,t > 0 for all t ∈ {2, . . . , t∗}, (IRh) is binding for all such t. Thus,

p∗h,t(δ) = θhx
∗
h,t(δ) for all t ∈ {2, . . . , t∗}. (89)

Moreover, we conjecture that the solution to program (P2a) is as follows:

x∗`,t(δ) =

{
1 if t = t∗

0 otherwise
. (90)

and

x∗h,t(δ) = 0 for all t ≥ t∗. (91)

From (88) and (90), we have

p∗`,t(δ) =

{
θ` if t = t∗

0 otherwise
. (92)

From (89) and (91), we have

p∗h,t(δ) = 0 for all t ≥ t∗.

Since λ∗h,1 > 0, (ICh) is binding. This, together with (89), (90), and (92), implies that

θhx
∗
h,1(δ)− p∗h,1(δ) = δt

∗−1∆θ
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or, equivalently,

p∗h,1(δ) = θhx
∗
h,1(δ)− δt∗−1∆θ,

where x∗h,1(δ) is yet to be determined.

To find x∗h,t(δ) for all t ∈ {2, . . . , t∗ − 1}, we use that constraint (O′) is binding for all t ∈
{2, . . . , t∗ − 1} (as γ∗t > 0 for all such t). From constraint (O′) binding at τ = t∗ − 1, we obtain

µ[θ`(1− x∗h,t∗−1) + θhx
∗
h,t∗−1] + (1− µ)δθ` = θ` + ε(δ),

or, equivalently

x∗h,t∗−1(δ) =
θ`
µ∆θ

(1− δ)(1− µ) +
ε(δ)

µ∆θ
.

Similarly, for all t ∈ {2, . . . , t∗ − 2}, we obtain

x∗h,t(δ) = θ`
µ∆θ (1− δ)(1− µ)

(
θh−δθ`

∆θ

)t∗−t−1

= θ`
µ∆θ (1− δ)(1− µ)(δr)t

∗−t−1.

Note that, for all t ∈ {2, . . . , t∗ − 2}, x∗h,t(δ) does not depend ε(δ). Finally, we have

x∗h,1(δ) = 1−
t∗−1∑
t=2

x∗h,t

=
1

µ

(
1− ∆θ

θ`

∆θ

θh − δθ`
µδt

∗−1

)
− ε(δ)

µ∆θ
.

(93)

Let (x∗,p∗) := (x∗`,t, x
∗
h,t, p

∗
`,t, p

∗
h,t)
∞
t=1

denote the solution to program (P1) we characterize in

Appendix B. Note that

x∗h,1(δ) = x∗h,1 −
ε(δ)

µ∆θ
.

Since x∗h,1 > 0 and ε(δ)→ 0 as δ → 1, x∗h,1(δ) is bounded away from 0 as δ → 1.

Step 11. Since for all t ∈ T0 we have, as δ → 1,

x∗`,t(δ)→ x∗`,t, x∗h,t(δ)→ x∗h,t, p∗`,t(δ)→ p∗`,t, p∗h,t(δ)→ p∗h,t,

it follows that the candidate solution to program (P2a) satisfies all constraints in program (P2) as

δ → 1.

Step 12. Summing up, we have that, as δ → 1,

V (P2c; δ)→ V (P1c) and V (P2; δ)→ V (P1)

Since V (P1c) = V (P1), we have that, as δ → 1, V (P2c; δ) = V (P2; δ). Thus, (x∗(δ),p∗(δ)) is an

approximate solution to program (P2) as δ → 1.
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Finally, since V (P2; δ) ≤ U∗P ≤ V (P1) and V (P2; δ) → V (P1), as δ → 1, it follows that

(x∗(δ),p∗(δ)) approximates a seller-optimal wPBE outcome of G, establishing part (a) of Theorem (5).

Step 13. We find the buyer’s payoff and the total surplus. For type θ`, obviously her payoff is 0.

For type θh, her information rent is positive, but only comes from the initial period. From the second

period on, her continuation payoff is 0. By the truth-telling constraint (binding), the payoff of the

buyer of type θh is θ`δ
t∗−1. Thus, the payoff of the buyer is

µθ`δ
t∗−1.

Therefore, the total surplus, denoted by S(µ, δ) is

S(µ, δ) = V (P1) + µθ`δ
t∗−1 = θh − µδt

∗−1

(
∆θ

θ`
+ θ`

))
.

Step 14. By taking δ → 1, we obtain

δt
∗−1 ≈

(
µ∆θ

(1− µ)θ`

)−∆θ
θh
,

and so

V (P1) ≈ θh

(
1−

(
µ∆θ

(1−µ)θ`

)−∆θ
θh
µ

(
∆θ

θ`

))
> θ`,

establishing part (c) of Theorem (5). Similarly, limδ→1 S(µ, δ) < µθh + (1−µ)θ`, establishing part (b)

of Theorem (5).

Step 15. Let θ` = θh
k for some k ≥ 1. Then, ∆θ = θh

k−1
k . As k →∞, we have:

v(P1) = ≈ θh

(
1−

(
µ∆θ

(1−µ)θ`

)−∆θ
θh
µ

(
∆θ

θ`

))

= θh

(
1−

(
µθh

k−1
k

(1− µ)θh
1
k

)− k−1
k

µ(k − 1)

)

= θh

(
1−

(
µ(k − 1)

(1− µ)

)− k−1
k

µ(k − 1)

)

= θh

(
1−

(
µ(k − 1)

(1− µ)

) 1
k

(1− µ)

)
,

where (
µ(k − 1)

(1− µ)

) 1
k

= exp

(
1

k
log

µ(k − 1)

(1− µ)

)
≈ exp(0) = 1,

and thus

v(P1) =≈ θh

(
1−

(
µ(k − 1)

(1− µ)

) 1
k

(1− µ)

)
≈ µθh,

which is the commitment payoff, establishing part (d) of Theorem (5). �
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E Calculations for Section 3.1
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