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Abstract

A large number of firms with risky projects requires external funding from

lenders. The realized return of the firms is private information. We adopt the

costly-state-verification model by Townsend (1979) to elaborate the delegated mon-

itoring model (Diamond, 1984) of financial intermediation, but with three novelties.

First, agents cannot commit to their verification strategy. Second, lenders may be

risk averse. Third, we allow aggregate uncertainty and introduce a charter system.

Static bank contracts are socially beneficial without aggregate uncertainty, but they

may not be so if there is significant aggregate uncertainty. The beneficial role is

retained with the charter system and dynamic bank contracts, even with aggre-

gate uncertainty. They also provide more financial stability than static ones. Two

banking regulations are shown to be optimal. Regulation Q can be optimal if the

regulator wants to minimize dead weight loss from verification when a monopoly

bank competes with potential direct contracts. Deposit insurance can be welfare-

improving if the dynamic bank contract is not financially stable.
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1 Introduction

Financial intermediaries played a prominent role in the Global Financial Crisis of 2007-

2008 and are the central focus of many new government regulations. Financial interme-

diaries, such as banks, provide liquidity to depositors by making loans. In particular,

bank loans are the predominant source of external funding for firms (Gorton and Winton,

2003) and, since the 1980s, the financial services sector comprises an increasing share of

GDP: it accounted for around 7% of US GDP in 2012 (Philippon, 2015). To better de-

sign appropriate policy responses, it is essential to understand their role as an economic

institution and to examine the effect of some long-lasting banking regulations. In this

paper we study banks as intermediaries between lenders and borrowers and ask how to

best regulate them. As middlemen between depositors (who seek returns on savings) and

firms (who need external financing), banks exist to intermediate borrowing and lending.

To explain the role of financial intermediaries some frictions are necessary, since other-

wise complete contracts between the borrower and lender would achieve the first-best

outcome. Freixas and Rochet (2008), among others, argue that private information is the

key friction that gives financial intermediaries a useful role.

There are at least two leading explanations for the existence of financial intermediaries

based on asymmetric information. Diamond and Dybvig (1983) argue that depositors

have private information about their liquidity needs while entrepreneurs’ projects are

illiquid, and this friction leaves room for financial intermediation with a specific liability

structure, namely, demand deposits under a fractional-reserve banking system. This idea,

which is influential to policy-making, is the main motivation behind regulations such as

deposit insurance in the literature. Another strand of literature focuses on the asset

side of banks. Diamond (1984) argues that entrepreneurs know their returns as private

information, and lenders may monitor them at a cost. Banks can save monitoring cost

through diversification and hence increase efficiency. Based on the same idea, Williamson

(1986) and Krasa and Villamil (1992) show the efficiency of financial intermediation in

the context of the costly-state-verification (CSV) model initiated by Townsend (1979) and

Gale and Hellwig (1985).
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We follow the second strand mentioned above and develop a model of banks as inter-

mediaries who alleviate a private information friction, which is rich enough to allow us

to examine three long-lasting regulations in the banking industry: the interest-ceiling (or

Regulation Q), the charter system and deposit insurance. The motivation for Regulation

Q is to deter unhealthy competition between banks and encourage financial stability (see

Hellman et al., 2000). In contrast to Hellman et al. (2000), in our model defaults are

endogenously determined by contracts between the firms, banks and depositors. In our

model, monopolistic banks have an incentive to give a higher interest rate to depositors

and a higher debt level to firms. This induces more defaults by firms in equilibrium

and this is socially costly because it requires more monitoring; we show that an interest

rate ceiling limits this incentive and therefore reduces defaults. The second regulation,

the bank charter system, makes the operation of a bank subject to supervision from a

regulator. Under the charter system, banking is regarded as a privilege and the banks’

behavior is subject to inspection. As such, the charter system is a dynamic scheme that

can discipline bank monitoring behavior by threatening future profits. In our model, we

show that this incentive scheme can improve welfare when there are aggregate shocks to

firms’ returns and hence to a bank’s available funds. Finally, we consider deposit insur-

ance where a regulator is both responsible for collecting the insurance premium, as well

as for guaranteeing the banks’ liabilities. We show how these regulations may promote

the stability of the financial system when aggregate shocks are more volatile than can be

handled by a simple charter system.

We introduce three novel features to the baseline CSV model to analyze the regula-

tions. First, in contrast to Townsend (1979) and Gale and Hellwig (1985), in our model

lenders (as well as banks) cannot commit to their monitoring strategy ex-ante and hence

incentives for monitoring become a crucial aspect of our model. Second, in contrast to

most of literature on CSV, we allow for risk aversion of lenders (or depositors). Third, we

introduce aggregate uncertainty about the return to the entrepreneurs. Our main focus is

to understand optimal regulations and the organization of financial intermediaries in the

presence of limited commitment from the bank, and demonstrate that a charter system

with dynamic contracts can improve welfare and enhance financial stability. The bank’s
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lack of commitment to a monitoring strategy is crucial for these results, as otherwise there

is no role for dynamic contracts.

We obtain three sets of results regarding the welfare role of financial intermediaries.

In order to show that financial intermediaries can provide welfare-improving contracts,

we characterize the optimal direct contracts between firms and potential lenders. In our

model each firm needs many lenders to finance a risky project and we show that simple

debt contracts are Pareto optimal. This result generalizes the main theorem in Krasa and

Villamil (2000): they assume risk neutrality and one lender, while we allow for multiple

risk averse lenders. Moreover, the optimal contract we find features random priority, as

in Winton (1995).1 This result serves as a useful benchmark and provides meaningful

bounds on the payoffs that agents can attain under optimal direct contracts.

Our second result shows that the bank can provide a two-sided contract that dominates

the optimal direct contract without aggregate uncertainty. While Williamson (1986)

and Krasa and Villamil (1992) obtain similar results when ex-ante commitment to a

monitoring strategy is assumed, we extend this to a setting without such commitments.

In an environment with aggregate uncertainty the fact that we need to provide the bank

with ex-post incentives to monitor, requires that the bank’s profit, net of the monitoring

cost, be nonnegative in every state. This implies that, if the firms’ aggregate returns are

worse than the depositors’ outside options in some states, then the bank contract cannot

be financially stable in the sense that the depositors get the same return in all states.

Our third result shows that a bank charter system can be welfare-improving as it

provides dynamic incentives to the bank. Under the charter system, the bank may pay a

cost and self-verify its income, as well as the state of the world, to the banking authority.

Depending on the result, the authority may terminate the bank’s charter privilege; the

authority can then use this threat to the bank’s future profits as incentive for the bank

to perform costly monitoring of the firms. We show that, under some mild conditions,

1It is well known that lack of commitment to the monitoring strategy is crucial for simple debt contract

to be optimal. Indeed, Mookherjee and Png (1989) show that, with commitment power, it can be optimal

to have stochastic monitoring and debt contract may not be optimal. See also related results in Krasa

and Villamil (2000).
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such a dynamic bank contract can always dominate any optimal direct contract, and,

unless the bank can provide a financially stable static contract, one can find a dynamic

contract that Pareto dominates the static one. Both risk aversion and monitoring cost

play a role for those results. If the static contract is not financially stable, the depositors

need to monitor the bank occasionally and that is costly. In contrast, in the dynamic

setting, because of future profits, the bank has incentive to self-verify even if it is costly,

and that is more efficient. Moreover, since under dynamic contract the bank can make

a negative profit at some states, the bank can provide a deposit contract that second

order stochastically dominates the static one, and this is welfare-improving for risk averse

depositors. These results also show the socially beneficial role of bank profits, which are

essential for the provision of dynamic incentives.

We derive two further results regarding banking regulations. In our model, the number

of defaulting firms is endogenously determined by the bank contract. In general, society

will face higher deadweight loss from monitoring if the bank asks for a higher debt level

from the firms; competition requires higher debt levels translate into higher returns to

depositors. Under the static setting without aggregate uncertainty, we show that an

interest-rate ceiling, or Regulation Q, can be a useful policy to reduce the social cost of

monitoring and to reduce defaults; this applies when there is a monopoly bank who faces

competition from direct contracting between the firms and potential depositors.

In the dynamic setting with aggregate uncertainty, we show that deposit insurance

is welfare improving if the bank contract is not financially stable. Under the deposit

insurance scheme, the bank has to pay a premium in good states but may request a

bail-out in bad sates. However, to request a bail-out, costly self-verification is necessary

for the authority to ascertain the state and the amount of funds already available to the

bank. Depending on the result, the bank charter may be terminated. In this case, the

scheme needs to provide an incentive for the bank to pay the premium in good states,

and to monitor firms as well as to self-verify in bad states. We show that, for sufficiently

high discount factors and sufficiently low self-verification cost, a financially stable bank

contract is always incentive compatible and is welfare-improving under deposit insurance.
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We also consider the case with oligopolistic banks, each of which faces uncertainty, where

the economy as a whole has no aggregate uncertainty, and show that the optimal deposit

insurance scheme can be self-financing, ex post. Again, risk aversion is crucial for these

results: deposit insurance allows for the bank to engineer a contract that second order

stochastically dominates the original one, and that makes risk averse depositors strictly

better off.

Our results then provide new rationales for bank charters, deposit insurance, and

regulation Q based on Pareto efficiency. They show that, in an environment in which the

bank cannot commit to its verification behavior, bank profits can be crucial to implement

these welfare-improving banking regulations, which also help restore financial stability.

In particular, our rationale for deposit insurance is orthogonal to the one provided in

Diamond and Dybvig (1983), which is motivated by equilibrium selection. In contrast,

in our model deposit insurance does pay out in equilibrium and is welfare-improving as

such, but regulator has to overcome a moral hazard problem for banks who are bailed out

by the insurance scheme.

2 Model

Consider an economy with a continuum of firms of measure one and a continuum of lenders

of measure M . For simplicity, we assume that M is a natural number. Each lender is

endowed with one unit of fund that may be stored at no cost with a gross return r > 1.

Each firm has an investment project that requires M units of funds from the lenders to

operate, and the project has a stochastic return w ∈ [0, w̄] distributed according to a

distribution function F : [0, w̄] → [0, 1]. We assume that F is absolutely continuous with

respect to the Lebsgue measure, that F has a full support,2 and that
∫
w
w dF (w) > Mr.

2Both the assumptions about absolute continuity and full support are mainly for expositional reasons

than substantial. None of our results rely on absolute continuity. Full support assumption, however,

guarantees that the asymmetric-information problem is substantial and avoids cumbersome discussion of

uninteresting cases.
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The firms are risk-neutral and short-lived, but the lenders are long-lived and may be

risk averse. The instantaneous utility function of the lender for consuming c is u(c), which

is strictly increasing and concave, and the lender has discounted factor β ∈ (0, 1). The

return wn to firm n is private information to the firm. The lenders, however, may verify

the return by paying a cost γ, which is additive to his utilities of consumption. The

verified return is private information to the verifier that cannot be credibly shared with

other lenders.

2.1 Optimal direct contracts

As a benchmark, we consider direct contracts where one firm borrows directly from M

lenders. Since firms last for just one period, only static contracts are feasible. We charac-

terize Pareto optimal contracts. A contract is a pair, (a, b), both with domain W = [0, w̄],

and is implemented with the following trading procedure. After the return w realizes,

the firm makes a report to each of his lenders. Let w̃m be the report to lender m. Each

lender m then decides to verify or not, based on w̃m. If he decides not to verify, lender

m receives a payment of b(w̃m). Otherwise, he pays a cost γ, and receives a payment of

a(v,M ′), where v is the amount of funds available after paying those who did not verify

and M ′ is the number of verifiers. As mentioned, both the message w̃m and the verified

output v are private information to the specific lender that cannot be (credibly) shared

with other lenders.

A strategy for a lender is then a measurable function sl : W → {0, 1}, where 0 indicates

no verification and 1 indicates verification. A strategy for the firm is a measurable function

sf : W → ∆(WM), his reporting strategy. Note that the firm is allowed to randomize

over possible massages to the lenders. We have the following feasibility requirements the

contract and the strategies:

(F1) Feasibility of a: a(v, k)k ≤ v for all v ∈ W .

(F2) Feasibility of sf under b:
∑M

m=1 b(w̃m) ≤ w for all (w̃1, ...w̃M) in the support of sf (w)

and for all w ∈ W .
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We focus on PBE that are symmetric in the following sense: first, all lenders use the

same strategy sl, and, for the firm, sf has a finite support,3 and, if a profile of message

(w̃1, ..., w̃M) is in the support of the equilibrium strategy sf , then all permutations of that

message occur with equal probabilities.

We say that a direct contract (a, b) is implementable if the lender is willing to

participate. We letWm be the subset ofW in whichm lenders verify the firm with positive

probability. Note that if, in equilibrium, upon receiving a message w̃ the lender does not

verify the firm’s return, the firm simply pays b(w̃), it must be the case that the payment

is the same under b across all such messages that are sent with positive probability, which

we will denote by b̄. Hence, we may assume that there is only one message corresponding

to the subset of W where nobody verifies the firm, W0. Furthermore, because lenders

cannot commit to their verification strategies upon signing the contract, they need to be

incentivised to verify after the report from the firm comes in. This requires that γ is

smaller than the expected payment when receiving a message that implies verification in

equilibrium. Formally, let w̃ be a message that in equilibrium the lender verifies, it must

be the case that

E
[
a(w,w − (M −m)b̄, m) | w̃

]
≥ γ,

where within the conditional expectation both w and m are random variables. Since this

condition has to hold for all messages w̃ which are sent with a positive probability and

for which the lender verifies in equilibrium, it implies that

E
[
a(w,w − (M −m)b̄, m) | verification

]
≥ γ.

As a result, it is then without loss of generality to assume that in equilibrium the firm

only sends two messages, w̃0 or w̃1, where w̃0 indicates no verification while w̃1 indicates

verification.

We make one assumption regarding the cost γ:

(A0) γF (Mr) <
∫ r

0
u
(

w
M

)
dF (w).

When M = 1, assumption (A0) is essentially identical to assumption (A.2) in Krasa

3This assumption is mainly for technical convenience than substantial.
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and Villamil (2000), and hence it is a generalization of that assumption for general M

and it plays a similar here. In particular, note that we only consider equilibria where the

lenders use a pure strategy, which can be justified along the renegotiation-proof require-

ment introduced by Krasa and Villamil (2000) under (A0).4

The following theorem characterizes (Pareto) optimal contracts, which generalizes the

main result in Krasa and Villamil (2000) to multiple lenders and risk aversion.

Theorem 2.1. Assume (A0). Any optimal contract, (W0, ...,WM , a, b̄), takes the form

W0 = [Mb̄, w̄], and a(w, n) = w/n.

According to Theorem 2.1, the optimal contract is a simple debt contract from the

firm’s perspective: it is characterized by a debt level Mb̄, and if the return is above that

the firm pays that to all lenders equally outright; otherwise, at least some of the lenders

verify the firm but all the returns are divided by the lenders. What is slightly delicate

is the structure of verification. In general there is random seniority as in Winton (1995):

some lenders are chosen to be paid outright while others are called to verify the firm to

divide whatever is left. From the perspective of risk sharing, it is best for all lenders to

share the return whenever the firm cannot meet its obligations to all lenders, but this is

very costly as all lenders have to pay the verification cost. From the perspective of saving

verification cost, it is optimal for the firm to pay the debt level to as many lenders as

possible, and ask as few lenders to verify as possible. Indeed, if u(c) = c, this will be

the optimal contract. When there is risk aversion, we can in fact fully characterize the

optimal number of lenders asked to verify. The details can be found in the Supplemental

Appendix, A.1. Finally, although Theorem 2.1 assumes (A0), what is needed for that

theorem to hold may be much weaker than (A0), depending on the fundamentals. See

also the Appendix for more discussions.

Theorem 2.1 will be useful for our later analysis as it gives welfare bounds to both the

4Krasa and Villamil (2000) assume risk neutrality and that the firm also occurs a small cost when it

is verified, and show that equilibria with random verification is not sustainable under (A0) with M = 1.

Our result will not be affected by the introduction of a small cost to the firm and the logic to exclude

random verification in Krasa and Villamil (2000) does not seem to depend on M nor risk neutrality.
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firms and to the lenders under direct contracting. Indeed, under optimal direct contracts

with debt level B = Mb̄, the firm’s payoff is∫
w≥B

(w −B) dF (w).

Each lender’s payoff is bounded from above by∫
w<B

u(w/M) dF (w) + u(B/M)[1− F (B)]− (1/M)
M∑
n=1

F (nB/M)γ. (1)

The first two terms reflect the expected payoff to each lender, assuming that they share

the returns whenever the firm fails to pay all lenders the debt level, which is the upper

bound for that payoff, the third term reflects the cost of monitoring, assuming the fewest

number of lenders monitoring and all have equal chance to do so, which is a lower bound

of the monitoring cost.

3 Banking: static and dynamic

Here we show the beneficial role of banks. We begin with the static case where there is no

aggregate shocks, and the returns to the firms are i.i.d. In this case we show that a static

bank contract is sufficient to bring in Pareto improvement against direct contracting. We

then introduce aggregate shocks under which the firms’ returns are correlated, and show

that these shocks can limit the bank’s ability to improve direct contracts. Finally, a

charter system is introduced and is shown to bring back the beneficial role of the bank.

3.1 Essentiality of financial intermediation: no aggregate shocks

We begin with the static case, where, as in Section 2, there is a continuum of depositors

of measure M and a continuum of firms of measure 1 with i.i.d. returns. We assume

that the LLN holds exactly when we aggregate the firms’ returns and hence there is no

aggregate shock.5 Here we introduce the bank, which is a risk-neutral agent capable of

5The literature has recognized issues related to i.i.d. returns in a continuum economy; see, e.g. Sun

(2006). Our use of this assumption, however, is mainly for expositional convenience. All our results can
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taking deposits and then lending to the firms. When the bank decide to verify a firm, he

has to pay the cost cE. The cost of monitoring for the bank is not subtracted from its

funds taken from the firms; instead, we interpret cE as labor cost to the banker.6 Again,

the verified returns are private information to the bank and cannot be credibly shared

with the depositors.

Since debt contracts are optimal without financial intermediation, to show that banks

are essential, we only need to consider such contracts. We call a two-sided contract

between the depositors and the bank and between the firms and the bank, a bank contract.

Assuming that it is a debt contract for both sides, we may denote it by (B, d), where B

is the debt level with each firm and d is the promised repayment to each depositor. Later

on we will establish that such contracts are in fact optimal. One of the main insights from

Section 2 is that it is optimal to restrict the message space to {0, 1}, where 0 indicates

repayment of the debt and 1 indicates verification, and, if the lender, which can be either

the bank or the depositor, fails to obey (fails to verify) does not happen, he or she gets

nothing. Thus, from here on we restrict attention to the message space {0, 1}. The two-

sided nature of bank contracts introduces new incentive issues that are not present in

direct contracting. To formalize those issues we give a precise description of the game as

follows. The game is played among the firms, the bank, and the depositors. We assume

that all agents have agreed upon the contract (B, d) and discuss agents’ participation

decisions later.

1. Firms’ returns are realized and firms simultaneously report (either 0 or 1) to the

bank.

2. The bank decides, based on the reports, whether or not to verify each firm.

3. After the bank receives all the payments from the firms, the bank sends a massage

(again, either 0 or 1) to each depositor simultaneously.

be generalized to a setting with a finite but large number of depositors and firms, as will be discussed in

concluding remarks.
6Note that the cost is cE per firm. Obviously the bank here will correspond to a large entity in reality

with potential monitoring issues within itself; here we abstract away from those complications.
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4. After seeing the individual message, each depositor decides whether or not to verify

the bank.

Given a bank contract (B, d), we formulate the agents’ strategies below. The strategies

for the firms and for the depositors are straightforward extensions from the ones under

direct contracting. Each firm decides, as a function of its realized profit, to either repay

the debt in full or request verification. The bank’s strategy comes in two stages. The first

is a verification strategy for each firm, as a function of all the information it has available,

i.e., the bank knows which firms have repaid the debt and which requested verification.

Second, the bank makes a recommendation to each of its depositors, asking them to verify

it or repaying the depositors in full. Each depositor’s strategy is then a function which

takes the bank’s recommendation and maps it to a binary decision (to verify or not). The

following is the formal definitions.

Definition 3.1. (a) For the firm, the strategy is a measurable function sf : [0, w̄] → {0, 1}

that maps its return to its report to the bank.

(b) The bank’s strategy has two components. The first is a measurable function s1B :

M([0, 1]) × [0, 1] → ∆({0, 1}). The first argument is the subset of firms sending 1, and

the second argument is the identity of the firm.7 Thus, for any given received reports, s1B

specifies a (randomized) verification decision for each firm. Then, after the verifications,

the bank’s strategy has a second component, a measurable function s2B : [0, w̄]× [0,M ] →

∆({0, 1}), in which the first argument is the amount of available funds to the bank (in

per depositor terms) and the second is the identity of the depositor, and hence it maps

the available funds to the bank’s (randomized) report to each depositor.8

(c) A depositor’s strategy is a function sl : {0, 1} → {0, 1}, which maps the report from

the bank to the verification strategy.

As before, symmetric PBE is our solution concept, i.e., all firms use the same strategy

sf and all depositors use the same strategy sl in equilibrium, and, for the bank, although

7M([0, 1]) is the set of all measurable subsets of [0, 1] (endowed with the sup norm).
8In general, sB2 may also depend on the history that leads up to the available funds.
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we allow randomization, we only focus on equilibrium strategies in which s1B verifies all

firms that cannot pay B.9

Here we discuss participation decisions by our agents. We say that a bank contract

(B, d) is implementable if there is a symmetric PBE in which the depositors are willing

to participate and the bank is willing to verify the firms’ returns whenever they cannot

meet their debt, and the bank’s expected payoff (net of monitoring costs) is nonnegative.

In contrast to Krasa and Vilamil (1992), because of the lack of commitment, we need

to discuss the bank’ incentive to verify firms after the returns realize and requests come

in. In particular, there are two types of deviation to worry about. First, the bank can

simply verify none of the requesting firms; no matter how the depositors react, the bank

can make at least a zero profit. Second, the bank has to decide whether to verify each

requesting firm, and it will do so unless the expected gain (net of what is expected to pay

to the depositors at the margin) from doing so exceeds the cost. Under the contract B,

F (B) fraction of the firms require verification. We have the following lemma.

Lemma 3.1. Let (B, d) be a bank contract. Bank verification of the firms is incentive

compatible if and only if

1

M

[∫ B

0

wdF (w) + [1− F (B)]B

]
− d ≥ 1

M
F (B)cE, (2)∫ B

0

wdF (w) ≥ F (B)cE. (3)

To understand the two conditions above, first note that under the bank contract (B, d),

the bank’s expected profit (per depositor per firm) is given by

1

M

[∫ B

0

w dF (w) + [1− F (B)]B − F (B)cE

]
− d. (4)

Hence, condition (2) simply says that the bank is making a nonnegative profit and this

takes care the first type of deviation. Conditional on the firm sending a message that rec-

ommends verification under contract (B, d), the bank’s expected payment to be received

9This assumption is in line with the observation from Krasa and Villamil (2000). In particular, we

suspect that if we introduce renegotiation then randomized verification is not sustainable in equilibrium.
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is given by ∫ B

0
w dF (w)

F (B)
,

and hence condition (3) requires that conditional expected return to at least cover the

cost of verification, cE, and this takes care of the second type of deviation. The proof

essentially shows that these two types are the only relevant deviations.

For bank contract to be more efficient, we need the following assumptions.

(A1) Efficient bank verification: cE < u−1(γ)
∑M

m=1

F(mB
M )

F (B)
.

(A2)
∫
w∈[0,B]

wdF (w) + (1− F (B))B − F (B)cE > Mr.

Assumption (A1) is necessary: if cE is large relative to γ, then the bank contract cannot

save on monitoring costs. However, the precise comparison is related to the curvature of

u, since γ enters the depositors’ payoff in comparison with u. M also plays a role, as the

bank monitor each firm for M depositors. Without (A2), bank is better off to use the

storage. The following theorem shows that these two assumptions are all we need to have

a beneficial role for the bank.

Theorem 3.1. Assume (A0). For any implementable direct contract with debt level B

that satisfies (A1) and (A2), there is an implementable (static) bank contract that Pareto

dominates the direct contract.

Theorem 3.1 is proved by constructing a bank contract that Pareto dominates the di-

rect contract. The bank contract is given by (B, d), where the debt level is left unchanged,

and d is given by

d =
1

M

{∫ B

0

wdF (w) + [1− F (B)]B − F (B)cE − ε

}
, (5)

where the main proof is to show that one can choose ε > 0 such that

u(d) >

∫
w<B

u(w/M) dF (w) + u(B/M)[1− F (B)]− (1/M)
M∑
n=1

F (nB/M)γ.

Indeed, if such ε > 0 exists, then, by (4), the bank has profit at least ε, and, by (1), the

depositors are better off. To show such ε exists, first notice that d+ 1
M
F (B)cE + ε is the
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expected payment from the firm to each lender, and hence its utility value is higher than

the expected value of that payment. Assumption (A1) then ensures that the monitoring

cost is lower under the bank contract as well. This then illustrates the advantage of the

bank contract through diversification: first, it can reduce risk by pooling the funds, and,

secondly, it can reduce monitoring, as the bank can offer a deposit contract that the bank

can almost surely pays to the depositors and hence only monitoring of the bank on behalf

of M depositors per firm is required.

Assumption (A0) ensures that the optimal direct contracts are simple debt contracts

and the lenders’ payoffs are bounded by (1). The assumptions (A1) and (A2) are tight

for Theorem 3.1. We have seen the necessity of (A2), which is in fact implied by imple-

mentability of the direct contract under risk neutrality. When u is linear, (A1) is also

necessary for the bank to be able to provide a better contract. When u is strictly concave,

however, (A1) can be relaxed, since, as mentioned earlier, the constructed bank contract

is strictly better because it is able to provide the certainty equivalence of what the direct

contract can provide to the lender.

3.2 Aggregate shock and financial stability

Now we consider aggregate shocks. Suppose that, instead of independence, the returns

to the firms are correlated. Specifically, suppose that the aggregate returns depend on

an aggregate state, s, which can be either h (high) or ℓ (low), that s is i.i.d. across time

according to the distribution π (πh denotes the probability of state h and πℓ state ℓ),

and that the firms’ returns are i.i.d. according to Fs(w) conditional on s. Moreover, Fh

first-order stochastically dominates Fℓ and that for any B ∈ (r, w̄), Fh(B) < Fℓ(B). The

realization of the state is observable to both the bank and the firms, and is a verifiable

information for the depositors if they monitor the bank.10 We remark here that the

results regarding direct contracting are not affected by this aggregate shock at all: for

10Note that even if the bank does not receive this information, it can learn of the state s based on the

reports made from the firms. This assumption amounts to eliminate the potential asymmetric information

between the bank and the firms about the state.
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each specific firm, its return is characterized by the distribution function F = πhFh+πℓFℓ.

A general bank contract can be quite complicated. In particular, the contract should in

general take into account the fraction of depositors that verify the bank; this complication

then requires a new proof to show that debt contract is optimal with the firms. We show

in the Supplemental Appendix (see, in particular, Lemma A.4) that, under the following

assumption, debt contract with the firms is in general optimal.

(A3)
∫Mr

0
wdFs(w) > cEFs(Mr) for both s = h, ℓ.

Assumption (A3) plays a similar role to (A0) in direct contracting for this result.

In particular, it implies that, in equilibrium, each firm sending a message 1 is worth of

verification if the bank can keep the verified return. However, depending the contract

with the depositors, this may or may not be the case and additional considerations about

bank’s incentive to verify the firms are necessary.

Given Lemma A.4, we can focus on bank contracts in which the contract between the

bank and the firms is a simple debt contract (that may be state-dependent), and the bank

verifies the firms iff they do not pay in full. Such a contract may be denoted B = (Bh, Bℓ).

Given B, we define

ηs(B) =
1

M

{∫ Bs

0

wdFs(w)− Fs(Bs)cE + [1− Fs(Bs)]Bs

}
, (6)

and

ζs(B) =
1

M

{∫ Bs

0

wdFs(w) + [1− Fs(Bs)]Bs

}
. (7)

Here ηs(B) is the revenue (net of monitoring cost) from the firms to the bank and ζs(B)

is the available funds at the bank at state s in equilibrium, both in per depositor’s term.

While Lemma A.4 allows us to focus on debt contracts with firms, the depositor side

of the bank contract is more complicated. We are able to obtain a partial characteri-

zation, and report the results in Lemma A.2 in the Appendix. In particular, because

of the continuum assumption, we may characterize the depositor side of the contract by

three numbers, (d, dh, dℓ), where d is the promised payment without verification to the

depositors, and ds is the average payment to the depositors under state s, for s = h, ℓ.

From this information one can then infer the fraction of verifying depositors at each state
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by symmetry. Thus, to characterize its outcome, any optimal contract can then be repre-

sented by (B,d), where d = (d, dh, dℓ). For our welfare consideration, however, a specific

kind of contract, if implementable, will be Pareto efficient, in which d = dh = dℓ.

Definition 3.2. A bank contract, (B,d), is financially stable if there is a PBE in

which the bank’s expected payoff is nonnegative, and all depositors obtain u(d) ≥ u(r)

with probability one in equilibrium.

In contrast to our results in Section 3.1, static contracts have limited ability to im-

plement financially stable contracts under aggregate uncertainty. Our next theorem gives

a sufficient condition for this to happen, but the key incentive problem is reported in

Lemma A.2. Lemma A.2 gives a key necessary condition for implementation: ηs(B) ≥ ds

for both s = h, ℓ, that is, the bank has to make a nonnegative ex post profit in both

states. This result is a direct consequence of the fact that the bank cannot commit to its

verification strategy; indeed, if the bank were to make a negative profit at some state, it

may well simply verify no firms, which would give at least a zero profit. This also implies

that the contract with the depositors may not be a simple debt contract; it is possible

that upon verification, the bank may still keeps some of its available funds. Indeed, when

dℓ < dh, it is necessary that a fraction of depositors have to verify the bank at state ℓ,

but dℓ ≤ ηℓ(B) implies that the bank has to keep a fraction of its available funds, ζℓ(B).11

As a direct corollary of Lemma A.2, the following theorem gives a sufficient condition for

this to be the case.

Theorem 3.2. Let (B,d) with dℓ ≤ dh be an optimal implementable bank contract. If

Bℓ ≤ r, then it is not financially stable.

Compared to financially stable contracts, nonstable contracts can be costly to the

depositors for two reasons. Consider such a contract with dℓ < dh. First, since incentive

compatibility requires the bank to make a nonnegative profit, at state ℓ the available

fund to the bank, ζℓ(B), is strictly higher than ηℓ(B), which is in turn weakly higher

11Lemma A.2 only focuses on the case where dℓ ≤ dh. This is with no loss of generality as we do not

make use of the assumption that Fh first-order-stochastically dominates Fℓ in the proof.
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than dℓ. Thus, for risk-averse depositors, if one could ask the bank to pay out more in

state ℓ and pay less in state h to keep its ex ante profit constant, this would be a Pareto

improvement. Second, a low dℓ also entails that a larger fraction of depositors have to

verify the bank at state ℓ, and that is costly. Under static contracts, however, this may be

the best thing to do for a given division of surplus between the firms and the depositors.

These considerations also imply that the static bank contract may not be able to improve

upon the direct contract under aggregate uncertainty. In next section we show that both

inefficiencies can be reduced by a dynamic contract, and, under mild conditions, one can

device a dynamic bank contract that Pareto dominates the direct contract, even under

aggregate uncertainty.

3.3 Dynamic contracts

In this section we introduce dynamic bank contracts. Specifically, the dynamic nature is

implemented by a bank charter system with a regulator. Banking charter is a privilege in

the sense that once removed, the bank can no longer operate and can no longer receive

future profits. Under this system the regulator can implement dynamic contracts with the

bank through threats of removing the charter privilege, and by requiring self-verification

from the bank. As seen in the last section, under a static contract incentive compatibility

requires the bank to make a nonnegative profit state by state, and this requirement limits

the bank’s ability to offer a financially stable contract. In contrast, a dynamic contract

can overcome this incentive issue and improve social welfare.

We first describe the charter system. Under this system, the bank has to be chartered

by a regulator; the main benefit from this is that the regulator can provide dynamic

incentives to the bank. We assume that the bank is long-lived and has discount factor β.

The fact that this discount factor coincides with the depositors’ discount factor play no

role in our analysis, but simplifies notation.

The regulator has the power to terminate the bank’s charter and hence uses future

profits as a threat to implement contracts.12 However, the regulator does not observe the

12The key differences between our work and the large literature on dynamic principal-agent problems
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funds collected by the bank, nor the realized state, s, but has to rely on self-reporting

from the bank. We assume a technology with which the bank can self-verify and make

both the state and available funds in the bank credibly known to the regulator at a per

depositor cost of cB.
13 This self-verification can be done by hiring an external auditor,

for example.

The charter system implemented by the regulator operates as follows. If the bank

fails to pay the deposits in full and fails to self-verify, its charter is automatically ter-

minated: in this case, the depositors may verify the bank and receive whatever funds

are left. Otherwise, the termination is determined by the following dynamic contract.

First the contract specifies a level of promise to pay to the depositors, d. If the bank

does not pay d and engages in self-verification, the contract then specifies a termination

policy, T (s, y) ∈ {0, 1} (here 0 indicates termination), and a payment to each depositor,

D(s, y) ∈ R+, where s is the state and y is the available funds per depositor revealed

through verification. After termination, the bank’s continuation payoff is zero and hence,

if designed appropriately, the termination policy can provide the bank with an incentive to

verify the firms. Moreover, these dynamic considerations can sometimes make financially

stable contracts feasible in equilibrium, even though a static contract cannot.

Given the dynamic contract, the sequence of actions needs some modification. In

particular, items 5 and 6 from Section 3.1 require a change. The timing in each period is

as follows (after all parties agree to participate):

1. After the firms’ returns realize, all firms simultaneously make reports (either 0 or

1) to the bank.

(e.g., Thomas and Worrall, 1990) is that we have to attend to the agent’s (the bank, in our case) incentive

to pay third-parties (depositors), which the principal (regulator) also cares about. So, while we use future

utility promises to incentivise truthful reporting of private information, our construction is quite different

to those papers; in particular, the agent (bank) will necessarily need to make a profit (in order to ensure it

has an incentive to pay depositors) and thus the agent cannot be held down to his participation constraint,

as in Thomas and Worrall (1990).
13While we assume a fixed cost per depositor, our analysis goes through with a cost which varies with

the size of the bank’s balance sheet.
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2. The bank decides, based on the reports from the firms, whether or not to verify

each firm.

3. After the bank receives all the payments from the firms it can take one of the

following actions:

(a) pay all depositors d (which may not be feasible);

(b) engage in self-verification—and is thus subject to termination policy, T (s, y).

(c) do nothing—in which case the bank’s charter is automatically terminated.

4. If the bank fails to pay all depositors d and fails to sell-verify, each depositor decides

whether or not to verify the bank.

Given the dynamic nature and the modified timing of the game, the agents’ strategies

can be defined in an analogous manner to those in Definition 3.1. We emphasize a few

key differences. First, strategies have to be indexed by time and would depend on the

observed histories from previous periods as well as the state s. Furthermore, s2B, the

banks reporting strategy has to be amended to allow for the possibilities in item 5 above

(we’ll denote paying d by 0, self-verification by 1, and doing nothing by 2). Finally, sℓ,

the strategy of the depositor, chooses whether to verify the bank or not only when the

bank decided to do nothing. Note that while all this seems complicated, we will see that

when discount rates are high and the cost of self-verification is low, the depositors have a

relatively simple optimal strategy—they will decide to verify if given the opportunity.

Note that the dynamic contract is more efficient than the static ones only if the cost cB

is small, and that will be the case we focus on. Moreover, when cB is small, the optimal

dynamic contract will use depositors’ verification only as an off-equilibrium threat. In

that sense, under the dynamic contract, our focus is on the interaction between the bank

against the firms and against the regulator.

As before, we focus on symmetric equilibria in which the interactions between the

bank and the firms in a PBE with the property that the bank verifies all firms that send

message 1, and we say that a dynamic contract is implementable if there is such a PBE
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in which the depositors are willing to participate and the bank is making a nonnegative

(expected) profit at the beginning of each period.14 The following theorem shows that

the dynamic bank contracts can be welfare improving.

Theorem 3.3. Assume that u is strictly concave and that cE satisfies (A3).

(a) Assume (A0). For any implementable direct contract with debt level B that satisfies

(A1) and (A2) for F =
∑

s∈S π(s)Fs, there is an implementable dynamic bank contract

that Pareto dominates the direct contract for sufficiently high β and sufficiently low cB.

(b) Let (B,d) be an implementable static bank contract that is not financially stable. Then,

for sufficiently high β and sufficiently low cB, there is an implementable dynamic bank

contract that Pareto dominates it.

The main ingredient of the proof, which is also the main contribution of the above

theorem, is in the design of a dynamic contract which allows for the usual repeated-

games arguments and, thus, a Pareto improvement on the original contract. While the

details differ for parts (a) and (b), the main ideas can be outlined as follows. We use

expected future profits to incentivise the bank to suffer a short-term loss, which allow the

contract to increase the depositors’ returns at state ℓ in the expense of returns at state

h; when designed properly, this is welfare-improving given that depositors are risk averse.

Once we obtain a contract that both improves depositors’ welfare as well as gives the

bank a positive profit, we can apply the usual repeated-game argument that a sufficiently

high β and a sufficiently low cB implies that the dynamic incentives are powerful enough

to discipline the bank. These requirements are indispensable; for low β’s, the dynamic

incentives have no bite, and for high cB’s, the self-monitoring technology of the bank is

not sufficiently efficient to be useful.

According to Theorem 3.3 (a), one can always devise a dynamic contract to dominate

the direct contract, even under aggregate uncertainty, as long as (A1), (A2), and (A3)

are satisfied. This result does not hold for static contracts; indeed, for Fℓ sufficiently

concentrated on returns that are close to zero, the depositors have no incentive to monitor

14Hence, implicitly we allow the bank to leave the charter system at any point.
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the bank at state ℓ. Instead, in the dynamic bank contract, the bank is motivated to self-

verify because of concerns about future profits.

Part (b) of Theorem 3.3 shows that a dynamic bank contract can improve upon any

implementable static bank contract that is not financially stable. Recall that under the

static contract, the bank’s incentive to verify defaulting firms requires that the bank’s

profit is nonnegative across states, and hence dℓ ≤ ηℓ(B) < ζℓ(B), where dℓ is the average

payment to depositors, ηℓ(B) is the revenue to the bank (net of monitoring cost) and

ζℓ(B) are the funds available to the bank in state ℓ. Given this condition, we construct a

dynamic contract in which the bank takes a short-term loss at state ℓ and pays ζℓ(B) to

each depositor. There is a loss at state ℓ because of the monitoring cost. This dynamic

contract is incentive compatible because of future profits: we can decrease dh, the payment

to depositors in state h, so that the bank is making a positive expected profit. This change

improves the welfare of the depositors as they are strictly risk averse and prefer the higher

payment in the low state.

We remark here that while bank profit is crucial to use the dynamic incentives, it

also limits the benefits to the depositors. In fact, for any given static contract, there is a

maximal (average) profit that can give to the bank to ensure that the depositor is better

off, which depends the depositors’ risk aversion. Given the profit, there is then a cut-off

discount factor that makes the dynamic contract incentive feasible.

Finally, although the charter system can provide better contracts, it may not guarantee

financial stability as defined earlier. In particular, the ability to increase dℓ depends on

both the available funds ζℓ(B) and the incentive compatibility condition for the bank

to suffer losses. In the next section we show that the first issue can be solved by the

introduction of a deposit insurance scheme.
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4 Applications to banking policies

4.1 Interest rate ceiling

Here we consider a monopoly bank and its pricing decision. Last section shows that the

bank has an advantage in providing a better contract by being large and hence it seems

reasonable to assume that the bank enjoys some monopoly power. The firms, however,

may still issue their debts directly to the depositors without going through the bank, and,

hence, the bank contract has to be sufficiently attractive in the sense that there cannot

be any direct contract that Pareto dominates the bank contract from the perspective of

the depositors and the firms. This motivates the following definition.

Definition 4.1. A bank contract, (B, d), is competitive if there is no direct contract

that Pareto dominates it.

We are able to characterize the set of competitive contracts for risk neutral depositors.

Lemma 4.1. Suppose that u(c) = c. Bank contract (B, d) is stable iff

d ≥ max

{
r,

∫
w<B

w

M
dF (w) + [1− F (B)]

B

M
− γ

1

M

M∑
n=1

F

(
nB

M

)}
. (8)

The bank’s problem is then to choose a contract that maximizes its profit subject to

being competitive. Assume (A0) and (A1), and hence cE ≤ γ, the contract between the

bank and the firm is such that the bank verifies iff w < B. Then, given Lemma 4.1, bank

profit under B, subject to being competitive, is given by

γ
1

M

M−1∑
n=1

F

(
nB

M

)
if Udirect(B) ≥ r∫ B

0

w

M
dF (w) + (1− F (B))(B/M)− F (B)cE/M − r otherwise,

where Udirect(B) is the expected payoff to the lenders under the direct contract B.

Let B∗ maximize
∫ B

0
w
M
dF (w) + (1 − F (B))(B/M) − F (B)cE/M . The bank’s profit

is maximized either at B = B∗, or at B = w̄. Suppose that we are in the latter case.
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Without interventions, the bank contract induces the maximum monitoring cost to the

society, which may not be desirable. One way to encounter this is to introduce interest

ceiling, or regulation Q, that limits the amount of interest rate that the bank can give to

the depositors, and, to be competitive, it also requires B to be lower than the optimal

contract under the monopoly bank. Such interventions will then reduce the monitoring

cost for the society.

4.2 Deposit insurance

Here we introduce deposit insurance. We assume that there is a monopoly bank. The

insurance scheme sets an amount τ of transfers from the regulator to the depositors (in

terms of per depositor) and an amount ϕ of premium paid by the bank to the regulator (in

terms of per depositor). Consistent with the previous section, to claim for the transfer,

the bank has to pay a cost cB (in terms of per depositor) to self-verify to make its available

funds and the state known to the regulator. The transfer τ may depend on the funds y and

the state s. Alternatively, the bank may simply pay the premium. If the bank fails to pay

the premium and fails to self-verify at the same time, the bank is declared bankrupt (with

depositors rushing in to claim their d) and banned from future businesses. Thus, under

deposit insurance, the dynamic contract has three components: the promised payment d,

the termination and payment rules, T (s, y) and D(s, y), set out by the regulator and the

insurance aspect: the premium ϕ and transfer τ(s, y).

Given the deposit insurance policy, the sequence of events is as described in Section

3.3, except that one needs to modify item 5, describing the bank’s options after it receives

payments from the firms, as follows:

(a) pay all depositors d and the premium ϕ (which may not be feasible);

(b) engage in self-verification (subject to payment and termination policy, D(s, y) and

T (s, y), and deposit insurance pays τ(s, y) in addition to depositors);

(c) do nothing—in which case the bank’s charter is automatically terminated.
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We say that a deposit insurance scheme is implementable if the depositors are willing

to participate, the bank has a nonnegative (expected) profit every period, and that the

scheme is ex ante budget balanced. Almost by definition, with one single bank, any

deposit insurance scheme cannot be ex post budget balanced if it is used in equilibrium.

More precisely, let ζs be the expected funds available at the bank for state s in equilibrium.

Then,

−
∑
s∈L

πsτ(s, ζs) +
∑
s/∈L

πsϕ ≥ 0, (9)

where L is the set of states at which the bank self-verifies. We have the following theorem.

Theorem 4.1. Assume (A3) and assume that u is strictly concave. Let (B,d) be an

implementable dynamic bank contract that is not financially stable. Then, for β sufficiently

high, there exists an implementable deposit insurance scheme and a bank contract that

Pareto dominates it and is financially stable.

Theorem 4.1 shows that, with the deposit insurance scheme, one can always achieve

financial stability, and the scheme is Pareto optimal. We emphasize that the rationale for

deposit insurance in our model is drastically different from that in Diamond and Dybvig

(1983). In particular, the deposit insurance has to pay out its funds in equilibrium, while

in Diamond-Dybvig model the scheme is used to restore good equilibria but should not

be paid out in equilibrium.

Theorem 4.1 assumes ex ante budget balancedness. This amounts to assume that the

external lender to the deposit insurance scheme can commit to future lending. In the

Supplemental Appendix A2, we show that this commitment is not necessary. In the case

of a monopoly bank, the deposit insurance scheme has to be funded externally (outside

the banking system). However, if we extend our model to allow for multiple industries and

assume that each industry has a specialized bank (which has a comparative advantage

in monitoring that industry), we can get a similarly functioning deposit insurance policy.

If we further assume that, while each industry may be subject to an idiosyncratic shock,

the economy as a whole has no aggregate uncertainty, then the deposit insurance scheme

can again restore financial stability for each bank without resorting to external funding.

For details refer to Supplemental Appendix A2.
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5 Concluding remarks

We investigated how financial intermediaries may improve welfare when there is asym-

metric information between firms who require external funds and potential lenders about

the firms’ outputs and when such asymmetric information can only be resolved by costly

monitoring. We showed that a large bank, which can take deposits from a large number

of depositors and then lend to the firms, may reduce the cost of monitoring relative to

direct contracts and hence improve welfare. In our setup the number of firms defaulting

is then endogenously determined by the contracts. We showed that regulation Q could

help reduce such deadweight loss of monitoring by requiring the bank not to offer a high

interest rate to the depositors, which, in many cases, is actually profitable to do without

interventions.

In our setup where the lender cannot commit to ex post monitoring, a new incentive

issue emerges: with bank contract, the incentive to induce the bank to monitor the

firms is a nontrivial issue. That issue is even more severe when we introduce aggregate

uncertainty, and we showed that dynamic bank contracts under a charter system can be

welfare improving. When such dynamic contract cannot reach financial stability, a deposit

insurance scheme is proved to be welfare improving. This gives a new role for deposit

insurance than the typically assumed panic-preventing function.

A Appendix: Proofs

Proof of Theorem 2.1

Before proving the theorem, we have the following useful lemma.

Lemma A.1. An equilibrium outcome is characterized by a tuple, (W0,W1, ...,WM , a, b̄),

where Wm ⊂ [0, w̄] is the set of returns under which m lenders verify with a positive

probability that satisfies [(m−1)b̄, mb̄) ⊂ WM−m+1∪...∪WM and b̄ is the repayment without

verification. Moreover, for all m > 0 and for all w ∈ W0 ∩Wm, a(w− (M −m)b̄, m) = b̄.
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Proof: Let (a, b) be a given contract and let (sl, sf ) be a PBE. Let A = {w̃ ∈ W :

sl(w̃) = 1}. Now, for each m = 0, ...,M , define

Am = {(w̃1, ..., w̃M) ∈ WM : (w̃i1 , ..., w̃im) ∈ Am, (w̃im+1 , ..., w̃iM ) ∈ AM−m}, (10)

the set of messages for which m lenders verify in equilibrium, and let

Wm = {w ∈ W : sf (w) assigns a positive probability to Am}.

Here we assume that W0 ̸= ∅; the proof for the other case is similar. Now, we show that,

for each m and each (w̃1, ..., w̃M) ∈ Am that is in the support of sf , if w̃i /∈ A, then

b̄ ≡ min{b(w̃1) : (w̃1, ..., w̃M) ∈ A0 and is assigned a positive probability under sf}

= b(w̃i). (11)

To see this, if this inequality doe snot hold, or if the minimum does not exist, then the

firm always have a positive deviation to send another message to replace the message w̃i

so that a lower payment without verification is feasible.

By (11) and feasibility, it is easy to see that

[(m− 1)b̄, mb̄) ⊂ WM−m+1 ∪ ... ∪WM .

■

We are now ready to prove theorem 2.1.

Let (a, b) be a given contract and let (sl, sf ) be a PBE in which the lender’s expected

payoff is at least u(r). For each w ∈ W and each m = 1, ...M , we use κm(w) to denote

the probability that the firm sends a message to m lenders to coming to verify; note

that by symmetry of sf , conditional on having m lenders coming, sf induces a uniform

distribution over the identities of lenders to come. Obviously, κm(w) > 0 only if w ∈ Wm.

Note that by Lemma A.1, for all w ∈ W0, the firm’s payment is a constant, Mb̄. Now,

let b̄′ solve:∫ Mb̄′

0

w dF (w) + [1− F (Mb̄′)]Mb̄′ (12)

=

∫
W0

Mb̄ dF (w) +
M∑

m=1

∫
Wm

[
ma
(
w − (M −m)b̄, m

)
+ (M −m)b̄

]
κm(w) dF (w).
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Note that since by feasibility, for each w ∈ Wm with m ≥ 1,

ma
(
w − (M −m)b̄, m

)
+ (M −m)b̄ ≤ w, (13)

it follows that b̄′ < b̄, unless the above holds as an equality for almost every w below Mb̄′,

in which case (a, b) is already a debt contract. Now, we construct a new contract, (a′, b′)

and a new PBE (s′f , s
′
l) as follows. The strategy s′f only sends two possible messages, w̃0

and w̃1, to each lender, and s′l(w̃0) = 0 and s′l(w̃1) = 1. We set b′(w̃0) = b̄′ and b′(w̃) > b̄′

for any other w̃, and a′(v,m) = v/m if v ≤ Mb̄′ and a′(v,m) = b̄ otherwise.

Now, for each w ≥ Mb̄′, s′f (w) sends w̃0 to all lenders with probability 1. Since b̄′ ≤ b̄,

for any w < Mb̄′, w /∈ W0 by feasibility. For each w < Mb̄′, note that
∑M

m=1 κm(w) = 1

by feasibility. Thus, for each m, s′f (w) is a two-stage lottery: first it chooses m with

probability κm(w); second, conditional on choosing m, it sends exactly
(
M
m

)
messages

in the support of this second lottery, each of which is sent with equal probability and

designates the m people verifying (and M −m people getting fully repaid).

Now consider the two lotteries, X and Y , that describe each lender’s payment to be

received from the borrower, denoted p, induced by contracts
(
a, b̄
)
and

(
a′, b̄′

)
and the

above PBE’s, respectively. Note that by (12) the two lotteries have the same expectation,

i.e., EX [p] = EY [p]. Let FX and FY denote the distribution function for the two lotteries.

We claim that for each p < b̄′,

FX [X < p] ≥ FY [Y < p] .

To see this, fix some p < b̄′. Note that the realization ofX and Y depend on the realization

of w and the resolution of the randomization in sf and s′f . Given w, in both sf and s′f ,

there are two stages of randomization: the first involves the number of lenders to verify

and the second involves the identities of lenders to verify.

Now, since Y < p implies that w < Mb̄′, by construction of how s′f assigns number of

verifiers using κm’s and by symmetry of the two strategies, the two-stage lotteries in the

two strategies have exactly the same distributions, conditional on such w. As a result, for

any such w that leads to Y < p, it corresponds to the event in which the lender receives w̃1

at that w under s′f (w). As argued above, conditional on at w, that probability is exactly
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the same as under sf (w), and by (13), at that event X ≤ Y < p. This then implies that

FX and FY cross exactly once at the point p = b̄′. Thus we have single crossing of CDFs

and hence
(
a′, b̄′

)
second order stochastically dominates

(
a, b̄
)
.

The overall probability of verification is strictly smaller under
(
a′, b̄′

)
than under

(
a, b̄
)
,

since under
(
a′, b̄′

)
, the corresponding verification regions, W ′

m = Wm∩[0,Mb̄′) for allm ≥

1, κm(w) is the same under s′f for all w < Mb̄′, and since b̄′ < b̄. Thus the contract
(
a′, b̄′

)
strictly improves the lenders’ expected utilities, while leaving the borrower’s expected

utility unchanged. This also implies b̄′ > r as the original contract is implementable.

Note that under the debt contract
(
a′, b̄′

)
, the payoffs of the two parties are continuous

in b̄′ (decrease the full repayment level, keep all Wm regions the same). This follows since

the contract and utility functions of all agents are continuous. Since b̄′ > r, we can find

b̄′′ < b̄′ such that the contract
(
a′, b̄′′

)
still strictly improves the lenders’ expected utilities,

while the borrower now makes a strictly smaller expected payment and thus we have a

strict Pareto improvement.

Finally, we need to show that (s′f , s
′
l) does constitute a PBE. It is straightforward

to see that s′f is optimal. Now, to show that s′l is optimal, we need to show that the

lender has the incentive to verify whenever seeing message w̃1 and has incentive to take b̄′

whenever seeing message w̃0. The latter follows since the lender can never get more than

b̄′ by verifying. For the former, one needs to show that the expected payoff to the lender

is higher than γ when seeing w̃1. Now (A0) guarantees all lenders have an incentive to

verify, since b̄′ > r and 1

F(Mb̄′)

∫ b̄′

0
u
(

w
M

)
dF (w) > 1

F (Mr)

∫ r

0
u
(

w
M

)
dF (w) > γ; where the

second inequality holds because u is increasing. ■

The optimal verfication intervals, Wm’s, are derived in appendix A.1.

Proof of Lemma 3.1

We first show necessity. Suppose that (2) does not hold. Then, the bank is making a

negative profit in equilibrium. But by not verifying any firm at all, the bank can make a

nonnegative profit and hence verification is not optimal. Similarly, suppose that (3) does
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not hold. We have shown that (2) is necessary, and that, together with the assumption

that (3) does not hold, implies

[1− F (B)]B > d.

Now, this implies that the bank would have sufficient funds to pay to each depositor

without verifying any firm that sent message 1. Since verifying each individual firm

results in a net loss for the bank, it is better off not to do it.

Here we show sufficiency. We show that in equilibrium the bank sends message 0 to

all depositors and no depositor verifies the bank, and if the bank sends message 1, the

verifying depositors share all the remaining funds. We separate two cases.

(a) Suppose that [1 − F (B)]B ≥ Md. Then, the bank can pay off d to each depositor

without verifying any firm that sent message 1. However, by (3), the bank is making a

positive expected profit by verifying such a firm, and hence the bank is willing to do that.

(b) Suppose that [1 − F (B)]B < Md. Thus, the bank cannot meet its obligations to all

depositors unless it verifies a positive fraction of firms that sent message 1. Let f ∗ be the

minimum fraction that the bank can meet that, and let f be the fraction of such firms

that the bank actually verifies. Since the bank will pay out all its available funds when

being verified, if 0 < f < f ∗, then the bank’s profit is negative; if f ∗ ≤ f < 1, then it is

optimal for the bank to pay off d to all depositors, and its payoff (in per depositor terms)

is given by
1

M

[
f

∫ B

0

[w − cE]dF (w) + [1− F (B)]B

]
− d,

which is maximized at f = 1 by (3). Finally, having f = 1 is better than having f = 0

because of (2).

Proof of Theorem 3.1

Concavity of u implies that, together with (A1),

u′(r)cE <

M∑
m=1

F
(
mB
M

)
F (B)

γ. (14)
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To see this, note that (A0) implies that γ < u(r). Now,

cE < u−1(γ)
M∑

m=1

F
(
mB
M

)
F (B)

≤
∑M

m=1

F(mB
M )

F (B)
γ

u′ [u−1(γ)]
<

∑M
m=1

F(mB
M )

F (B)
γ

u′(r)
.

Moreover, we show that

cEF (B) <

∫ B

0

wdF (w). (15)

Note that implementability implies that

γ <

∑M−1
m=0

∫ (m+1)B/M

mB/M
u((w −mB)/(M −m))dF (w)∑M−1

m=0 F ((m+ 1)B/M)
<

∫ B

0
u(w/M)

F (B)
< u

(∫ B

0
w
M
dF (w)

F (B)

)
.

Therefore,

cE < u−1(γ)
M∑

m=1

F
(
mB
M

)
F (B)

<

∫ B

0
w
M
dF (w)

F (B)

M∑
m=1

F
(
mB
M

)
F (B)

<

∫ B

0
wdF (w)

F (B)
.

Consider the following bank contract, (B, d). The bank has a simple debt contract

with each firm with debt level B. For the deposit side, the depositor receives d that will be

specified below without verification, and, in case the bank refuses to pay d, all depositors

verify and receive equal payments from the remaining funds.

Let

d =
1

M

{∫
w∈[0,B]

wdF (w) + (1− F (B))B − F (B)cE − ε

}
. (16)

For any ε > 0, (2) is satisfied with a strict inequality and, recalling that (15) implies (3),

the bank has strict incentive to verify firms’ returns. It also implies that the bank has a

strictly positive payoff.

Now, let U be the expected payoff for each lender from the direct contract. Then,

U ≤
∫ B

0

u
( w

M

)
dF (w) + (1− F (B))u

(
B

M

)
− 1

M

M∑
m=1

F

(
mB

M

)
γ. (17)

We claim that u(d + ε/M) > U for any ε > 0 (note that d is defined by (16)) and hence

u(d) > U for ε small. To see this, since u is concave, we have:

u

[
1

M

{∫ B

0

wdF (w) + (1− F (B))B

}]
≥
∫
w∈[0,B)

u
( w

M

)
dF (w) + (1− F (B))

u(B)

M
,
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that is,

u

[
d+ ε/M +

1

M
F (B)cE

]
≥
∫
w∈[0,B)

u
( w

M

)
dF (w) + (1− F (B))

u(B)

M
. (18)

Now, (A1) implies that d+ ε/M > r and hence, by concavity of u,

u(d+ ε/M) ≥ u

[
d+

ε

M
+

1

M
F (B)cE

]
− u′(d)

1

M
F (B)cE

≥ u

[
d+

1

M
F (B)cE

]
− 1

M

M∑
m=1

F

(
mB

M

)
γ ≥ U,

where the second inequality follows from (14) and hence

cE <
M∑

m=1

F
(
mB
M

)
F (B)

γ/u′(r) <
M∑

m=1

F
(
mB
M

)
F (B)

γ/u′(d+ ε/M)

as d+ ε/M > r, and the last inequality follows from (18).

Finally, we need to show that the depositors have incentive to verify the bank’s return

when the bank does not pay off d. For the continuum model this is off-equilibrium path

and we assume that, when receiving the message 1, the depositors believe that the bank

has d. For finite but large number of depositors, this follows from the CLT, and one can

show that

lim
N→∞

E[u(yN)|yN < E(yN)− F (B)cE] = u(d) > U ≥ u(r) > γ,

where yN is the random variable that represents the average funds available in the bank

to each depositor when there are N firms. 2

Proof of Theorem 3.2

Let ds denote the average amount paid to the depositors at state s, given a contract (d, e).

The proof of theorem3.2 is a corollary of the following lemma.

Lemma A.2. Let (B,d) be an implementable bank contract. Then, ds ≤ ηs(B) for both

s = h, ℓ, and it has to satisfy the following conditions.

(a) Suppose that d = dh = dℓ. Then, u(d) ≥ u(r), and∫ Bs

0

wdFs(w) > Fs(Bs)cE for both s = h, ℓ. (19)
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(b) If dℓ < dh, there are two subcases:

(b.1) dh = d and letting mℓ be the fraction of depositors monitoring at state ℓ,∫ Bh

0

wdFh(w) > Fh(Bh)cE; (20)

u

(
Mdℓ − (M −mℓ)d

mℓ

)
≥ γ; (21)

πhu(d) + πℓ

[
M −mℓ

M
u(d) +

mℓ

M
u

(
Mdℓ − (M −mℓ)dh

m

)
− mℓ

M
γ

]
≥ u(r). (22)

(b.2) dh < d and letting ms be the fraction of depositors monitoring at state s = h, ℓ,∑
s=h,ℓ

πsms

πhmh + πℓmℓ

u

(
Mds − (M −ms)d

ms

)
≥ γ; (23)

∑
s=h,ℓ

πs

[
M −ms

M
u(d) +

ms

M
u

(
Mds − (M −ms)d

ms

)
− ms

M
γ

]
≥ u(r). (24)

Proof. The necessity in (a) uses the same arguments as in Lemma 3.1. Consider (b).

Conditions (22) and (24) are obvious IR conditions. (21) and (23) are necessary for

depositors to verify the bank. For (b.1), since d < ζh(B), for the bank to verify in full at

state h, (20) is necessary.

Now, suppose, by contradiction, that the bank can offer a financially stable contract

with debt level with depositors d. By Lemma A.2, Bℓ ≤ r implies that

d = dℓ ≤ ηℓ(B) < r,

which leads to a contradiction with implementability. 2

Proof of Theorem 3.3

(a) Let B be a direct contract between the firm and the lenders that satisfies (A1) and

(A2) for F =
∑

s∈S π(s)Fs. Concavity of u implies that, together with (A1),

u′(r)cE <

∑
s=h,ℓ πs

[∑M
m=1 Fs

(
mB
M

)]∑
s=h,ℓ πsFs(B)

γ. (25)
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To see this, note that (A0) implies that γ < u(r). Now,

cE < u−1(γ)

∑
s=h,ℓ πs

[∑M
m=1 Fs

(
mB
M

)]∑
s=h,ℓ πsFs(B)

<

∑
s=h,ℓ πs

[∑M
m=1 Fs

(
mB
M

)]∑
s=h,ℓ πsFs(B)

γ

u′ [u−1(γ)]

<

∑
s=h,ℓ πs

[∑M
m=1 Fs

(
mB
M

)]∑
s=h,ℓ πsFs(B)

γ

u′(r)
,

where the last inequality follows from the fact that u−1(γ) < r and that u is strictly

concave.

Now we construct the following bank contract, (B, d), and show that it dominates

the original direct contract, B. The bank has a simple debt contract with each firm

with debt level B (and hence the firms are indifferent between the original contract and

the constructed contract), and let ηs(B) and ζs(B) be defined as in (6) and (7) with

Bh = Bℓ = B for both s = h, ℓ. Now, let U be the expected payoff for each lender from

the direct contract. Then,

U ≤
∑
s=h,ℓ

πs

{∫ B

0

u
( w

M

)
dFs(w) + (1− Fs(B))u

(
B

M

)
− 1

M

M∑
m=1

Fs

(
mB

M

)
γ

}
. (26)

We consider two cases.

(a.1) Suppose that ζℓ(B) ≥
∑

s=h,ℓ πsηs(B). Then, set d̂ = 1
M

∑
s=h,ℓ πsηs(B). We claim

that u(d̂) > U and hence u(d̂− ε) > U for ε small. This then implies that the depositors

strictly prefer the constructed contract. To see this, since u is strictly concave, we have

u

[
d̂+

∑
s=h,ℓ

πs
1

M
Fs(B)cE

]
>
∑
s=h,ℓ

πs

{∫
w∈[0,B]

u
( w

M

)
dFs(w) + (1− Fs(B))u

(
B

M

)}
.

(27)

Now, (A2) implies that d̂ > r and hence, by strict concavity of u,

u(d̂) > u

[
d̂+

∑
s=h,ℓ

πs
1

M
Fs(B)cE

]
− u′(d̂)

[∑
s=h,ℓ

πs
1

M
Fs(B)cE

]

> u

[
d̂+

∑
s=h,ℓ

πs
1

M
Fs(B)cE

]
− 1

M

∑
s=h,ℓ

πs

[
M∑

m=1

Fs

(
mB

M

)]
γ ≥ U,

where the second inequality follows from (25) and d̂ > r, and the last inequality follows

from (26) and (27).
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Thus, for ε > 0 small, u(d̂ − ε) > U . Now, set the contract with the depositors as

d = d̂−ε, and there is no self-verification on the equilibrium path. On the off-equilibrium

path, we set T (s, y) = 0 and D(s, y) = y for all y and for both s. The depositors are then

better off against the direct contract. The bank makes a strictly positive expected profit,

which (in per depositor terms) equals

1

M

∑
s=h,ℓ

πsηs(B)− d = d̂− (d̂− ε) = ε > 0.

Given the contract (T,D), for sufficiently high β, the bank has the incentive to repay d

to all depositors as failure to do so will result in losing all future profits, and ζℓ(B) ≥∑
s=h,ℓ πsηs(B) ensures that the bank always have sufficient fund to do so if they verify

all firms that sent message 1. Using the same logic as before, the bank has incentive to

verify such firms because of (A3).

(a.2) Suppose that ζℓ(B) <
∑

s=h,ℓ πsηs(B). Then, set

dℓ =
1

M
ζℓ(B) and d̂h = ηh(B)− 1

M

πℓ

πh

Fℓ(B)cE.

Here dℓ will be the average repayment to the depositors at state ℓ and d̂h − ε will be the

average repayment to the depositors at state h with ε > 0 to be determined below. We

claim that

πhu(d̂h) + πℓu(dℓ) > U. (28)

To see this, since u is strictly concave, we have

πhu

[
d̂h +

1

M

(
Fh(B)cE +

πℓ

πh

Fℓ(B)cE

)]
+ πℓu(dℓ) (29)

>
∑
s=h,ℓ

πs

{∫
w∈[0,B]

u
( w

M

)
dFs(w) + (1− Fs(B))u

(
B

M

)}
.

Now, (A2) and ζℓ(B) <
∑

s=h,ℓ πsηs(B) imply that d̂h > r and hence, by strict concavity

of u,

u(d̂h) > u

[
d̂+

cE
M

(
Fh(B)cE +

πℓ

πh

Fℓ(B)

)]
− u′(d̂h)

[
cE
M

(
Fh(B)cE +

πℓ

πh

Fℓ(B)

)]
≥ u

[
d̂+

cE
M

(
Fh(B)cE +

πℓ

πh

Fℓ(B)

)]
− 1

Mπh

∑
s=h,ℓ

πs

[
M∑

m=1

Fs

(
mB

M

)]
,
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where the second inequality follows from (25) and d̂ > r, and hence,

πhu(d̂h) + πℓu(dℓ)

>
∑
s=h,ℓ

πs

{∫
w∈[0,B]

u
( w

M

)
dFs(w) + (1− Fs(B))u

(
B

M

)}
− 1

M

∑
s=h,ℓ

πs

[
M∑

m=1

Fs

(
mB

M

)]
≥ U.

Thus, for ε > 0 small, πhu(d̂h − ε) + πu(dℓ) > U . Now, set the contract with the

depositors as d = d̂h − ε, which is paid to the depositors when s = h without self-

verification, and, at s = ℓ, there is self-verification and the bank pays dℓ equally to all

depositors; i.e., D(ℓ, ζℓ(B)) = dℓ. The depositors are then strictly better off against the

direct contract. We set T (h, y) = 0 and D(h, y) = y for all y, and T (ℓ, y) = 0 iff y < ζℓ(B)

and D(ℓ, y) = y for all y.

The bank has a positive expected profit provided that cB < ε/πℓ. Given this positive

profit, the bank has incentive to repay d at state h and to self-verify at ℓ, as failure to do

so results in losing all future profits, provided that β is sufficiently high, if it has verified

all firms that sent message 1. Using the same logic as before, the bank has incentive to

verify all such firms because of (A3).

(b) Let (B, d) be an implementable static contract that is not stable. With no loss of

generality we assume dℓ < dh and ζℓ(B) ≤ ζh(B) (the fact that the order of the d’s

align with the order of the ζ’s does not matter either). Incentive compatibility requires

dℓ ≤ ηℓ(B).

We consider two cases.

(b.1) Suppose that d̂ = πhdh + πℓdℓ ≤ ζℓ(B). We can choose ε > 0 such that

πhu(dh) + πℓu(dℓ)−
d− dℓ

d
γ < u(d̂− ε)

because u is strictly concave. Then, set the new contract as (B,d′) with d′h = d′ℓ = d′ =

d̂− ε, and the bank never engages in self-verification. Note that since the static contract

is implementable, the bank’s profit is nonnegative. This implies that

d̂ ≤
∑
s=h,ℓ

πs

{
[1− Fs(Bs)]Bs +

∫ Bs

0

wddFℓ(w)− Fs(Bs)cE

}
.
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Thus, the bank’s profit is at least ε > 0 under the new contract. Moreover, the depositors

are strictly better off against the static contract.

The dynamic contract is given as follows. T (s, y) = 0 and D(s, y) = y for all s, y.

Clearly d′ < ζh(B). Using the same logic as in (a.1), we can show that for β sufficiently

high, the bank has incentive to repay d′ at both states because of future profits and has

incentive to verify all firms that send message 1 because of (A3).

(b.2) Suppose that πhdh + πℓdℓ > ζℓ(B). Let d̂h be such that

πhd̂h + πℓζℓ(B) = πhdh + πℓdℓ.

Since dℓ ≤ ηℓ(B), d̂h < dh. Let d
′
ℓ = ζℓ(B), and let

T (ℓ, y) = 1 iff y ≥ d′ℓ and D(ℓ, y) = y for all y.

Then, since u is strictly concave,

πhu(d̂h) + πℓu(d
′
ℓ) > πhu(dh) + πℓu(dℓ)−

d− dℓ
d

γ,

and hence for ε > 0 small,

πhu(d̂h − ε) + πℓu(d
′
ℓ) > πhu(dh) + πℓu(dℓ)−

d− dℓ
d

γ.

The bank then promise to repay depositors d′ = d̂h − ε. The contract is such that

T (h, y) = 0 and D(h, y) = y for all y. On the equilibrium path, the bank pays d′ = d̂h− ε

to all depositors at s = h without self-verification, and self-verifies when s = ℓ. Thus, if

cB < πh

2πℓ
ε, the bank is making a strictly positive expected profit. Moreover, the depositors

are strictly better off against the static contract.

Finally, the fact that the bank is willing to repay d′ at s = h and to self-verify at s = ℓ

for cB < πh

2πℓ
ε and for sufficiently high β follows exactly the same logic as in (a.2) because

of (A3). 2
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Proof of Lemma 4.1

Since u(c) = c, under direct contracting and debt level B, the depositor’s payoff under

the optimal contract is given by

U(B) ≡
∫
w<B

w

M
dF (w) + [1− F (B)]

B

M
− γ

1

M

M∑
n=1

F

(
nB

M

)
.

Such a contract is implementable if and only if U(B) ≥ r. The result then follows

immediately. 2

Proof of Theorem 4.1

Let ds be the payment to the depositors under the original dynamic contract at state s.

We may assume that dh = d, the promised payment. Since it is not financially stable,

dℓ < d and the bank has to engage self-verification at s = ℓ.

Let d̂ = πhdh+πℓdℓ. If d̂ ≤ ζℓ(B), then, using the same arguments as in Theorem 3.3,

we can have a financially stable contract that dominates the original one without using

deposit insurance. So suppose that d̂ > ζℓ(B) and hence, for some ε > 0,

u(d̂− ε) >
∑
s=h,ℓ

πsu(ds). (30)

Then, take d′ = d̂ − ε, L = {ℓ} and let τ(ℓ, y) = max{d − y, 0} if y ≥ ζℓ(B), τ(ℓ, y) = 0

otherwise, T (ℓ, y) = 1 iff y ≥ ζℓ(B) and D(ℓ, y) = y for all y. For s = h, τ(h, y) = 0,

T (h, y) = 0, and D(h, y) = y for all y. Let:

ϕ =
πℓτ(ℓ, ζℓ(B))

πh

.

On the proposed equilibrium path, the bank self-verifies only in state ℓ, and, in that state,

the bank pays off all its available funds, ζℓ(B), and the deposit insurance scheme pays

out additional funds so that all depositors receive d′; at state h, the bank pays d′ to all

depositors and pays ϕ to the deposit insurance. Note that the equilibrium τ is given by

d′−ζℓ(B) and that on the proposed equilibrium path the budget constraint (9) is satisfied.
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The bank’s expected profit (in per depositor term) on the proposed equilibrium path

is then given by

πh [ηh(B)− d′ − ϕ] + πℓ [ηℓ(B)− ζℓ(B)− cB]

=

[∑
s=h,ℓ

πsηs(B)

]
− πhd

′ − πh
πℓ[d

′ − ζℓ(B)]

πh

− πℓζℓ(B)− πℓcB

=

[∑
s=h,ℓ

πsηs(B)

]
− d′ − πℓcB =

{∑
s=h,ℓ

πs[ηs(B)− ds]

}
+ ε− πℓcB,

which is then ε above to the original dynamic contract in each period, and hence is strictly

positive. Moreover, the depositors are strictly better off under deposit insurance than the

original unstable contract by (30).

Finally, using exactly the same arguments as in the proof of Theorem 3.3, part (b.2),

high β ensures that the bank wants to pay d′ + ϕ at state h, self verifies at state ℓ, and

(A3) ensures that the bank has incentive to verify all firms that sent message 1. 2
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Supplemental Appendix: for online publication only

A.1 Optimal verification regions

Theorem 2.1 proved the optimality of debt contracts, but didn’t characterize their specific

form. We now extend this result by finding the optimal verification regions (the Wm) for

the debt contract. Let (a, b) be a debt contract, where we denote by b the level of debt

for each lender. For each w ∈ [0,Mb), the ex ante expected payoff to a lender for having

m lenders coming to verify is

Υ(w,m) ≡ m

M

[
u

(
w − (M −m)b

m

)
− γ

]
+

M −m

M
u(b). (31)

Let k := min {argmaxm≥1Υ(Mb,m)}, i.e., let k be the number of lenders we want

verifying at Mb (if there are multiple maximizers at Mb, we take the smallest number of

verifiers since that will be the relevant one leading up to Mb).

Let xk = Mb and for each m = M,M − 1, ..., k + 1, define xm as follows:

xm = inf{w ≥ (M −m+ 1) b : Υ(w,m− 1) ≥ Υ(w,m)}.

Lemma A.3. For each m = k, ...,M , xm is the unique w such that either Υ(w,m) =

Υ(w,m− 1) or xm = (M −m+ 1) b. Moreover, xm > xn for all m < n.

Proof. Fix some m. Suppose that Υ((M −m+1)b,m) > Υ((M −m+1)b,m− 1). Then

first note that

∂

∂w
[Υ(w,m)−Υ(w,m− 1)] =

1

M

[
u′
(
w − (M −m)b

m

)
− u′

(
w − (M −m+ 1)b

m− 1

)]
< 0

for all w < Mb; this follows since u is concave and

w − (M −m)b

m
− w − (M −m+ 1)b

m− 1
=

Mb− w

m(m− 1)
.

Consider the case w = Mb; we have

Υ(Mb,m)−Υ(Mb,m− 1) =
1

M
γ < 0,
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and hence there is a unique xm such that Υ(xm,m) = Υ(xm,m− 1). Thus we have that

for each m we have either Υ(xm,m) = Υ(xm,m− 1) or xm = (M −m+ 1) b.

Next we will show that xm > xm−1 and the result follows by induction. First consider

the case where xm > (M −m+ 1) b. Thus Υ(xm,m) = Υ(xm,m − 1) and Υ(xm−1,m −

1) ≤ Υ(xm−1,m− 2) implies that:

0 = mu

(
xm − (M −m)b

m

)
− (m− 1)u

(
xm − (M −m+ 1)b

m− 1

)
− u(b)− γ

≥ (m− 1)u

(
xm−1 − (M −m+ 1)b

m− 1

)
− (m− 2)u

(
xm−1 − (M −m+ 2)b

m− 2

)
− u(b)− γ.

Suppose, by contradiction, that xm−1 ≥ xm. Then,

mu

(
xm−1 − (M −m)b

m

)
− (m− 1)u

(
xm−1 − (M −m+ 1)b

m− 1

)
≥ mu

(
xm − (M −m)b

m

)
− (m− 1)u

(
xm − (M −m+ 1)b

m− 1

)
≥ (m− 1)u

(
xm−1 − (M −m+ 1)b

m− 1

)
− (m− 2)u

(
xm−1 − (M −m+ 2)b

m− 2

)
,

which implies that

m

2m− 2
u

(
xm−1 − (M −m)b

m

)
+

(m− 2)

2m− 2
u

(
xm−1 − (M −m+ 2)b

m− 2

)
≥ u

(
xm−1 − (M −m+ 1)b

m− 1

)
.

But notice that

xm−1 − (M −m+ 1)b

m− 1
=

m

2m− 2

(
xm−1 − (M −m)b

m

)
+
(m− 2)

2m− 2

(
xm−1 − (M −m+ 2)b

m− 2

)
,

and this leads to a contradiction to the concavity of u.

Now consider the case where xm = (M −m+ 1) b. Because of the definition of xm−1,

we have that xm−1 ≥ (M −m+ 2) b > xm.

A.2 Optimality of debt contract under aggregate uncertainty

The bank contract with the depositors is given by a number d and a function e(y,m, s)

that specifies payment to each verifying depositor, where d is the debt level, y is the
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available funds to each verifying depositor, m is the fraction who verify, and s is the state.

Our earlier results regarding the optimality of debt contracts with firms, however, do not

directly extend to the bank contract, since the bank’s funds are (at least partially) paid

to the depositors. In general, a bank contract with the firm may be denoted (as, b̄s)s=h,ℓ,

where as(w) denotes the firm’s repayment to the bank when verified return is w and b̄s is

the repayment without verification, both of which may depend on the state s.

Given the contract, the strategies can be defined in an analogous manner to those in

Definition 3.1, but with one modification: now both sf and (s1B, s
2
B) may depend on the

state s. Moreover, as before, we focus on symmetric equilibria in which the interactions

between the bank and the firms in a PBE with the property that the bank verifies all

firms that send message 1. The following lemma shows that it is optimal to have debt

contracts between the bank and the firms.

Lemma A.4. Let {(as, b̄s)s=h,ℓ, (d, e)} be an implementable bank contract. Under (A3),

there is another bank contract in which the contract with the firm is a debt contract with

verification occurring iff w < Bs and Bs the debt level at state s and which Pareto domi-

nates the original contract.

Proof. Suppose that the contracts with the firms are given by (as, b̄s)s=h,ℓ, and suppose

that W0,s is the set where no verification occurs from the bank, s = h, ℓ. Let

ηs =
1

M

{∫
W1,s

as(w)dFs(w)− Fs(W1,s)cE + Fs(W0,s)b̄s

}
,

and let

ζs =
1

M

{∫
W1,s

as(w)dFs(w) + Fs(W0,s)b̄s

}
.

Here ηs is the revenue (net of monitoring cost) from the firms by the bank, and ζs is the

available funds at the bank at state s, both in per depositor’s term.

Consider the alternative contracts (Bs)s∈S and e′ as follows. Bs is such that∫ Bs

0

wdFs(w) + [1− Fs(Bs)]Bs = Mζs,
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and hence Bs ≤ b̄s. Let W
′
1,s = [0, Bs) ⊂ W1,s, and let

η′s =
1

M

{∫ Bs

0

wdFs(w)− Fs(Bs)cE + [1− Fs(Bs)]Bs

}
≥ ηs.

The above inequality is strict unless the contract with the firm is a debt contract. More-

over, the firm’s expected payment is exactly the same conditional on each state under the

alternative contract as in the original contract.

Now we consider the bank contract with the depositors. Given the bank contract

with the depositors, (d, e), let ds be the average amount paid to the depositors at state

s. Strict incentive compatibility for the bank to monitor the firms requires ds < ηs for

both s = h, ℓ. We then design the new contract with the depositors as follows. Keep d as

in the original contract and keep the fraction of verifying depositors the same as before

for each states. If at state s no depositors verify the bank, then it must be the case that

ζs ≥ Mr and hence Bs ≥ Mr. Then, (A3) implies that the bank has incentive to verify

the firms at state s. Instead, if the bank is verified at state s and if the bank’s available

fund and the fraction of verifiers are consistent with bank revenue of ζs, give the same

payments as the original contract. Otherwise, require the bank to pay off all its available

funds. This ensures the bank has the same incentive to monitor the firms.

Finally, since the depositors receive the same amount of payments when verifying in

both states and the probability of verifying remains the same, their incentive to verify

remains.

A.3 Feasibility for deposit insurance scheme

In Section 4.2 we consider a deposit insurance scheme that only requires budget-balancedness

from the ex ante perspective. This would require an external lender who can commit to

a contract with the regulator, who will receive the premium at good states and will pay

for the insurance at bad states. Here we relax this assumption and consider two possible

alternative assumptions. In the first we consider the possibility that the external lender

cannot commit, and in the second we consider the case where there are many banks but

there is no aggregate uncertainty when we aggregate across the banks.
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External funding without lender commitment

Here we consider the situation where the external lender who provides funding for the

deposit insurance cannot commit to his future actions. The regulator, however, can

commit and offer a contract as follows. We assume that there is a single lender to simplify

the analysis but, to be more realistic, we could have a continuum of identical lenders and

each is offered the same contract. We assume that the lender is risk-neutral and has

discount factor β.

If the bank is in state h, then the regulator pays ϕ (in per depositor term). If the

bank is in state ℓ, then the lenders pays τ . Lack of commitment implies that the lender

can walk away from the contract at any point of time. Obviously, the lender would not

do so in state h. In state ℓ, however, the lender may choose to leave unless the future

benefits from staying in the contract is better than leaving the contract. We assume that

the regulator only pays the lender who has stayed in the contract always.

Thus, the incentive compatibility constraint for the lender to remain in the contract

is given by

−τ +
β

1− β
[πhϕ− πℓτ ] ≥ 0. (32)

Here we show that even with this additional constraint, Theorem 4.1 still holds. The only

modification needed in the argument is the construction of the deposit insurance scheme,

and, instead of having πhϕ = πℓτ , we have:

πhϕ = (πℓ + r)τ,

where r = 1−β
β
. This implies that the bank in state h pays d′′ < d′ (the amount constructed

in the proof of Theorem 4.1, but the difference converges to zero as β goes to one. Since

we obtained strict Pareto improvement in that theorem, this implies that we can still

obtain improvement with β sufficiently high. The incentives to monitor are not altered.
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Oligopoly banks with idiosyncratic shocks

Suppose that there are continuum of depositors of measure M × N , and there are N

industries, each with measure one of firms. We assume that the stochastic returns to

each firm are distributed according to Fs(·), where s ∈ S = {h, ℓ}. While each industry

is subject to shocks, the overall economy has no aggregate shock in the sense that the

number of industries whose realize state ℓ is a constant, n̄. Industry n’s shock is ℓ if

χ(n) ≤ n̄, where χ is a permutation of {1, ..., N}, and each permutation occurs with the

same probability, which is independent across time. Thus, for each individual bank, the

probability of a high state is πh = N−n̄
N

.

In this environment, the equation (9) has a different interpretation. Here πh also refers

to the fraction of banks in state h, and hence (9) requires the deposit insurance scheme to

be self-financing: it uses the premium received from banks in state h to finance transfers

to banks in state ℓ. We have the following corollary.

Corollary A.1. Assume (A3). Let (B,d) be a dynamic bank contract that is not fi-

nancially stable for each bank. Then, for β sufficiently high, there exists an (ex post)

budget-balanced deposit insurance scheme and a bank contract that Pareto dominates it.

Proof. Note that from depositors’ perspective and the firms’ perspective the problem is

the same as facing a monopolist bank. The incentive to monitor firms is the same for a

bank under state s is not changed either. We only need to show that now the budget is

balanced for the deposit insurance scheme. Since in equilibrium N − n̄ firms are in state

h and pays ϕ each while the rest are in state ℓ and receive π each, budget balancedness

requires

(N − n̄)ϕ− n̄π = 0,

which is equivalent to (9) with πh = N−n̄
N

.
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