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Abstract

A group of agents can collectively purchase a public good that yields het-
erogeneous benefits to its members. Combining a reduced-form implemen-
tation result with a duality argument, we characterize the seller’s profit-
maximizing mechanism. Trade outcomes depend solely on a weighted av-
erage of the agents’ virtual values, with endogenous voting weights. Het-
erogeneity in voting weights reflects heterogeneity in agents’ value distribu-
tions, where agents with lower value distributions are given more weight in
trade decisions. Simple pricing rules are generally not (even approximately)
optimal.

1. Introduction

We study a problem of selling a good to a buyer group, consisting of multiple

agents. The problem has two key features. First, the good is public, that is,

conditional on sale, its benefits are enjoyed by all the group members. Second,

the purchase is financed from a collective pool of money at the group’s disposal.

Examples with these features abound: a software company that needs to convince

a committee of senior managers in an organization to purchase its product, a

consultant who sells her proposals to the members of an executive board, or a

contractor who requires approval from a city council’s members to fund a public

project.

Our main goal is to characterize the seller’s optimal (profit-maximizing) mech-

anisms when group members’ benefits from the good are private information, and

each group member can individually veto the mechanism. The example below

demonstrates the key forces in our environment and the qualitative insights that

emerge from our characterization.
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Example 1: Two agents, 1 and 2, have independently drawn values for the good.

Agent 1’s value, θ1, is distributed uniformly over r0, 2s, whereas agent 2’s value,

θ2, is distributed uniformly over r0, 3s. The seller can provide at most one unit

of the good at zero cost. The seller designs a mechanism—an allocation rule and

a transfer rule—that conditions on agents’ reports of their respective types. If a

sale occurs and the common transfer is m, each agent i’s utility is θi ´ m; if no

sale occurs and the transfer is m, each agent’s utility is ´m. Agents’ outside option

from not participating (i.e., vetoing the mechanism) is zero. �

Let us begin with the simple class of posted-price mechanisms. Such mecha-

nisms would be optimal, following classic results, if the seller interacted with a

single agent. Because agent 2’s valuation first-order stochastically dominates that

of agent 1, a reasonable starting point is the optimal posted price for agent 2.

That is, the seller could post a price of 3
2

and make a take-it-or-leave-it offer to

agent 2. The sale takes place if agent 2 agrees, but not otherwise. However, this

mechanism yields a negative (interim) expected payoff to agent 1 when his type

is low, and so this agent will want to veto the mechanism. For illustration, note

that if, for example, θ1 “ 0, the good will be sold at a price of 3
2

with a posi-

tive probability, thereby earning agent 1 a negative interim payoff. Modifying the

payment rule to make this posted-price mechanism individually rational (IR) is

not difficult. The seller can offer a subsidy: an additional transfer that she pays

the agents regardless of whether a sale occurs. The subsidy must be at least as

high as the expected revenue itself to make the mechanism IR, in particular, when

θ1 “ 0. Therefore, the seller earns at most zero profit from such a mechanism.

One remedy to the above problem is to require unanimous approval of the trade.

That is, the good is offered at a price p, and is sold if and only if both agents agree

to the purchase. We call this rule a “unanimous posted price” mechanism. This

mechanism is IR by construction, and generates a profit of pp1 ´ p
2
qp1 ´ p

3
q—

maximized at p “ 1
3
p5´

?
7q. This maximal profit is approximately 0.35.

Can the seller do better? Her problem is to maximize profit over all (Bayesian)

incentive compatible (IC) and IR mechanisms. If she could use agent-specific

transfers, standard arguments à la Myerson (1981) teach us a given allocation rule

is implementable if and only if its associated interim allocations are nondecreasing.

Perhaps surprisingly, even with access only to collective transfers, Lemma 2 shows

the same condition characterizes implementability in our setting. However, absent

agent-specific transfers, the agents’ average payments must coincide. Hence, the

maximal revenue that can be extracted from a given implementable allocation rule

is pinned down by the condition that one agent’s individual rationality constraint

binds (and the others’ are satisfied). Therefore, the profit-maximizing mechanism

given an allocation rule xp¨q yields a profit of miniPN Etxpθqrϕipθiq´ csu, where N

is the set of agents, ϕip¨q is the virtual valuation function of agent i, and c is the

production cost of the good to the seller.

If we temporarily ignore the above monotonicity condition on allocation rules,
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we can view the seller’s optimal profit,

max
x

min
iPN

Etxpθqrϕipθiq ´ csu,

as the maximin value from a two-player zero-sum game in which one player, the

Maximizer, chooses an allocation rule xp¨q, and the other player, the Minimizer,

chooses an agent i. We show this infinite game has a Nash equilibrium, and hence

its value is

min
ωP∆N

max
x

Etxpθqrω ¨ ϕpθq ´ csu,

where ω, a distribution over agents, can also be seen as a mixed strategy for the

Minimizer. We characterize the equilibria of the above game to establish that

the optimal allocation rule is unique and is a weighted voting rule: the good is

sold if and only if ω ¨ ϕpθq ě c, where the optimal weights ω are characterized

by the simple program, minωP∆N Etrω ¨ϕpθq ´ cs`u. Moreover, under a regularity

assumption, this allocation rule is monotone and hence solves the seller’s problem.

These results are summarized in Theorem 1.

Solving the above problem for Example 1, we obtain that the optimal weights

are ω1 “

b

3
7

and ω2 “ 1´ ω1 and the associated optimal profit is approximately

0.39. Notice how the allocation rule of the optimal mechanism, where the good

is sold if and only if ω1θ1 ` ω2θ2 ě 1 ` ω2

2
, is different from the allocation rule

of the unanimous posted-price mechanism, where the good is sold if and only

if minpθ1,θ2q ě p. The optimal allocation rule, with its interior ω, relaxes the

stringent requirement of a unanimous agreement.

Consistent with Example 1, generally, the optimal mechanism overweights

agents with lower value distributions. In fact, Theorem 2 delivers a quantitative

ranking result for the optimal voting weights whenever the optimal mechanism is

nontrivial. It says that, if ϕi is smaller than αϕj in the hazard-rate order (a strong

form of stochastic dominance that has been previously applied in the auction liter-

ature) for some α P p0, 1s, the optimal mechanism entails ωi ě αωj. The example

exhibits this distributional ranking with α “ 3
2
; and indeed, a direct computation

shows ω1 ą
3
2
ω2. Qualitatively, the seller listens more to weaker agents, whose

veto constraint binds more tightly. The same lesson is reflected in Corollary 2,

which shows the optimal mechanism uses only one agent’s private information if

and only if that agent’s value distribution is extremely low relative to others’.

Though unanimous posted prices are not optimal (as we saw above for the

example), we do find they are profit-maximizing within a natural classes of simple

mechanisms—specifically mechanisms for which the price of the good is constant

conditional on trade (Proposition 2). As formalized in Proposition 3, posted-price

mechanisms are suboptimal in all interesting instances of our model. We further

quantify this payoff loss in Proposition 5, by considering a many-agent limit case

of our model. There, we show the “price of simplicity”—the limiting ratio of the
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optimal profit to that of unanimous posted pricing—is unboundedly large except

in asymptotically trivial cases.

Finally, we turn to exploring alternative bargaining arrangements in Section 6.

Although we focus on seller-optimal mechanisms throughout, the proof approach

for Theorem 1 can be adapted to fully characterize the Pareto frontier. In par-

ticular, as Theorem 3 shows, any Pareto-optimal mechanism allocates the good if

and only if a weighted average of virtual values and true values exceeds the cost.

We also explore the consequences of relaxing another important feature of

our environment, namely, that any agent can unilaterally veto the mechanism.

Whereas smaller groups often do assign veto rights to their members, a more

permissive bargaining arrangement may be better suited for understanding some

contexts. For example, rather than unanimity, the group might require that the

mechanism be approved by some minimum number of agents. Although intuitively

appealing, capturing such flexible arrangements in a reasonable framework seems

elusive. We discuss the associated issues in some detail in Section 6.2, but the

broad takeaway is that we are not aware of an appropriate model that relaxes

veto bargaining while retaining the spirit and tractability of our main analysis.

We see the pursuit of such a model as an exciting avenue for future research.

1.1. Related Work

Because the good for sale in our model is public, our work is closely related to the

vast literature on designing mechanisms for the provision of public goods. The

canonical model (e.g., d’Aspremont and Gérard-Varet, 1979) allows for arbitrary

monetary transfers between agents. Several papers show, in related contexts, that

any mechanism achieving ex-ante budget balance can be converted (preserving

agents’ incentives) to a mechanism with ex-post budget balance by choosing ex-

post transfers appropriately (e.g., Makowski and Mezzetti, 1994; d’Aspremont

et al., 2004; Börgers and Norman, 2009). Our construction of ex-post transfer rules

that induce a given profile of interim transfer rules is related, especially in the two-

agent special case. Rob (1989) shows that with a large number of agents, profit-

maximizing mechanisms are inefficient, whereas Mailath and Postlewaite (1990)

extend this inefficiency result to all IR and budget-balanced mechanisms. In a

setting where agents’ values for a good are symmetric, and each is initially endowed

with a share, Cramton et al. (1987) show efficient and IR trading mechanisms

exist if and only if agents’ shares are sufficiently symmetric. Güth and Hellwig

(1986) identify profit-maximizing mechanisms subject to incentive compatibility

and individual rationality constraints. Hence, our seller’s problem is equivalent

to that of Güth and Hellwig (1986), with the added restriction that agent-specific

transfers are not available.

Another strand of the literature on public goods studies voting mechanisms

without monetary transfers. Starting with Rae (1969), many entries to this

literature study mechanisms that maximize utilitarian efficiency. Schmitz and
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Tröger (2012) and Krishna and Morgan (2015) identify conditions under which a

(weighted) majority does or does not maximize efficiency. Azrieli and Kim (2014)

show any IC mechanism must be a weighted-majority rule, and characterize the

weights that maximize efficiency.1 Our model is a middle ground between the two

aforementioned strands of literature on public goods, in that monetary transfers

are available in our setting but are restricted to be identical across agents.

Our work is also related to the literature that studies (approximate) optimality

of posted-price mechanisms. Myerson (1981) and Riley and Zeckhauser (1983)

show posted pricing is an optimal strategy for selling a single good to a single

agent. Even though posted pricing is no longer optimal in settings with multiple

goods or agents, it remains approximately optimal in many such settings (see, e.g.,

Chawla et al., 2010; Chawla et al., 2015; Hart and Nisan, 2017; Babaioff et al.,

2020). By contrast, in our setting, posted-price mechanisms perform arbitrarily

poorly relative to optimal mechanisms as the number of agents grows.

We solve for optimal mechanisms using a simple reduced-form characterization

of implementable collective transfer rules. Our work is thus related to the litera-

ture on reduced-form implementation in auctions (e.g., Border, 1991; Cai et al.,

2012; Che et al., 2013; Alaei et al., 2019). Our implementability result could be

repurposed to study interim allocation rules for a real-valued (or nonnegative real-

valued) and unbounded public outcome. This explicit, tractable implementability

result for transfer rules stands in contrast to the results of Gopalan et al. (2018),

who show that if the public outcome is binary-valued (or, equivalently under lin-

ear preferences, if it is restricted to some bounded interval), no computationally

tractable characterization of implementable reduced forms of collective transfer

rules exists.

Our work is related to the literature on the (in)equivalence of Bayesian and

dominant strategy incentive compatibility. Incentive compatibility in our setting

with a single good is characterized by standard monotonicity constraints (as in

Myerson, 1981). Nonetheless, because individual transfers are not permitted, op-

timal mechanisms are not dominant-strategy incentive compatible in our setting,

except in uninteresting cases. This result stands in contrast to the known results

on the equivalence of Bayesian and dominant-strategy incentive compatibility in

settings with unidimensional types and agent-specific transfers (Manelli and Vin-

cent, 2010; Gershkov et al., 2013).2

1Also see Gershkov et al. (2017), who further study optimal voting mechanisms for a class of
environments with more than two social outcomes.

2Such equivalence is known to fail in the case of multidimensional private information (Jehiel
et al., 1999; Gershkov et al., 2013; Yao, 2017; Manelli and Vincent, 2019).
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2. Model

We study the problem of a seller who can sell one indivisible good to be shared by

a group of agents. We denote the finite nonempty set of agents N “ t1, . . . , Nu.

The seller incurs a cost c ě 0 if the good is sold. Any monetary transfer paid for

the good is borne collectively by the group. Agents are heterogeneous in how they

value the good vis-à-vis the group’s money. That is, each agent i has a private

type θi, which is a random variable taking values in Θi “ rθi, θ̄is Ă R`. Agents’

types are independent, and i’s type follows the cumulative distribution function

Fi.
3 We make the following regularity assumption for each i P N : the CDF Fi

admits a continuous and strictly positive density fi on its support, and the virtual

value ϕi : Θi Ñ R given by ϕipθiq :“ θi ´
1´Fipθiq
fipθiq

is strictly increasing. Working

directly with an agent’s virtual value ϕi :“ ϕipθiq, an atomlessly distributed

random variable with convex support, will often be convenient.

An outcome of our contracting environment consists of a probability x P r0, 1s

with which the good is sold to the buyer group, and a (signed) transfer m P R paid

to the seller by the buyer group. The payoff of agent i for this outcome is given by

xθi ´ m, whereas the seller’s payoff is m ´ cx. Let us highlight two distinguishing

features of our environment. First, the good is public: conditional on it being

allocated, every agent derives a benefit (equal to his type). Second, the transfers

are collective. One could interpret our agents as a group of committee members

deciding whether to approve a project (purchased from our seller). The transfer

paid for the project will come from the common pool of money that the committee

can access, whereas the private benefits that each member derives from using the

organization’s funds on this particular project may vary.

The seller knows the distribution of types for each agent but not agents’ realized

types. She designs a (direct, without loss) mechanism, which specifies a probability

of trade and a total transfer, for every profile of reported types. For most of the

paper, we focus on the optimal (i.e., profit-maximizing) mechanism for the seller,

among all mechanisms that are IC and IR for the agents.4 We formally define

these standard notions below.

Definition 1: A (collective) allocation rule is a measurable function x :

Θ Ñ r0, 1s; let X denote the set of all allocation rules. A (collective) transfer

rule is a bounded measurable function m : Θ Ñ R. A (collective selling)

mechanism is a pair px,mq consisting of an allocation rule and a transfer rule.

3We use the following standard notation throughout. The set of type profiles is Θ :“
ś

jPN Θj ,
and Θ´i :“

ś

jPNztiuΘj for i P N . We also sometimes use a measure and its CDF interchange-
ably, and use F and F´i to refer to associated product measures on Θ and Θ´i, respectively.

4In Section 6, we consider alternative bargaining arrangements. For instance, we consider
the range of Pareto-optimal mechanisms (not only seller-optimal ones) to account for settings
in which the seller has only imperfect bargaining power, and we consider agent approval pro-
cesses beyond veto bargaining, discussing how one might relax the below individual rationality
constraint.
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Say a mechanism px,mq is incentive compatible (IC) if

θi P argmaxθ̂iPΘi E
”

θixpθ̂i,θ´iq ´mpθ̂i,θ´iq
ı

, @i P N, @θi P Θi, (IC)

and say it is individually rational (IR) if

E rθixpθi,θ´iq ´mpθi,θ´iqs ě 0, @i P N, @θi P Θi. (IR)

The profit generated by a mechanism px,mq is Πpx,mq :“ E rmpθq ´ cxpθqs. An

optimal mechanism is an IC and IR mechanism that generates a weakly higher

profit than any other IC and IR mechanism. Finally, an optimal allocation

rule is any allocation rule x such that px,mq is an optimal mechanism for some

m.

3. Characterizing the Optimal Mechanism

In this section, we fully characterize optimal mechanisms. First, we provide a

useful reduced-form implementation result for transfers, characterizing exactly

which profiles of interim transfer rules can be implemented with some collective

transfer rule. Then, using this characterization, we describe which allocation rules

are implementable, and solve for the seller’s optimal profit from implementing such

an allocation rule. Next, we establish that a unique optimal allocation rule exists

and can be described as a weighted voting rule with weights that we explicitly

characterize. Finally, we show that, except in trivial cases, the voting weights

that describe an optimal allocation rule are unique; hence, characterizing them is

equivalent to characterizing optimal mechanisms.

We begin by introducing some convenient notation and terminology for stan-

dard objects. Just as in the auction setting, the Bayesian incentive properties of

our design environment are convenient to discuss in terms of each agent’s interim

(i.e., conditioning only on his own type) outcomes.

Definition 2: Fix any agent i P N . Given an allocation rule x, define the

interim allocation rule to be Xx
i : Θi Ñ R given by Xx

i pθiq :“ Erxpθi,θ´iqs.
Similarly, given a transfer rule m, define the interim transfer rule to be Mm

i :

Θi Ñ r0, 1s given by Mm
i pθiq :“ Ermpθi,θ´iqs.

Now, say an allocation rule x is interim monotone if Xx
i is weakly increasing

for every i P N .

As a first step toward solving our seller’s problem, we provide a simple reduced-

form implementation result, which exactly characterizes which profiles of interim

transfer rules can be induced when transfers are restricted to be ex-post identical

for all agents. The average transfer stipulated by each interim transfer rule must be

the same, both being the expected value (by iterated expectations) of a common

random variable. The following lemma, which may be of independent interest,
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shows this necessary condition is sufficient. Moreover, it shows that if transfers

are restricted to be nonnegative, pairing that necessary condition with the another

obviously necessary condition (that all interim transfers be nonnegative) is again

sufficient for implementability.

Lemma 1 (Reduced-form transfer rules): Let M˚
i : Θi Ñ R be a bounded measur-

able function for each i P N . Then, the following are equivalent:

1. Some transfer rule m exists such that each i P N has Mm
i “M˚

i .

2. The expectations tErM˚
i pθiqsuiPN all coincide.

Moreover, m can be taken to be nonnegative if and only if each of tM˚
i uiPN is.

The straightforward proof of the above lemma is constructive and resembles pre-

vious constructions in the literature (e.g., Makowski and Mezzetti, 1994; d’Aspremont

et al., 2004; Börgers and Norman, 2009) that convert ex-ante budget-balanced

mechanisms into ex-post budget-balanced mechanisms, while preserving the play-

ers’ interim transfer rules. Although we apply this result to collective transfers, we

imagine future applications could benefit from Lemma 1, treating its nonnegative

version as a reduced-form implementability result for (unbounded) public good

provision.

Leveraging the above result, the following lemma characterizes allocation rules

that are implementable with some transfer rule, as well as the seller’s profit from

implementing such an allocation rule.

Lemma 2 (Implementable allocations): Let x be some allocation rule.

1. Mechanism px,mq is IC and IR for some transfer rule m if and only if x is

interim monotone.

2. If some transfer rule m exists such that mechanism px,mq is IC and IR,

then a maximally profitable such mechanism exists, with resulting profit

min
iPN

E rxpθqpϕi ´ cqs .

Classic results (Myerson, 1981) would imply interim monotonicity fully charac-

terizes implementability, if the seller could freely choose the interim transfer rule

that each agent faces. However, our seller is constrained in that different agents’

interim transfers must be derived from a common ex-post transfer rule. Neverthe-

less, Lemma 1 tells us the sole constraint that collective transfers place on these

interim transfer rules is that they stipulate the same transfer on average. Hence,

after modifying the transfer rules by a player-dependent flat subsidy (which does

not affect IC), they can be implemented by some ex-post transfer rule. Conse-

quently, interim monotonicity fully characterizes implementability of an allocation

rule, as in the setting with separable payments.

Given that an allocation rule is implementable, the reasoning behind Myer-

son’s (1981) result determines each agent’s interim transfer rule up to a constant.

8



However, that each agent must pay the same transfer on average (because they

do so ex post) determines the entire profile of such constants up to a single scalar

parameter. Analogous to how an optimal auction would optimize the transfer rule

by setting each agent’s IR constraint to bind, our remaining constant is solved

out by imposing that one agent’s IR binds (and the others’ are satisfied). Hence,

in contrast to the implementability question, the seller’s maximum (IC and IR)

profit from a given allocation rule is affected by the fact that interim transfer rules

cannot be separably designed.

With Lemma 2 in hand, our seller’s problem can be recast directly as an opti-

mization over allocation rules, with the associated profit of such a rule being pinned

down by revenue equivalence and the principle that IR binds for the worst-off low

type. Formally, the seller’s optimization over allocation rules is

max
xPX

!

min
iPN

E rxpθqpϕi ´ cqs
)

(SP)

s.t. x is interim monotone.

Our main result is a complete characterization of the solution to the pro-

gram (SP). To this end, we define a class of allocation rules that play a special

role in our analysis and results.

Definition 3: Given ω P ∆N , the ω-voting rule is the allocation rule xω :“

1ω¨ϕěc. Say an allocation rule is a voting rule if it is a ω-voting rule for some

ω P ∆N .

We now state our main characterization theorem.

Theorem 1 (Optimal allocation): An essentially unique optimal allocation rule

exists and is a voting rule.5 Namely, the ω-voting rule is optimal for any ω P ∆N

that satisfies either of the following two equivalent conditions (and some such ω

exists):

1. ω P argminω̃P∆N Erpω̃ ¨ϕ´ cq`s.
2. supppωq Ď argminiPN E rϕi1ω¨ϕěcs.

Moreover, an optimal mechanism exists with nonnegative transfers.

The proof of Theorem 1 studies a relaxed program (RSP) in which the interim-

monotonicity constraint is ignored. To solve the relaxed program, we consider an

auxiliary two-player zero-sum game in which the Maximizer chooses an allocation

rule x, the Minimizer chooses an agent i whose IC and IR constraints must be

satisfied, and the objective of the game is E rxpθqpϕi ´ cqs—the seller’s highest

possible profit from the chosen allocation, subject to the “revenue equivalence”

formula and the chosen agent’s IR constraint.6 Observe that an allocation rule

5By “essentially unique,” we mean any alternative optimal allocation rule x has xpθq “ xωpθq
almost surely.

6So if the Maximizer’s chosen allocation rule happens to be interim-monotone, the objective
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solves (RSP) if and only if it is a cautious optimum for the Maximizer in the

auxiliary game, that is, a “maximin” strategy. Moreover, standard results on

zero-sum games imply a maximin strategy is a Nash equilibrium strategy for the

Maximizer, and vice versa, as long as some Nash equilibrium exists. Hence, we

turn to characterizing Nash equilibria of the auxiliary game.

We first show that if the Minimizer is allowed to choose a mixture, some

Nash equilibrium of this auxiliary game exists by a minimax theorem (for infi-

nite games), and every mixed strategy ω for the Minimizer exhibits a unique (up

to almost-everywhere equality) best response xω for the Maximizer. Because the

set of Nash equilibria of a two-player zero-sum game exhibits a product structure,

it follows that an essentially unique allocation rule can be an optimal strategy for

the Maximizer of the auxiliary game. Specifically, this allocation rule is equal to

the ω-weighted sum of agents’ virtual values, where ω P ∆N is a Nash equilib-

rium strategy for the Minimizer. The pair of conditions characterizing such ω are

standard to zero-sum games: the mixed strategy ω is a cautious optimum for the

Minimizer (the first condition) if and only if it a best response to some Maximizer

best response to ω (the second condition, once Maximizer’s best response to ω is

substituted in). Now, observe that the essentially unique Nash equilibrium strat-

egy for the Maximizer is actually interim monotone: because virtual values are

increasing, a cutoff rule for the ω-weighted virtual value is monotone, hence in-

terim monotone. The result is a characterization of the unique optimal allocation

rule, solving not only (RSP) but also (SP).

Finally, we turn to the form of optimal transfer rules. Having solved for the op-

timal allocation rule and the expected revenue that the seller garners, each agent’s

interim expected transfer rule is fully determined by the classic Myerson (1981)

payment formula. Moreover, direct computation shows these interim transfers

are always nonnegative; that is, no agent expects (even conditioning on realizing

his lowest possible type) to be subsidized on average. Although infinitely many

ex-post transfer rules implement these interim transfers, and some will indeed

specify a negative payment for some type profile realizations, Lemma 1 shows by

construction that at least one such transfer rule does not. The theorem follows.

Given Theorem 1, we can characterize optimal mechanisms by characterizing

which voting weights solve the two equivalent conditions listed in the theorem.

This goal justifies the following definition.

Definition 4: Say ω P ∆N , is an optimal vector of voting weights if it is in

argminω̃P∆N Erpω̃ ¨ ϕ ´ cq`s or, equivalently, has E rϕi1ω¨ϕěcs ď E rϕj1ω¨ϕěcs for

every i, j P N with ωi ą 0.

In light of Theorem 1 (together with revenue equivalence), understanding opti-

mal selling mechanisms amounts to understanding which voting weights ω P ∆N

is the seller’s highest possible profit from the chosen allocation, subject to IC and IR for the
Minimizer’s chosen agent.
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are optimal.7

Whereas Theorem 1 delivered the uniqueness of the optimal allocation rule, it

is straightforward to see that an optimal ω need not be unique in trivial cases.

For example, if maxiPN θ̄i ď c, observe that every choice ω P ∆N of voting weights

is optimal, each inducing a mechanism in which trade never occurs. Similarly,

optimal weights may not be unique when the optimal mechanism stipulates that

trade always occurs. This observation motivates the following definition.

Definition 5: The never-trade mechanism is given by px,mq “ p0, 0q. The

always-trade mechanism is given by px,mq “ p1,miniPN θiq. A mechanism

px,mq or an allocation rule x is trivial if Erxpθqs P t0, 1u and nontrivial if

0 ă Erxpθqs ă 1.

The next result shows the above multiplicity happens only when either never

trading or always trading is optimal, and characterizes when these cases arise. In

all other (and so in all interesting) cases, the optimal ω is unique.

Proposition 1 (Trivial optimal mechanisms and uniqueness of weights):

1. The never-trade mechanism is optimal if and only if minjPN θ̄j ď c.

2. The always-trade mechanism is optimal if and only if some i P argminjPN θj
exists such that ϕipθiq ě c.

3. In all other cases, a nontrivial mechanism is optimal and a unique ω P ∆N

exists such that xω is optimal.

Because the never-trade and always-trade mechanisms are obviously optimal

among mechanisms that never or always allocate, respectively, the real content of

the first two statements of the proposition is a characterization of when each of

the x “ 0 and x “ 1 allocation rules is optimal.8 Given Theorem 1, it suffices

to check when an optimal voting-weight vector exists that generates each of these

allocations—a straightforward computation.

The third statement provides further comfort in directly interpreting ω as voting

weights, because it delivers (in all nontrivial cases) a one-to-one correspondence

between the optimal allocation rule and the weights that describe it. Using that

the profile of virtual values has convex support, the proof shows that distinct voting

weights that generate nontrivial allocation rules must generate distinct allocations

with positive probability. Hence, the result follows from the uniqueness part of

Theorem 1.

7As a trivial observation, note an optimal (indirect) mechanism exists in which each bidder
submits a vote from a bounded interval, with the good being provided if and only if the weighted
sum of votes exceeds a threshold.

8Although Theorem 1 enables a unified simple proof of this and related results, note the
characterization of when the never-trade mechanism is optimal is easy to establish directly. If
θ̄i ď c for some i P N , one can show agent i’s IR constraint implies Ermpθqs ď c Erxpθqs,
precluding positive profit. If miniPN θ̄i ą c, posting a price strictly between these two quantities,
and requiring unanimous agreement to buy, generates positive profit.
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4. The Role of Heterogeneity

Because optimal mechanisms take the form of a weighted voting rule, considering

the relative voting weights of different agents is natural. This section asks which

agents are assigned a high weight in determining the trade decision.

In a relaxed program in which the seller can observe agents’ types (but is still

subject to IR), trade occurs if and only if the lowest-value agent’s type exceeds

the production cost. Hence, a reasonable intuition is that agents with the lowest

value distribution (in some sense) will be overweighted in the decision. Indeed,

examining whether the extreme always-trade and never-trade mechanisms are op-

timal shows that when one agent has a stochastically lowest value distribution,

that agent alone determines the (sub)optimality of said mechanism.

Corollary 1 (Low-value agents and the extensive margin): Suppose i P N is

such that θi is (weakly) first-order stochastically dominated by θj (i.e., Fi ě Fj)

for each j P N . Then, the never-trade [resp. always-trade] mechanism is optimal

if and only if θ̄i ď c [resp. ϕipθiq ě c].

The above corollary follows directly from Proposition 1, once one observes that

an agent with a (first-order stochastically) lowest value distribution necessarily has

a lowest high type, a lowest low type, and a lowest low virtual valuation among

those who have the lowest low type.

Although Corollary 1 provides a sense in which a weak agent is pivotal to the

nature of the allocation, it is a weak result. In particular, conditional on one of

these trivial mechanisms being used, all agents are treated equally—facing the

same ex-post outcome and all having their type realization ignored. Understand-

ing, more generally, when an agent is pivotal to determining the allocation would

be desirable. A particularly strong notion of pivotality is captured by the following

definition.

Definition 6: Given an agent i P N , let i-dictatorship refer to the vector

ω P ∆N of voting weights in which all agents other than i are ignored, that is,

with ωj “ 1i“j for each j P N .

The following corollary characterizes when an i-dictatorship mechanism is op-

timal for the seller. Such an allocation rule can be implemented by posting a price

p P rθi, θ̄is that ensures trade occurs if and only if i’s virtual value exceeds the

production cost. The next result, a nearly immediate consequence of Theorem 1,

shows such a mechanism is optimal if and only if this price is such that every type

of every other agent would happily trade at that price.

Corollary 2 (Dictatorship): Given i P N , the following are equivalent:

1. The i-dictatorship voting rule is optimal.

2. Either no price p P pc, θ̄iq exists, or the optimal posted price p when facing

only i satisfies p ď θj for every agent j ‰ i.
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3. Either θ̄i ď c, or θ̄i ą c and Erϕjs ě Erϕi|ϕi ě cs for every agent j ‰ i.

Hence, the case of dictatorship is very special, requiring extreme asymmetry

between the agents. If the optimal mechanism is nontrivial, observe i-dictatorship

violates IR if other agents have the same lowest type as agent i (or lower). The next

result strengthens this observation, suggesting the typical optimal mechanism pays

some attention to all agents. Indeed, in the nontrivial case, if the lowest possible

value is zero for each agent, the result implies the unique optimal allocation is

responsive to every agent’s private information.

Corollary 3 (Not ignoring the lowest types): Suppose the optimal allocation

rule is nontrivial. If i P N has θi ď θj for every j P N , then the unique optimal

voting weights ω P ∆N have ωi ą 0. In particular, if θ “ ~0, then ωi ą 0 for every

i P N .

The proof of the above corollary is nearly immediate from Theorem 1. In

the auxiliary zero-sum game that characterizes optimal allocation rules, we show

that any agent whose lowest type is (weakly) lower than everybody else’s will

necessarily be a unique best response for the Minimizer to any allocation rule that

ignores his type.

The previous results of this section have all spoken to the choice of which

agents will exert some influence over the eventual trade decision in the optimal

mechanism, but they have been silent on the degree of such influence. For the

remainder of this section, we pursue a quantitative analysis of the optimal voting

weights. Specifically, we seek conditions on primitives under which we can rank

ωi and ωj for two agents i and j (and under which we can quantify a wedge

between these two weights). To state our main condition, we invest in the following

distributional ranking definition.

Definition 7: Given two real random variables v and w with respective CDFs

given by G and H, say v is smaller than w in the hazard-rate order if

suprsupppvqs ď suprsupppwqs, and 1´H
1´G

is weakly increasing on p´8, suprsupppvqsq.9

The above distributional ranking is a useful strengthening of first-order stochas-

tic dominance. Intuitively, the ranking requires that the conditional distributions,

when conditioned on lying above any common threshold, are stochastically ranked.

This ranking condition has been fruitful in past work in mechanism design. Specif-

ically, in the literature on asymmetric auctions (e.g., Maskin and Riley, 2000;

Kirkegaard, 2012), ranking bidders’ value distributions via the hazard-rate order

has enabled the ranking of equilibrium bidding behavior, which in turn has been

used to provide revenue rankings for alternative auction formats.10 In our set-

9If v and w both admit continuous densities on their supports, the monotonicity of the
function 1´H

1´G can be equivalently expressed (taking a derivative) as requiring that the hazard
rate of v is weakly below that of w on the same interval.

10These papers rank bidders’ value distributions according to the reverse hazard-rate order,
which, by Theorem 1.B.41 of Shaked and Shanthikumar (2007), amounts to a hazard-rate or-
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ting, as the following theorem shows, a hazard-rate order on agents’ virtual value

distributions is of relevance in designing optimal selling mechanisms.

Theorem 2 (Ranking voting weights): If ϕi is smaller than αϕj in the hazard-

rate order, where α P p0, 1s, and the optimal allocation rule is nontrivial, then the

unique optimal vector of voting weights ω satisfies ωi ě
1
α
ωj.

11

We prove the theorem by contradiction, assuming some optimal voting weights

fail to satisfy the desired ranking property. Modifying the weights on agents i

and j, we construct an alternative vector of voting weights for the seller to use.

Importantly, the original weight vector is more assortative with the virtual value

distributions than the rearranged weight vector. Hence, we can apply known

results that translate hazard-rate orders on random variables to increasing convex

orders on their weighted sums, inferring that the rearranged weight vector must

also be optimal. Although the new optimum we construct may not itself satisfy

the α-ranking property that the theorem requires, we still derive a contradiction

with the uniqueness of optimal voting weights that Proposition 1 guarantees. The

theorem follows.

We conclude the section with two different classes of examples to which Theo-

rem 2 applies. One is a rigid ranking of value distributions, where the distribution

of a given agent’s values can be arbitrary (subject to our standing regularity con-

ditions) but different agents’ distributions are assumed proportional. The other

is the full class of uniform distributions. In either case, we note the agents’ dis-

tributions of virtual values inherits the same structure, making the proposition

straightforward to apply.

Example 2 (Proportional value distributions): Suppose θi{θ̄i and θj{θ̄j are iden-

tically distributed; for example, this property would hold if θi and θj were uniformly

distributed on r0, θ̄is and r0, θ̄js, respectively. A direct computation shows ϕi{θ̄i
and ϕj{θ̄j are identically distributed too in this case. Theorem 2 then implies, if

θ̄i ď θ̄j, that (in the nontrivial case) the optimal voting-weight vector ω P ∆N has

ωi ě pθ̄j{θ̄iqωj.

Example 3 (Uniform value distributions): Suppose θi and θj are both uniformly

distributed on their respective supports. Direct computation shows ϕi and ϕj are

then uniformly distributed on r2θi ´ θ̄i, θ̄is and r2θj ´ θ̄j, θ̄js, respectively. Hence,

within this parametric class, the distributional ranking of ϕi and αϕj reduces to

θ̄i ď αθ̄j and 2θi´ θ̄i ď αp2θj´ θ̄jq. Applying Theorem 2 tells us (in the nontrivial

case) the optimal voting weight vector ω P ∆N has either ωi “ ωj “ 0 or ωi ą ωj,

if 2pθj ´ θiq ą θ̄j ´ θ̄i ą 0.

dering of their negative value distributions.
11One can easily show the conclusion also holds for some optimal voting-weight vector, in the

case in which the optimal allocation rule is trivial.
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5. Simple Mechanisms

In this section, we study simple mechanisms. We first formulate a permissive class

of posted-price mechanisms in which the allocation rule is potentially flexible but

the price is fixed, and show a unanimous posted-price mechanism is maximally

profitable within this class. Next, we show that in all interesting cases of our

model, no optimal mechanism is dominant-strategy incentive compatible. Finally,

we compare optimal mechanisms to simple ones as the number of agents grows,

showing unanimous posted-pricing profit can perform arbitrarily poorly relative

to optimal profit.

5.1. Posted-price mechanisms

An influential result in the mechanism design literature is that a take-it-or-leave-it

posted price is the optimal mechanism for selling a single indivisible good to a sin-

gle agent (Myerson, 1981; Riley and Zeckhauser, 1983). This type of mechanism is

ubiquitous and simple and enjoys appealing computational properties. Moreover,

beyond the single-agent setting, environments have been identified in which such

pricing mechanisms remain approximately optimal (Chawla et al., 2010; Chawla

et al., 2015; Hart and Nisan, 2017; Babaioff et al., 2020). A natural question,

then, is whether posted-price mechanisms remain optimal for our seller. Having

focused on characterizing optimal implementable allocation rules, with relatively

little attention paid to the exact implementing transfers, our analysis to this point

has left this question unaddressed.

Logically prior to the above question about optimal mechanisms is the question

of how one should define a posted-price mechanism. In the one-agent setting, the

IC direct mechanisms that correspond to a posted price are exactly those satis-

fying two properties. First, the transfer is directly proportional to the allocation

probability. And second, the allocation probability is 1 for types above the price

and 0 for those below it. The first condition—which we can interpret as a restric-

tion that money never changes hands if the good is not sold and that the price

at which trade occurs is constant when it does—generalizes immediately. But the

second condition—which we can interpret as the agent freely deciding whether to

execute trade—is less immediate to generalize to the multi-agent setting. Who

decides whether trade occurs? Once the seller announces a price for the good, a

complex negotiation process could ensue between the agents in deciding whether

to buy. Might eventual trade outcomes arise from a mixed-strategy equilibrium of

the resulting bargaining game between the agents? Can the seller intervene and

aid the bargaining process?

In light of these difficulties, we define a collective posted price rather permis-

sively, only incorporating the first of the two conditions mentioned in the previous

paragraph.12 We also introduce a specific, interpretable pricing mechanism that

12As will be clear, any more restrictive definition of a collective posted price would leave the
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will be important for our results.

Definition 8: A mechanism px,mq is a collective posted-price mechanism if

some p P R` exists such that m “ px. Say it is a unanimous posted-price

mechanism if it is a collective posted-price mechanism in which xpθq “ 1miniPN θiěp

for every θ P Θ.

One can envision several examples of collective posted-price mechanisms. For

example, the seller could set a price p and execute a sale if and only if all agents

agree to the purchase—defined above as a unanimous posted price. Alternatively,

the principal could post a price and select an agent, or even a subset of agents,

perhaps randomly, and sell the good if all the agents in this chosen subset agree

to the purchase. Another mechanism would post the price and execute trade if

and only if at least one agent, or perhaps some majority of agents, champions the

sale.

Although the space of all collective posted-price mechanisms is rather rich, the

next result shows that (perhaps) the simplest example is optimal among them.

Proposition 2 (Optimal price is unanimous): A unanimous posted-price mech-

anism, with price p that solves

max
pěc

#

pp´ cq
ź

jPN

r1´ Fjppqs

+

,

generates the highest profit among all IC and IR collective posted-price mecha-

nisms.

Toward establishing this result, observe that IR implies an agent’s interim al-

location is zero whenever the agent’s type is below the price. Therefore, trade has

zero probability conditional on any agent having a realized valuation below the

price. From this observation, it follows that any collective posted-price mechanism

is outperformed by some unanimous one. Indeed, if the price were weakly below

the production cost c, profit would be nonpositive, and a unanimous posted price

of c would be at least as good; and if the price were p ą c, a unanimous posted

price of p would generate profitable trade with a higher probability.

Having characterized the optimal form of collective posted-price mechanism, we

are poised to answer the question that motivated this subsection: When are col-

lective posted-price mechanisms optimal? The result below establishes that they

never are, restricted to interesting instances of our model. Specifically, whenever

factoring in multiple agents’ information at all is optimal (that is, the optimal al-

location rule is non-dictatorial), using their reports to fine-tune the price of trade

is optimal.

results of this subsection unchanged, as long as it had unanimous posted pricing as a special
case.
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Proposition 3 (Posted prices are suboptimal): The following are equivalent.

1. Some optimal mechanism px,mq is a collective posted-price mechanism.

2. An i-dictatorship is optimal for some i P N .

Because an optimal i-dictatorship mechanism is a posted price (and this price

is below other agents’ lowest types by Corollary 2), we need only show a non-

dictatorship optimal mechanism is not a collective posted price.13 Because the

never-trade and always-trade mechanisms are special instances of dictatorship

mechanisms, we need only focus on nontrivial mechanisms. Moreover, in light

of Proposition 2, it suffices to show it is not a unanimous posted price. Thus,

consider an agent who receives weight ωi P p0, 1q in the optimal allocation rule.

His interim allocation probability is non-constant and varies smoothly with his

type, and therefore cannot be a step function. But a unanimous posted price

would make this interim allocation rule a step function, so that the two cannot

coincide.

5.2. Dominant strategies

The notion of incentive compatibility we have used so far in our analysis is

Bayesian incentive compatibility (BIC, which we denoted as IC earlier in the

paper), which requires only that agents’ reports be best responses in expectation,

given their own realized types. Similarly, as a participation constraint, we required

that each agent (knowing his own type) prefers in expectation to interact with the

mechanism rather than walk away. Here, we consider more demanding incen-

tive and participation constraints, which we formalize through direct mechanisms

below (in light of the revelation principle).

Definition 9: Say a mechanism px,mq is dominant-strategy incentive com-

patible (DIC) if

θi P argmaxθ̂iPΘi

!

θixpθ̂i, θ´iq ´mpθ̂i, θ´iq
)

, @i P N, @θ P Θ; (DIC)

and say it is ex-post individually rational (epIR) if

θixpθq ´mpθq ě 0, @i P N, @θ P Θ. (epIR)

A mechanism is DIC if an agent finds truthful reporting dominant in the direct

revelation game; that is, he would willingly report truthfully even if he knew

others’ reported types. Likewise, the mechanism is epIR if an agent (knowing his

own type) would rather interact with the mechanism than take an outside option

of zero, even if he knew others’ reported types.

We showed in Lemma 2 that for a given allocation rule, interim montonicity is

13One can alternatively derive this result as a direct consequence of Propositions 2 and 4.
Because the proof of the latter is somewhat involved, we prefer to include a simpler direct proof.
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equivalent to BIC implementability. Said differently, we showed that being able

to BIC implement an allocation rule with agent-specific transfers is equivalent to

being able to do so with only collective transfers. Moreover, Theorem 1 explicitly

characterizes the allocation rule from optimal BIC and IR mechanisms, showing

it stipulates trade if and only if an player-weighted virtual value exceeds the cost

of production. Notice, though, that this allocation rule is monotone in the agents’

profile of types. If our seller could engage in agent-specific transfers, such mono-

tonicity would render the same allocation rule DIC implementable too. Therefore,

a natural conjecture is that (as in single-good auction settings) our seller can

attain DIC at no additional cost.

The following result shows the above natural conjecture is false: in all interest-

ing cases of our model, the restriction to DIC mechanisms is with loss of optimal-

ity for the seller. If multiple agents must be consulted, optimal mechanisms must

leverage agents’ uncertainty about others’ realized types.

Proposition 4 (Dominance binds): The following are equivalent:

1. An optimal IC, IR mechanism exists that is also DIC and epIR.

2. An optimal IC, IR mechanism exists that is also DIC.

3. An i-dictatorship mechanism is optimal for some i P N .

Because a dictatorship conditions only on one agent’s private information, it is

immediate that implementing transfers can be chosen (e.g. with a posted price)

to ensure DIC and epIR are satisfied. The main content of the proposition, then,

is that the second condition implies the third. Suppose the optimal allocation rule

x characterized in Theorem 1 is DIC when paired with some transfer rule; we aim

to show it is a dictatorship.

To prove this feature, we leverage the fact that the essentially unique allocation

rule is bang-bang—every type profile leads to a deterministic trade outcome. The

main thrust of our proof is a structural lemma that characterizes the full class of

DIC bang-bang mechanisms, as summarized in two properties. The first property

concerns the transfer: It can be decomposed into a price (p P R`) that will be

collected if and only if trade occurs and a subsidy (s P R) that will be granted to the

agents whether or not trade occurs. The second property gives a representation of

the allocation rule: trade is determined by the price and J , a collection of subsets

of N such that the good is sold if and only if, for some J P J , every agent in J

agrees to the purchase at price p.

The proof of the structural lemma proceeds in two steps. First, we show the

transfer rule is constant among type profiles leading to certain trade, and constant

among type profiles leading to non-trade, which leads directly to the price/subsidy

form. To prove this property, consider any two type profiles θ and θ1 such that

xpθq “ xpθ1q; say this trade probability is equal to 1, the alternative case being

analogous. Letting θ˚ be a type profile that is coordinatewise higher than both θ

and θ1, we construct a finite sequence of type profiles such that the first type profile
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in the sequence is θ and the last is θ˚, the type profiles get coordinatewise higher

as the sequence progresses, and consecutive entries in the sequence differ in only

one agent’s type. But then, because DIC (for the agent whose type is raised in a

given increment of the sequence) implies x must be monotone, it follows that every

type profile in the sequence generates probability 1 of trade. Hence, DIC (again,

for the agent whose type is incremented) implies consecutive sequence members

yield an identical transfer. A symmetric argument applies to θ1, so that mpθ1q “

mpθ˚q “ mpθq. Hence, any DIC-implementing transfer takes the given price-

subsidy form. The second property that the structural lemma establishes is the

structure on the allocation rule. Given that the mechanism is incentive-equivalent

to a collective posted price of p, DIC implies (fixing a realization of others’ types)

the trade decision must be identical for all types of agent i below p and for all types

of agent i above p. Hence, the allocation rule is essentially an increasing t0, 1u-

valued transformation of the set-valued function θ ÞÑ p1θjěpqjPN . The “coalitional”

property amounts to a more explicit description of such increasing functions.

To prove the optimal allocation must be a dictatorship if it is DIC imple-

mentable, we apply the structural lemma. Specifically, let the set of possible vir-

tual value profiles be Z :“
ś

jPN rϕjpθjq, ϕjpθ̄jqs, and the set of profiles at which

trade occurs be Z˚ :“
Ť

JPJ
Ş

jPJtz P Z : zj ě ϕjppqu. Because x is equivalent to

xω for some weight vector ω P ∆N , it follows that Z˚ and ZzZ˚ are both convex.

However, looking at averages of virtual value profiles near the boundary of Z˚

reveals Z˚ cannot be convex if J contains two different minimally sufficient coali-

tions, and ZzZ˚ cannot be convex if some minimal coalition in J contains at least

two agents. It follows that the mechanism is equivalent to either the never-trade

mechanism (J “ H), the always-trade mechanism (J “ tHu), or a nontrivial

i-dictatorship (J “ tiu) for some i P N . The result follows.

5.3. Many agents and suboptimality of posted pricing

Our model, with each agent needing to approve the mechanism (captured by our IR

constraint), is perhaps best suited to model bargaining with a small or moderate

group of agents. Nevertheless, because our seller’s optimum typically combines

the private information of multiple agents in a detailed way, it is natural to study

the behavior of our model in the limiting case in which the number of agents is

large. Doing so is the goal of the present subsection.

Suppose all agents are identical, with θi “ θ1, θ̄i “ θ̄1, and Fi “ F1 for every

i P N . Holding fixed these parameters and the cost of production, we can think

of our model as being parameterized by the number of agents, N P N.

The result below characterizes the limiting profit that our seller derives from

employing an optimal mechanism, in the many-agent limit. Also, because simple

mechanisms seem especially appealing when many agents are collectively deciding,

we record the asymptotic profit of using a posted price.
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Proposition 5 (Asymptotically optimal mechanisms): Suppose all agents are

identical, with types drawn via F1. Then, as N Ñ 8:

1. If c ‰ θ1, then the optimal profit converges to pθ1´cq`, and the highest profit

among collective posted-price mechanisms converges to the same.

2. If c “ θ1, then the optimal profit converges to maxpPR`pp´ cqr1´F1ppqs ą 0,

and the highest profit from a collective posted-price converges to zero.

To prove the proposition, first note the set of optimal voting weights is convex

and invariant to coordinate permutations, and hence, the uniform weight vector

is optimal. But then, trade occurs in the optimal allocation rule if and only if

the (unweighted) average virtual value exceeds the cost. Because agents’ virtual

values are independent (and bounded), the distribution of their average converges

to a degenerate distribution on their expectation, Erϕ1s “ θ1. From here, the

proposition’s first point is straightforward. The probability of trade converges to

1 if θ1 ą c and to 0 if θ1 ă c. Hence, in these two special cases, the always-

trade mechanism or never-trade mechanism is asymptotically optimal. But both

of these asymptotically optimal mechanisms are specific instances of unanimous

posted-price mechanisms, and so this restricted class of mechanisms has the same

asymptotic payoff.

All that remains is the specific case in which c “ θ1. This case is in some

sense canonical, capturing the case of revenue maximization with no a priori lower

bound on the potential gains from trade. First, consider posted-price mecha-

nisms; by Proposition 2, we can focus on unanimous posted prices. Let p be any

asymptotically profit-maximizing posted price, that is, any limit point of profit-

maximizing unanimous posted prices as N Ñ 8. If p ď c, the asymptotic profit

per trade is nonpositive; and if p ą c “ θ1, the asymptotic probability of trade is

limNÑ8r1 ´ F1ppqs
N “ 0. In either case, positive profit is not attainable in the

limit with a posted price.

Now, if c “ θ1, let us consider the optimal (IC and IR) mechanism. Our limit

characterization relies on the fact that a representative agent (agent 1) faces a

very predictable average of other agents’ virtual values. Therefore, the centered

random variable

κ :“ N´1
N

˜

c´
ÿ

j‰1

1
N´1

ϕj

¸

is independent of agent 1’s private information, and it is very concentrated around

zero. Because this concentration is strong enough (as quantified by a Hoeffding

bound) and trade occurs if and only if 1
N
pϕ1´cq ě κ, it follows that the allocation

probability conditional on θ1 is very close to 1ϕ1ěc. Therefore, the profit of the

optimal mechanism approaches the profit from a one-agent problem with a virtual

value cutoff of c—exactly the optimal profit of the monopolist problem with one

buyer whose value has a CDF of F1. The proposition follows.

Specializing Proposition 5 to the case of revenue maximization with no a priori
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lower bound on agents’ valuations (c “ θ1 “ 0) is instructive. In this canonical

case, unanimous posted pricing yields a limit expected revenue of zero as the num-

ber of agents grows, whereas the optimal mechanism yields a strictly positive limit

profit. Hence, in the many-agent limit, a restriction to simple pricing mechanisms

is unboundedly costly to the seller.

6. Alternative Bargaining Arrangements

In this section, we consider variants of the bargaining arrangement in our main

model. First, we study the full range of Pareto-optimal mechanisms and show the

analysis we used to derive our seller-optimal mechanism can be applied to under-

stand the entire Pareto frontier. Then, we consider how one might relax the veto

bargaining constraint on the agents, and discuss the consequences of various mod-

eling choices for optimal mechanisms. Next, we observe a fixed cost-sharing rule

among the members of a buyer group can provide a foundation for our assump-

tion that transfers are collective, and explain how our results on heterogeneity

can be applied to study asymmetric cost-sharing rules. Finally, we briefly con-

trast our results with a more traditional model of public good provision in which

agent-specific transfers are permitted.

6.1. Pareto-optimal mechanisms

To this point, we have focused on mechanisms that maximize the seller’s expected

profit. Although this objective is a natural benchmark, it implicitly assumes the

seller has extreme bargaining power relative to the buyer group. In this section, we

ask what mechanisms might naturally arise with different allocations of bargaining

rights. Specifically, we ask which trade outcomes can arise in a Pareto-optimal

mechanism. Our characterization of implementable allocation rules, along with the

analytical approach we adopt in developing Theorem 1, proves useful in settling

this more general question.

Any mechanism px,mq generates a vector vx,m of N ` 1 payoffs: vix,m “

E rθixpθq ´mpθqs for each agent i P N , and vN`1
x,m “ E rmpθq ´ cxpθqs for the

seller. Say a mechanism is px,mq is Pareto optimal if it is IC and IR, and any

alternative IC and IR mechanism px̃, m̃q with vx̃,m̃ ě vx,m has vx̃,m̃ “ vx,m.

In the following theorem, we show how the seller-optimal allocation rule gener-

alizes to other Pareto optima. Whereas profit maximization entails allocating the

good if and only if a weighted average of virtual values exceeds the cost, general

Pareto optimality requires that the good be allocated if and only if a weighted

average of virtual and true values exceeds the cost.

Theorem 3 (Pareto-efficient allocations): An interim-monotone allocation rule

x˚ is part of some Pareto-optimal mechanism if and only if some γ P r0, 1s and
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λ, ω P ∆N exist such that

x˚pθq “ 1p1´γqω¨ϕ`γλ¨θěc

almost surely, and supppωq Ď argminiPN E
“

ϕi1p1´γqω¨ϕ`γλ¨θěc
‰

.

Toward a proof, we first observe, given any γ P r0, 1s and λ, that an essentially

unique interim-monotone allocation rule x maximizes the quantity

gγ,λpxq :“ min
iPN

E txpθq rp1´ γqϕi ` γλ ¨ θ ´ csu ,

and that it takes the form described in the above theorem. Indeed, this result

can be proven by following identically the proof of Theorem 1 but modifying the

objective in the auxiliary zero-sum game. Given this observation, we need only

show Pareto-optimal allocation rules are exactly those that maximize gγ,λ for some

γ P r0, 1s and λ P ∆N .

First, suppose x˚ is part of a Pareto-optimal mechanism, and let v˚ P RN`1

denote the vector of expected payoffs it generates. Pareto optimality tells us v˚ is

on the boundary of V̂ , the set of payoff vectors weakly below one generated by an

IC and IR mechanism. Hence, one can find a supporting hyperplane for V̂ at v˚—a

nonzero λ̃ P RN`1 such that v˚ maximizes λ̃ ¨v over all v P V̂ . That V̂ is downward

comprehensive immediately implies all Pareto weights are nonnegative, and that

uniformly decreasing the transfer preserves IC and IR implies the Pareto weight

on the seller is at least as high as the sum of weights on the agents. Rescaling

the weight vector if needed, we may write λ̃ “ pγλ, 1q for some γ P r0, 1s and

λ P ∆N . For any interim-monotone allocation rule x, then, we can construct an

implementing transfer rule (as in Lemma 2) with the property that IR binds for

some agent; the result is a payoff vector v satisfying λ̃ ¨ v “ gγ,λpxq. Hence, that

λ̃ supports V̂ at v˚ implies x˚ maximizes gγ,λ.

Conversely, suppose x˚ maximizes gγ,λ for some γ P r0, 1s and λ P ∆N , and fix

an implementing transfer rule in which some agent’s IR constraint binds. Then,

because we proved (following the uniqueness part of Theorem 1) this maximizer

is essentially unique, it follows that any alternative IC and IR mechanism either

generates the same payoff vector or generates a strictly lower pγλ, 1q-weighted

sum of payoffs. Because this latter weight vector has only nonnegative entries, it

follows that the alternative mechanism generates a strictly lower payoff to some

player unless it yields an identical payoff vector.

6.2. Beyond veto bargaining

An important feature of our environment is that any agent can unilaterally veto

the mechanism. This feature is captured by the requirement that the mechanism

be individually rational for all of the agents. Whereas many institutions, especially

those comprising a small group of parties, assign veto rights to individual actors,
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a more permissive bargaining arrangement may be more appropriate for modeling

some contexts. For example, rather than unanimity, a buyer group might require

that the terms of trade be approved by at least n agents, where the parameter

n P t1, . . . , Nu could have n ă N .14 This flexibility raises new modeling ques-

tions concerning how, exactly, one determines whether a mechanism has sufficient

approval.

One possible formulation is that at least n agents must agree, independent of

their type realizations, to interact with the seller. This modeling choice might

be appropriate, for instance, if we interpret the relationship between the buyer

group and seller as an ongoing one, whereas the payoff shocks are idiosyncratic

to a particular good or product. This formulation reduces nearly immediately to

the analysis in our main model. Indeed, one need only replace the IR constraint

(which we imposed for all N agents in our model) with a weaker assumption that

at least n agents’ IR constraints are satisfied. Because the seller has no reason to

condition on the types of agents facing no IR constraint, her problem reduces to

an n-agent specification of our main model. The optimal mechanism allocates the

good if and only if a weighted sum of the chosen n agents’ virtual values exceeds

the production cost. The seller would then choose to tailor the mechanism to the

n agents she finds most favorable to interact with ex-ante—for instance, the n

agents with the highest virtual value distributions if these distributions are first-

order stochastically ranked.15

However, considering the case in which the seller can engage in “coalition build-

ing” is also reasonable. That is, the seller could gather support from agents based

on their realized willingness to pay for the good at the interim stage. Observe,

however, that formalizing a specific protocol to meaningfully capture such a seller’s

constraints is not straightforward. For example, suppose the seller could require

that the agents submit “yes” or “no” votes, and she could commit to the terms

of trade as long as at least n agents vote yes. When n ă N , this ostensibly

natural model enables the seller to extract arbitrarily large profits by offering a

mechanism that collects transfer m " 0 and never provides the good. Follow-

ing standard reasoning, if all agents vote yes, no agent is pivotal, resulting in an

equilibrium. Moreover, the mechanism can be modified to make such a voting

outcome trembling-hand perfect (hence, not weakly dominated) by setting the

transfer equal to m` 1 if the vote passes non-unanimously. Although this view is

subjective, we feel such constructions sidestep the strategic tradeoffs that should

inform the optimal design of selling mechanisms to a buyer group with heteroge-

neous preferences.

Toward relaxing the veto-bargaining constraint while retaining the strategic

14A more general bargaining structure, allowing for asymmetry in agents’ veto rights, would
specify a nonempty J Ď 2NztHu and require that the mechanism be approved by all j P J for at
least one J P J .

15If the virtual values are even ranked according to the hazard-rate order, then, following
Theorem 2, the agent with the nth highest distribution would have the highest voting weight.
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tradeoffs of our prior analysis, consider the following ad hoc protocol. Agents

(having observed their own types) first submit a yes or no vote to a mediator.

The mediator informs the seller and agents whether the vote has passed, that is,

whether at least n agents voted yes. If the vote passes, the seller’s mechanism—

an allocation and a transfer as a function of messages the agents send—is imple-

mented. Notice the seller does not observe the profile of votes in this formulation,

and so cannot extract arbitrarily large revenue with the construction described

above. However, analyzing this protocol is potentially challenging, requiring sub-

stantively different analytical techniques, for another reason. When an agent

learns the vote has passed, his conditional belief about other agents’ types de-

pends on how he voted, bringing us outside of the independent private values

setting. Agents’ reporting incentives will generally depend on their conditional

beliefs about others’ values (which will exhibit correlation), and therefore on their

beliefs about other agents’ beliefs, and so on.

The broader point of the above discussion is that we know of no canonical,

tractable bargaining framework that relaxes the veto-bargaining constraint while

preserving the spirit of our framework. Nevertheless, one may reasonably expect

that any such framework would allow the seller to employ the following “posted-

price” mechanism: the seller posts a price p and asks agents to vote “yes” or “no.”

If and only if at least n agents are in favor, the good is sold at a price p. Let us

observe this mechanism can, in some circumstances, perform strictly better than

if the seller had no ability to pursue contingent coalition building. For instance,

suppose n “ 1, all agents have the same highest possible value, and the production

cost is strictly lower than this highest value so that positive profit is possible. In

this case, a best mechanism among those guaranteeing IR for some fixed agent is

a posted price of p for the consulted agent. Clearly, the seller attains a strictly

higher profit by setting the same price and selling if and only if at least one of the

N agents wants to buy.

As the above example illustrates, even simple mechanisms can sometimes yield

a higher profit for the seller when she does not face the stringent veto-bargaining

constraint. However, formulating a satisfactory framework to capture richer bar-

gaining environments and possible forms of coalition building within a buyer group

seems nontrivial. We view the development and analysis of such models as an ex-

citing avenue for future research.

6.3. Fixed-share payment rules

In our model, agents derive heterogeneous private benefits from the buyer group

receiving the good, but the cost of transfers is experienced jointly. Our leading

interpretation is that the agents are jointly making decisions about how to spend

an organization’s funds, and that the variable θi represents agent i’s privately

known marginal rate of substitution between the seller’s good and the organiza-

tion’s money.
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An alternative payoff setting is one in which each agent pays private funds to

the seller, but mechanisms are restricted—for unmodeled institutional reasons—

to follow a fixed cost-sharing rule. Specifically, one could consider a contracting

environment in which a physical outcome consists of a probability x P r0, 1s with

which the good is sold to the buyer group and a vector ~m P RN of (signed) transfers,

where mi is paid to the seller by agent i; and σ P ∆N is a fixed sharing rule, with

all entries strictly positive, such that only transfer vectors ~m with mi “ σi
ř

jPN mj
are permitted.16 For example, such a contracting environment might describe

a condominium complex interacting with a maintenance company, with a fixed

cost-sharing rule prespecified by the homeowner association’s rules.

Inspection of the seller’s and agents’ objective functions shows the above payoff

environment is, up to rescaling agent values, equivalent to the model we have stud-

ied in our main analysis. If pviqiPN are the agents’ respective values for the good

being provided, and we assume tviuiPN are independent with regular distributions,

all of our reported results apply readily when agents’ types are reparameterized as

θi “ vi{σi—agent i’s marginal rate of substitution between the seller’s good and

the buyer group’s total expenditure.

As a special case, consider fixed cost sharing when agents’ values tviuiPN are

identically distributed, and assume without loss that σ1 ď ¨ ¨ ¨ ď σN . Letting F̃

and f̃ denote the cumulative distribution function and density, respectively, for vi,

we can define the scaled virtual value ψi :“ vi´
1´F̃ pviq

f̃pviq
. Direct computation shows

agent i’s virtual value is ϕi “ θ̄iψi, so that vi is an increasing transformation of

ψi. Following Theorem 1, the optimal mechanism allocates the good if and only if
ř

iPNpωiθ̄iqψi exceeds the cost for some ω P ∆N , and this weight vector is unique

in the nontrivial case.

If the cost-sharing rule σ is asymmetric—that is, σ ‰ p1{N, . . . , 1{Nq—the

random variables tθiuiPN have proportional but non-identical distributions. Con-

sequently, our results on agent heterogeneity (e.g., Theorem 2) can be directly

applied to assess the affects of heterogeneity of the cost-sharing rule. Theorem 2

tells us ω1θ̄1 ě ¨ ¨ ¨ ě ωN θ̄N , and our leading example illustrates that these inequal-

ities may be strict. Hence, the endogenous voting weights are ranked in accordance

with the exogenous cost-sharing weights, with agents that bear a greater fraction

of the cost having greater influence over realized trade decisions.

6.4. Agent-specific payments

A substantive restriction of our environment is that our seller cannot collect in-

dividual payments from separate agents. In this section, we briefly contrast our

setting with that of Güth and Hellwig (1986), in which a profit-maximizing seller

offers a mechanism to provide a public good with agent-specific transfers. Of

16If some share σi were zero, the optimal mechanism would ignore agent i; hence, we omit this
possibility for notational simplicity.
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course, the models with and without separable transfers are appropriate for study-

ing different applications. To see that the difference affects the formal mechanism

design setting as well, let us now observe two different ways in which the results

differ across these two settings.

First, optimal mechanisms enjoy different robustness properties. Indeed, the

equivalence result of Gershkov et al. (2013) tells us an equivalence between BIC im-

plementability and DIC implementability is a general feature of mechanism design

settings with unidimensional independent types, linear utilities, and agent-specific

transfers. This result applies directly to the setting of Güth and Hellwig (1986),

so that implementation in dominant strategies is without loss of optimality for

their seller. By contrast, our results show dominant-strategy implementation is

with loss of optimality in every interesting instance of our model (Proposition 4).

Hence, a restriction to collective transfers substantially changes the available ro-

bustness properties of optimal mechanisms, even in the canonical setting of the

provision of a single good.

Even restricting attention to Bayesian incentive compatibility—for which, given

Lemma 2, collective transfers impose no restrictions on implementable allocation

rules—allowing for agent-specific transfers substantively changes the form of op-

timal mechanism.

To contrast the two allocation rules, focusing on a special case of the model,

namely that of proportional distributions (Example 2), is instructive. Suppose

θ̄1 ă ¨ ¨ ¨ ă θ̄N , and suppose the agents’ scaled valuations vi :“ θi{θ̄i are identi-

cally distributed. Thus, the agents are labeled from lowest to highest in terms of

their value distributions. Constructing ψi from vi exactly as in the previous sub-

section, the variables tψiui are identically distributed, with θi being an increasing

transformation of ψi for each i P N .

With agent-specific transfers, the good is optimally allocated if and only if
ř

iPN ϕi “
ř

iPN θ̄iψi exceeds the production cost (see Güth and Hellwig, 1986,

Proposition 4.3). By contrast, in our collective-transfers model, it is allocated if

and only if
ř

iPNpωiθ̄iqψi exceeds the cost for some ω P ∆N . Given that θ̄1 ă

¨ ¨ ¨ ă θ̄N , Theorem 2 tells us ω1θ̄1 ě ¨ ¨ ¨ ě ωN θ̄N . Thus, our optimal mechanism

overweights agents with lower value distributions, whereas admitting agent-specific

transfers induces the opposite ranking for agents’ relative influence. Hence, a

restriction to collective transfers substantively changes the allocative properties of

optimal mechanisms.
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A. Appendix: Proofs

A.1. Proofs for Section 3

Proof of Lemma 1. If transfer rule m has Mm
i “M˚

i for each i P N , then iterated
expectations implies

ErM˚
i pθiqs “ Ermpθqs “ ErM˚

j pθjqs @i, j P N.

Conversely, suppose m̄ P R is such that ErM˚
i pθiqs “ m̄ for every i P N . It then

follows immediately from independence of tθiuiPN that the following transfer rule
generates the desired interim versions for any constant m0 P Rztm̄u:

m : Θ Ñ R
θ ÞÑ m0 `

1
pm̄´m0qN´1

ź

iPN

rM˚
i pθiq ´ m0s .

Now, we turn to the final assertion. If nonnegative transfer rule m has Mm
i “

M˚
i for i P N , then monotonicity of integration implies M˚

i pθiq ě 0 for every θi P
Θi. Conversely, suppose each of tM˚

i uiPN is nonnegative, and their expectations
are all equal to m̄ P R. Monotonicity of integration then implies m̄ ě 0. If m̄ ą 0
[resp. m̄ “ 0], then the above-constructed transfer rule is nonnegative when for
m0 “ 0 [resp. m0 “ ´1].17

Proof of Lemma 2. Let Xi :“ Xx
i for each i P N . Given a transfer rule m, stan-

dard arguments (Myerson, 1981) show that px,mq is IC if and only if each i P N
has Xi weakly increasing and

Mm
i pθiq “ Xipθiqθi ´

ż θi

θi

Xipθ̃iq dθ̃i ´ U i, @θi P Θi (1)

for some constant U i P R; that such a mechanism is IR if and only if U i ě 0 for
each i P N ; and that any Mi : Θi Ñ R satisfying equation (1) has E rMipθiqs “
E rXipθiqϕis ´ U i. The latter expression implies that, by iterated expectations,
any transfer rule m such that px,mq is IC has

E rmpθqs “ E rxpθqϕis ´ U i @i P N. (2)

Let us now observe how the two parts of the lemma follow from the above
standard observations. For the necessity of interim-monotonicity in the first part,
nothing remains to show. To see that the payoff expression in the second part
is an upper bound on attainable profits, note that every IR and IC mechanism
px,mq generates, by equation (2), a profit of

Πpx,mq “ min
iPN

tE rxpθqpϕi ´ cqs ´ U iu ď min
iPN

E rxpθqpϕi ´ cqs .

17We should note that our proof does not use any of our regularity assumptions on the type
spaces and their distributions: Types can be independently drawn from any probability spaces
whatsoever. Moreover, boundedness can be replaced with integrability, in which case the imple-
menting m need not be bounded. Further, under an appropriate absolute continuity condition,
independence is also dispensable for this result.
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So the lemma will follow if we can construct, given an arbitrary allocation rule x
whose induced interim allocation rules tXiuiPN are all weakly increasing, a transfer
rule m such that px,mq is IC and IR with Πpx,mq “ miniPN E rxpθqpϕi ´ cqs .
To that end, fix some i˚ P argminiPN E rxpθqϕis. For each i P N , define the
hypothetical payoff lower bound U i :“ Erxpθqpϕi´ϕi˚qs and hypothetical interim
transfer rule

M˚
i : Θi Ñ R

θi ÞÑ Xipθiqθi ´

ż θi

θi

Xipθ̃iq dθ̃i ´ U i.

Observe every i P N has

ErM˚
i pθiqs “ E rxipθiqϕis ´ U i “ E rxi˚pθi˚qϕi˚s “ ErM˚

i˚pθi˚qs,

and so Lemma 1 delivers a transfer rule m whose interim transfer rules sat-
isfy Mm

i “ M˚
i @i P N . Let us now observe px,mq is as desired. Indeed,

interim-monotonicity of x and equation (1) implies IC; that tU iuiPN are all non-
negative implies IR; and that U i˚ “ 0 implies Πpx,mq “ E rxpθqpϕi˚ ´ cqs “
miniPN E rxpθqpϕi ´ cqs . The lemma follows.

Proof of Theorem 1. Let X̃ denote the set X , modulo the F -almost everywhere
equivalence relation. One can view X̃ as subset of L8pΘ, F q, and the Banach-
Alaoglu theorem then implies X̃ is weak*-compact.18 Consider the optimization
problem,

max
xPX̃

!

min
iPN

E rxpθqpϕi ´ cqs
)

, (RSP)

which is our seller’s problem without the monotonicity constraint. In what follows,
we will pursue a solution to this relaxed problem. As we will show, this program
is solved by a unique x˚ P X̃ , and this x˚ happens to exhibit monotone interim
allocation probabilities. Hence, it will follow that x˚ is the unique solution to our
seller’s problem.

Toward solving (RSP), consider a two-player zero-sum game where the max-
imizer (Max) chooses x P X̃ and the minimizer (Min) chooses ω P ∆N . The
objective (that is, the payoff to Max) is Erxpθqpω ¨ ϕ´ cqs. Because X̃ is weak*-
compact and convex (the space ∆N obviously is as well), and the objective as
weak*-continuous in the strategy profile, it follows from Sion’s minimax theorem
that

max
xPX̃

min
ωP∆N

E rxpθqpω ¨ϕ´ cqs “ min
ωP∆N

max
xPX̃

E rxpθqpω ¨ϕ´ cqs ,

where all maxima/minima in the equation are attained by Berge’s theorem.

Because the auxiliary game is zero-sum (Proposition 22.2, Osborne and Ru-
binstein, 1994), the Nash equilibria are exactly the pairs px˚, ω˚q P X̃ ˆ ∆N for

18As is standard, L8pΘ, F q is isometrically isomorphic to the dual of L1pΘ, F q.
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which

x˚ P argmaxxPX̃ min
ωP∆N

E rxpθqpω ¨ϕ´ cqs and

ω˚ P argminωP∆N max
xPX̃

E rxpθqpω ¨ϕ´ cqs .

Observe, though, that minωP∆N E rxpθqpω ¨ϕ´ cqs “ miniPN E rxpθqpϕi ´ cqs for
each x P X̃ . Hence, x˚ maximizes this quantity if and only if x˚ solves (RSP).
Moreover, maxxPX̃ E rxpθqpω ¨ϕ´ cqs “ maxxPX̃ E rpω ¨ϕ´ cq`s for each ω P

∆N , so that maximizing the two expressions is equivalent. Finally, because these
maxima/minima are obtained, some Nash equilibrium exists.

To summarize our progress so far, we know that a Nash equilibrium exists for
the zero-sum game, and Nash equilibria are exactly the pairs px˚, ω˚q P X̃ ˆ∆N
for which x˚ solves (RSP) and ω˚ solves minωP∆N maxxPX̃ E rpω ¨ϕ´ cq`s.

Now, for an arbitrary ω P ∆N . Because tθiuiPN are atomless and independent
and tϕiuiPN are all strictly increasing, it follows that Ptω ¨ ϕ “ cu “ 0, so that
the ω-voting rule xω is Minimizer’s unique best response to ω. From the product
structure of the set of Nash equilibria, then, it follows that Maximizer has a
unique Nash equilibrium strategy x˚, which is then the unique solution to (RSP).
Moreover, because a voting rule is obviously interim-monotone (given independent
types and increasing virtual values), it follows that the unique solution to (RSP)
is also the unique solution to the seller’s problem (SP).

All that remains for our characterization of optimal allocation rules is to show
the equivalence of the two conditions in the theorem’s statement for a given ω P
∆N , and that these conditions imply xω is optimal. We have argued above that the
first condition is equivalent to ω being a Nash equilibrium strategy for Minimizer.
Meanwhile, because we have argued xω “ 1ω¨ϕěc is a unique Maximizer best
response to ω, it follows readily that the second condition is equivalent to ω being
a Nash equilibrium strategy for Minimizer. Hence the first and second conditions
are equivalent. Moreover, we have argued that, if ω is a Nash equilibrium strategy
for Minimizer, then the ω-voting rule is an optimal allocation rule. Therefore, if
ω satisfies p1q or p2q, then xω is an optimal allocation rule.

We now address the theorem’s final statement—that transfers are without loss
taken to be nonnegative. If the never-trade mechanism is optimal, there is nothing
to show. So focus on the complementary case in which an optimal mechanism
generates strictly positive revenue.

We have proved that the optimal allocation rule is x “ xω for some optimal
ω P ∆N . Let tM˚

i uiPN denote interim transfer rules, constructed in the proof of
Lemma 2, that implement x at maximum possible profit. By Lemma 1, it suffices
to show M˚

i is nonnegative for each i P N . To see this feature, note that (given
the functional form of its construction) M˚

i is always weakly increasing and is
constant if Xx

i is constant. With this observation, we can establish that M˚
i ě 0

in two exhaustive cases. First, if ωi “ 0, then Xx
i is constant and so M˚

i is
constant, hence equal to Ermpθqs ě cErxpθqs ě 0, where the first inequality holds
because an optimal mechanism is weakly better for the seller than the never-trade
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mechanism. Second, if ωi ą 0, optimality of ω implies i P argminjPN E rϕjxpθqs.
But, in this case the constructed transfer rules satisfy

0 “ θiX
x
i pθiq ´M

˚
i pθiq ě ´M

˚
i pθiq,

so that M˚
i ě 0.

Proof of Proposition 1. First, it is immediate that the never-trade [resp. always-
trade] mechanism is optimal among all IC and IR mechanisms using allocation
rule x “ 0 [resp. x “ 1]. Hence, for the first two items, it suffices to show the
given condition characterizes when x “ 0 [resp. x “ 1] solves (SP).

Now, we characterize when the never-trade allocation rule is optimal. If θ̄i ď c
for some i P N , then choosing ω P ∆N with ωj “ 1i“j for each j P N satisfies
the first condition in Theorem 1, so that the zero allocation rule xω is optimal.
Conversely, suppose θ̄i ą c for every i P N . Theorem 1 says some optimal ω P ∆N
exists, and the ω-voting rule is a uniquely optimal allocation rule—but observe
this rule entails a positive trade probability for any ω P ∆N .

Next, we characterize when the always-trade allocation rule is optimal. By
Theorem 1, this allocation rule is optimal if and only if some ω P ∆N exists such
that xω is the always-trade allocation rule and supppωq Ď argminiPN E rϕi1ω¨ϕěcs.
If xω is the always-trade allocation rule, though, observe that

E rϕi1ω¨ϕěcs “ E rϕis “ θi.

Moreover, for a given ω P ∆N , note that xω is the always-trade allocation rule
if and only if ω ¨ ϕpθq ě c. Hence, the always-trade allocation rule is optimal if
and only if some ω P ∆

`

argminjPN θj
˘

exists such that ω ¨ ϕpθq ě c. Because
some degenerate such ω maximizes ω ¨ ϕpθq, this property is equivalent to some
i P argminjPN θj existing such that ϕipθiq ě c.

Finally, we turn to uniqueness. Suppose ω, ω̃ P ∆N are such that xω and xω̃
are both optimal. Theorem 1 shows that xω̃pθq “ xωpθq almost surely. Our aim
is to show, assuming these allocation rules are nontrivial, that ω “ ω̃. Toward
establishing this equality, define G :“

ś

iPN

`

ϕipθiq ´ c, θ̄i ´ c
˘

, the interior of
the support of ϕ ´ c1N . Now, define the linear map L : RN Ñ R2 by letting
Lpzq :“ pω ¨ z, ω̃ ¨ zq for each z P RN .

Let us now observe some properties of G and L. First, that xω and xω̃ are
nontrivial implies LpGq is not a subset of R` ˆ R, of R´ ˆ R, of R ˆ R`, or of
RˆR´. Second, that P txω̃pθq “ xωpθqu “ 1 implies LpGq is a subset of R2

`YR2
´.

Third, because L is linear and G is convex, the set LpGq is convex. Combining
these three observations tells us that LpGq is contained in a single line through
the origin. Because G is open and L is linear, then, LpRNq is contained the same
line. Said differently, the rank of the linear map L is 1, so that vectors ω, ω̃ P RN

are proportional. Because ||ω||1 “ 1 “ ||ω̃||1, it follows that ω “ ω̃.

A.2. Proofs for Section 4

Proof of Corollary 1. The stochastic dominance hypothesis implies that θ̄i ď θ̄j
and θi ď θj for each j P N . Moreover, it implies that any j P N with θj “ θi
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has fipθiq ě fjpθiq, so that ϕipθiq ě ϕipθjq. The result then follows directly from
Proposition 1.

Proof of Corollary 2. The second and third conditions are equivalent, because the
profit maximizing price for agent i induces allocation rule θ ÞÑ 1ϕipθiqěc, and
Erϕjs “ θj for each j P N . We now turn to showing the first and third conditions
are equivalent.

By Theorem 1, this ω is optimal if and only if i minimizes Erϕj1ω¨ϕěcs over all
j P N . But observe each j P N has Erϕj1ω¨ϕěcs “ Erϕj1ϕiěcs, which is (because
tϕjujPN are independent) equal to Erϕjs Ptϕi ě cu if j ‰ i. Hence ω is optimal
if and only if each j P Nztiu has Erϕjs Ptϕi ě cu ě Erϕi1ϕiěcs.

Consider now two exhaustive cases. First, if θ̄i ď c, then Ptϕi ě cu “
Erϕi1ϕiěcs “ 0, and so the inequalities are trivially satisfied. Second, if θ̄i ą c,
then dividing the inequalities by Ptϕi ě cu ą 0 tells us ω is optimal if and only if
each i P Nztiu has Erϕjs ě Erϕi|ϕi ě cs.

Proof of Corollary 3. Consider any ω P ∆N such that xω is nontrivial and has
ωi “ 0. It suffices to show that ω cannot be optimal.

Fixing some j P supppωq, observe that

E rϕi|ω ¨ϕ ě cs “ E rϕis
“ θi
ď θj
“ E rϕjs

ă E
”

ϕj

ˇ

ˇ

ˇ
ϕj ě

1
ωj

´

c´
ÿ

kPNztju
ωkϕk

¯ı

“ E rϕj|ω ¨ϕ ě cs ,

where the first equality follows from tϕkukPN being independent, and the strict
inequality follows from the same and from the conditioning event having interior
probability. Hence, ω is not optimal.

Proof of Theorem 2. Assume for a contradiction that the unique (by Proposi-
tion 1) optimal vector of voting weights ω satisfies ωi ă

1
α
ωj. Let

β :“
αpωi ` ωjq

α2ωi ` ωj
P p0, 1s,

and define ω̃ P RN by letting ω̃i :“ β
α
ωj and ω̃j :“ βαωi, and letting ω̃k “ ωk for

every other k P N . Notice that ω̃ P ∆N since ω̃i, ω̃j ě 0 and

ω̃i ` ω̃j “ β
`ωj
α
` αωi

˘

“
αpωi`ωjq

α2ωi`ωj

´

α2ωi`ωj
α

¯

“ ωi ` ωj.

Also, note that ω̃ ‰ ω. Indeed, if ωi “ 0 then this fact follows from ω̃i “
β
α
ωj ą

0; and otherwise, it follows from
ω̃j
ω̃i
“ α2 ωi

ωj
ă

ωj
ωi

. Hence, it suffices to show

E rpω ¨ϕ´ cq`s ě E rpω̃ ¨ϕ´ cq`s. Indeed, if we could show this ranking, then ω̃
would be optimal too—in contradiction to the unique optimality of ω.
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So let us turn to showing that E rpω ¨ϕ´ cq`s ě E rpω̃ ¨ϕ´ cq`s. To prove the
result, we invoke results from Shaked and Shanthikumar (2007). First, as ϕi is
smaller than αϕj in the hazard rate order, it follows from Theorem 1.B.41 that
´αϕj is smaller than ´ϕi in the reverse hazard order. Hence, Theorem 4.A.37
implies that ωip´ϕiq`

1
α
ωjp´αϕjq “ ´pωiϕi`ωjϕjq is smaller than 1

α
ωjp´ϕiq`

ωip´αϕjq “ ´p
1
α
ωjϕi ` αωiϕjq in the increasing and concave order. Therefore,

by 4.A.1, ωiϕi ` ωjϕj is larger than 1
α
ωjϕi ` αωiϕj “

1
β
pω̃iϕi ` ω̃jϕjq in the

increasing and convex order. Moreover, 1
β
pω̃iϕi` ω̃jϕjq is larger than ω̃iϕi` ω̃jϕj

in the increasing and convex order since β ď 1.19 Therefore, E rηpωiϕi ` ωjϕjqs ě
E rηpω̃iϕi ` ω̃jϕjqs for every (weakly) increasing and convex η : R Ñ R. The
desired inequality then follows from applying this ranking to η given by

ηpyq :“ E
„

´

y ´ c`
ř

kPNzti,ju ωkϕk

¯

`



,

which is convex and increasing because p¨q` is.

A.3. Proofs for Section 5

A.3.1. Proofs for Section 5.1

Proof of Proposition 2. Consider an arbitrary collective posted price mechanism
px,mq with price p ě 0. We will show a unanimous posted price performs weakly
better.20

If p ď c, then the profit associated with the mechanism is always non-positive,
and so a unanimous posted price with price c is weakly better.

Now, suppose p ą c. For any agent i P N and θi P rθi, pq, IR implies Xx
i pθiq “

0—and so xpθi,θ´iq must be zero almost surely. It follows that xpθq ď xUpθq
almost surely, where xU is the allocation rule

xUpθq :“ 1θjěp@jPN

associated with a unanimous posted price of p. Hence, pp ´ cqErxpθqs ď pp ´
cqErxUpθqs—strictly so unless xpθq “ xUpθq almost surely. Therefore, the unani-
mous posted price mechanism pxU , pxUq yields a higher profit.

Proof of Proposition 3. The equivalence is trivial in the case that the always-trade
or never-trade mechanism is optimal. Hence, we restrict attention to the case that
the optimal allocation rule is nontrivial; let ω denote the unique (by Proposition 1)
optimal voting weights, and x :“ xω. First, if ω is an i-dictatorship for some i P N ,
then a posted price mechanism with price p P Θi such that ϕippq “ c is optimal.

19As the random variable v :“ 1
β pω̃iϕi ` ω̃jϕjq has nonnegative mean, any convex increasing

η has Eηpvq “ p1´ βqEηpvq ` βEηpvq ě p1´ βqηpEvq ` rEηpβvq ´ p1´ βqηp0qs ě Eηpβvq.
20It follows from our proof that, if some IC and IR mechanism generates strictly positive

profit, then this payoff ranking can be made strict unless the original mechanism is essentially a
unanimous posted price.
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Assume now for a contradiction that ω is a dictatorship and some optimal
mechanism is a collective posted price mechanism. By Proposition 1, some optimal
mechanism is in fact a unanimous posted price mechanism, with price p. Now, let
i P N be such that 0 ă ωi ă 1—some such i exists because ω is not a dictatorship.

For each θi P Θi, i’s interim probability of trade is given by

Xpθiq “ P
!

ÿ

jPNztiu
ωjϕjpθjq ě c´ ωiϕipθiq

)

.

Recall that θ admits a density, ω´i and ωi are both nonzero, and tϕjujPN are all
continuous and strictly increasing. It follows that the random variable on the left
side of the above inequality is atomlessly distributed, while the number on the
right side varies continuously with θi. Hence, Xi is continuous. Moreover, Xi is
not constant, because the allocation rule is nontrivial while the random variable
on the left side of the inequality has convex support.

Next, observe that uniqueness of the optimal allocation rule (by Theorem 1)
implies xpθq “ 1θjěp @jPN almost surely. Hence, by iterated expectations,

Xipθiq “ x̄1θiěp almost surely,

where x̄ :“ P tθj ě p @j P Nztiuu P r0, 1s. So the function Xi : Θi Ñ r0, 1s is
continuous and not constant, and agrees almost everywhere with a t0, x̄u-valued
function—a contradiction. The proposition follows.

A.3.2. Proofs for Section 5.2

Lemma 3: Suppose that px,mq is a DIC mechanism and θ, θ1 P Θ have xpθq “
xpθ1q P t0, 1u. Then mpθq “ mpθ1q.

Proof. Define θ˚ :“ θ_ θ1 if xpθq “ xpθ1q “ 1, and θ˚ :“ θ^ θ1 if xpθq “ xpθ1q “ 0.
We will observe that mpθq “ mpθ˚q “ mpθ1q; by symmetry, it suffices to show
mpθq “ mpθ˚q. To show it, define the type profile

θ` :“ pθ˚i 1iď` ` θi1ią`qiPN P Θ for each ` P t0, . . . , Nu “ N Y t0u.

Observe, either θ0 ď ¨ ¨ ¨ ď θN and xpθ0q “ 1, or θ0 ě ¨ ¨ ¨ ě θN and xpθ0q “ 0. In
either case, because x is weakly increasing (due to DIC) and can only take values
in r0, 1s, it follows by induction that xpθ0q “ ¨ ¨ ¨ “ xpθNq. For each i P N , because
θi and θi´1 differ only in the i coordinate and xpθi´1q “ xpθiq, it follows from DIC
(for agent i) that mpθi´1q “ mpθiq. Thus, mpθq “ mpθ0q “ ¨ ¨ ¨ “ mpθNq “ mpθ˚q,
as desired.

Definition 10: Say a mechanism px,mq or an allocation rule x is bang-bang
if xpθq P t0, 1u almost surely.

Lemma 4 (DIC mechanisms): Suppose px,mq is a DIC bang-bang mechanism.
Then, some p P R`, s P R and J Ď 2N exist such that, almost surely:

(1) mpθq “ pxpθq ´ s;

(2) xpθq “ 1
Ť

JPJ
Ş

jPJtθjěpu
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Moreover, we may assume without loss that no two members of J are nested, and
that θj ă p ă θ̄j for each j P

Ť

J .

Proof. Fix a DIC mechanism px,mq such that xpθq almost surely in t0, 1u. By
Lemma 3, some constants mL,mH P R exists such that mpθq “ mL [resp. mH ]
for every θ P Θ with xpθq “ 0 [resp. 1]. Moreover, DIC implies mL ď mH if there
exist type profiles leading to both allocation probabilities; and we may without
loss take mL ď mH in the complementary case. So, defining p :“ mH ´mL ě 0
and letting s :“ ´mL, we have mpθq “ pxpθq ´ s whenever xpθq P t0, 1u, an
almost sure event.

Now, modifying x on a measure-zero subset of its domain, and similarly modi-
fying the transfer rule to maintain m “ px´ s, we may assume without loss that
x is (statewise) t0, 1u-valued. Indeed, if xpθq “ 0 almost surely, we can replace
the allocation rule with the zero allocation rule; and in the complementary case,
we can replace the allocation rule with θ ÞÑ 1xpθqą0. It is easy to see that DIC of
the modified mechanism follows from DIC of the original one.

Next, we show x has the desired structure. Given an agent i P N and type
realization θi P Θi, his payoff from a reported type profile of θ̂ is pθi ´ pqxpθ̂q ´ s,
which is strictly increasing [resp. decreasing] in xpθ̂q if θi ą p [resp. θi ă p].
Hence, given θ´i P Θ´i DIC implies that one the following three possibilities
holds: xp¨, θ´iq “ 1, xp¨, θ´iq “ 0, or xpθi, θ´iq “ 1 [resp. xpθi, θ´iq “ 0] for
each θi P Θi with θi ą p [resp. θi ă p]. Hence, letting Θ̃ :“

ś

iPN rΘiztpus,
some y : t0, 1uN Ñ t0, 1u exists such that every θ P Θ̃ has xpθq “ y pp1θiěpqiPNq.
Moreover, we may assume without loss that y is constant in its i coordinate if
p ď θi or p ě θ̄i for i P N . Then, monotonicity of x implies y is monotone too. If
we let J̃ :“ tJ Ď N : yp1Jq “ 1u, then, xpθq “ 1

Ť

J̃PJ̃
Ş

jPJ̃tθjěpu
almost surely.

Define Ĵ :“
!

tj P J̃ : θj ă pu : J̃ P J̃ with θ̄j ą p @j P J̃
)

. Then, xpθq “

1
Ť

ĴPĴ
Ş

jPĴtθjěpu
almost surely, and θj ă p ă θ̄j for each j P

Ť

Ĵ . Finally, let

J :“ tJ P Ĵ : EĴ P Ĵ with Ĵ Ĺ Ju. Then, xpθq “ 1
Ť

JPJ
Ş

jPJtθjěpu
almost surely,

θj ă p ă θ̄j for each j P
Ť

J , and no two members of J are nested. Thus,
pp, s,J q is as required.

Proof of Proposition 4. That the third condition implies the first is immediate: A
dictatorship mechanism is trivially DIC because no agent both affects the outcome
and has some co-player who affects the outcome. As the first condition obviously
implies the second, we need only show the second condition implies the first. To
that end, suppose allocation rule x is both optimal and DIC-implementable. Our
aim is to show x is a dictatorship.

Theorem 1 implies xpθq “ xωpθq almost surely, for some ω P ∆N . Lemma 4
implies xpθq “ 1

Ť

JPJ
Ş

jPJtθjąpu
almost surely, for some p P R and J Ď 2N such

that J are pairwise non-nested and every j P N˚ :“
Ť

J has θj ă p ă θ̄j.

If we can establish that the set J is equal to H, to tHu, or to tiu for some
i P N—corresponding to never-trade, always-trade, and nontrivial i-dictatorship—
then the proposition will follow. Toward establishing this fact, define Z :“
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ś

iPN

“

ϕipθiq, θ̄i
‰

, and let Z˚ Ď Z denote the support of the measure on Z

which assigns mass E
”

xpθq1ϕPẐ

ı

to every Borel Ẑ Ď Z. That xpθq “ xωpθq

almost surely implies both Z˚ and ZzZ˚ are convex. Meanwhile, that xpθq “
1
Ť

JPJ
Ş

jPJtθjąpu
almost surely implies

Z˚ “
ď

JPJ
tz P Z : zj ě ϕjppq @j P Ju .

Using this characterization, we can show that J is one of the aforementioned sets.

First, let us see that |J | ď 1. Assume for contradiction that J, J 1 P J have
J ‰ J 1. Define now the elements z, z1 P Z via z :“ pϕipθiq1iRJ ` ϕippq1iRJqiPN
and z1 :“ pϕipθiq1iRJ 1 ` ϕippq1iRJ 1qiPN . Observe that z and z1 are in Z˚, but their
midpoint is is not—contradicting the convexity of Z˚.

Hence, if J is nonempty, then J “ tJu for some J Ď N . Now, let us
see that |J | ď 1 in this case. Assume for a contradiction that j, j1 P J have
j ‰ j1. Given ε P

`

0,miniPJ
“

ϕipθ̄iq ´ ϕippq
‰˘

, define zε, z
1
ε P Z by letting zε :“

`

rϕippq ´ εs1i“j1 ` ϕipθ̄iq1i‰j1
˘

iPN
and z1ε :“

`

rϕippq ´ εs1i“j ` ϕipθ̄iq1i‰j
˘

iPN
. Ob-

serve that zε and z1ε are outside of Z˚, but their midpoint is in Z˚ when ε is
sufficiently small—contradicting the convexity of ZzZ˚.

Thus, |J | ď 1, and |J | ď 1 for any J P J . It follows that J is equal to H,
tHu, or ttiuu for some i P N , delivering the proposition.

A.3.3. Proofs for Section 5.3

Proof of Proposition 5. Recall N P N denotes both the number of agents and the
set of agents. Because the set of optimal voting weight vectors is clearly convex
and invariant to permutations, it follows that the uniform voting weight vector
ωN :“ 1

N
1N P ∆N is optimal. Hence, defining xN :“ 1 1

N

ř

iPN ϕiěc
, the seller’s

optimal profit is ErxNpϕ1 ´ cqs. Note that Erϕ1s “ θ1, and let ζ P p0,8q be some
uniform upper bound on the bounded function |ϕ1 ´ c|.

To start, let us establish the result for the (easier) case in which θ1 ‰ c. Note
that a unanimous posted price of θ̄1 [resp. θ1] attains a profit of 0 [resp. θ1 ´ c].
Hence our the limiting value from an optimal collective posted price will necessarily
coincide with the seller’s limiting profit from an optimal mechanism, if we show
that the latter attains the specified limit. Observe now that the law of large
numbers implies ErxN s converges to 0 [resp. 1] as N Ñ 8 if θ1 ă c [resp. θ1 ą c].
Using this fact, let us show that the seller’s optimal value converges to the desired
quantity in each of these two cases. First, if θ1 ă c, then the distance between the
seller’s optimal profit and zero is

ˇ

ˇErxNpϕ1 ´ cqs
ˇ

ˇ ď ζErxN s Ñ 0 as N Ñ 8.

Next, if θ1 ą c, then the distance between the seller’s optimal profit and θ1 ´ c is

ˇ

ˇpθ1 ´ cq ´ ErxNpϕ1 ´ cqs
ˇ

ˇ “
ˇ

ˇErp1´ xNqpϕ1 ´ cqs
ˇ

ˇ ď ζEr1´xN s Ñ 0 as N Ñ 8,

37



as required.

We now turn to the complementary case that c “ θ1. As this equality implies
ϕ1pθ1q ă c ă ϕ1pθ̄1q, let θ̂1 :“ ϕ´1

1 pcq, the unique profit-maximizing posted price
for a single agent with value distribution distributed according to CDF F1. Let
π :“ maxpPR`pp´ cqr1´F1ppqs “ pθ̂1´ cqr1´F1pθ̂1qs, which is easily seen to be an
upper bound on the seller’s profit.21 Let us show, given an arbitrary ε ą 0, that
our seller’s optimal limit optimal profit, as N Ñ 8, is at least π´ ε. Because F1 is
continuous, some θL, θH P Θ1 exist such that θL ă θ̂1 ă θH and F1pθHq´F1pθLq ď
ε
ζ
.

Given N P N with N ą 1, let XN
1 denote the interim allocation rule for agent

1 in the optimal mechanism. Observe now that

XN
1 pθHq ´X

N
1 pθLq “ P

«

´ 1
N
ϕ1pθHq ď

1
N

˜

N
ÿ

i“2

ϕi

¸

´ c ď ´ 1
N
ϕ1pθLq

ff

ě P

«

´δ
N´1

ď

˜

1
N´1

N
ÿ

i“2

ϕi

¸

´ c ď δ
N´1

ff

ě 1´ γN ,

for γN :“ 2e
´2δ2

pN´1qpθ̄1´θ1q
2 , where the last inequality follows from Hoeffding’s inequal-

ity. Interim monotonicity then tells us any θ1 P Θ1 has XN
1 pθ1q ď γN if θ1 ď θL

and XN
1 pθ1q ě 1 ´ γN if θ1 ě θH . Therefore, the difference between π and the

optimal profit is

π ´ E
“

XN
1 pθ1qpϕ1 ´ cq

‰

“ E
 “

1θ1ěθ̂1
´XN

1 pθ1q
‰

pϕ1 ´ cq
(

ď E
 “

γN1θ1RpθL,θHq ` 1θ1PpθL,θHq

‰

|ϕ1 ´ c|
(

ď E
“

γN ` 1θ1PpθL,θHq

‰

ζ

“ rγN ` F1pθHq ´ F1pθLqs ζ

ď ζγN ` ε

Ñ ε as N Ñ 8.

As ε ą 0 was arbitrary, it follows that the optimal profit approaches π as N Ñ 8

Now, let us see that the highest profit maxpě0pp´cqr1´F1ppqs
N attainable with

a collective posted price mechanism goes to 0 as N Ñ 8. First, by Proposition 2,
we can express this quantity as πN :“ maxpPΘ1pp ´ cqr1 ´ F1ppqs

N . Now, let
pN P rθ1, θ̄1s be a maximizer of p ÞÑ pp´cqr1´F ppqsN , which exists by compactness
and continuity. Because rθ1, θ̄1s is compact, we can decompose the sequence ppNqN
into a collection of convergent subsequences ppN`q`. Consider an arbitrary such
subsequence converging to p˚. The sequences ppN` ´ cq` and

`

r1´ F1ppN`qs
N`
˘

`
are both bounded, and one of them converges to zero—the former if p˚ “ θ1, the
latter if p˚ ą θ1. Hence the product converges to zero.

21Consider a relaxed program in which IC and IR are required only for one agent. The optimal
profit in the relaxed program, a single-agent monopolist problem, is π.
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A.4. Proofs for Section 6

Lemma 5: For any γ P r0, 1s and λ P ∆N , an essentially unique allocation rule
x˚ solves

max
xPX

min
iPN

E txpθq rp1´ γqϕi ` γλ ¨ θ ´ csu (PO)

s.t. x is interim-monotone.

It is given by x˚pθq :“ 1p1´γqω¨ϕ`γλ¨θěc, where ω P ∆N is any vector of weights
such that supppωq Ď argminiPN E

“

ϕi1p1´γqω¨ϕ`γλ¨θěc
‰

, and some such ω exists.

Proof. To establish this lemma, one can follow the proof of Theorem 1 with a
modified objective, but otherwise verbatim. We look at a zero-sum game in which
a Maximizer chooses from X̃ (the set X modulo almost-sure equivalence), a Min-
imizer chooses from ∆N , and the former’s objective is

px, ωq ÞÑ E txpθq rp1´ γqω ¨ϕ` γλ ¨ θ ´ csu .

Just as in the proof of Theorem 1: This game exhibits some Nash equilibrium by
a compactness argument, and each Minimizer strategy ω P ∆N admits a unique
best response 1p1´γqω¨ϕ`γλ¨θěc by the Maximizer. Hence, letting ω be some Nash
equilibrium strategy for the Minimizer, it follows that 1p1´γqω¨ϕ`γλ¨θěc is the unique
solution to the relaxation of program (PO) in which XIM is replaced with X . As
types are independent and (by regularity) p1´ γqωiϕipθiq ` γλiθi is increasing in
θi P Θi, this solution is monotone and so solves (PO)—essentially uniquely so.
Moreover, the condition satisfied by ω is exactly the Minimizer’s best response
property. The result follows.

Proof of Theorem 3. Let us begin with some payoff calculations. For each γ P
r0, 1s, λ P ∆N , and i P N , define the function

gγ,λi : X Ñ R
x ÞÑ E txpθq rp1´ γqϕi ` γλ ¨ θ ´ csu .

If px,mq is an IC mechanism generating a profile U P RN of low-type utilities and
a vector v P RN`1 “ RN ˆR, then that the revenue can be computed equivalently
as E rxpθqpϕj ´ cqs ´ U j for every j P N implies every i P N has

pγλ, 1q ¨ v “ E rxpθqpϕi ´ cqs ´ U i ` γλ ¨ tE rxpθqpθ ´ϕqs ` Uu
“ p1´ γq tE rxpθqϕis ´ U iu ` γλ ¨ tE rxpθqϕs ´ Uu

`γλ ¨ tE rxpθqpθ ´ϕqs ` Uu ´ cE rxpθqs
“ gγ,λi pxq ´ p1´ γqU i.

Moreover, as shown in Lemma 2, any interim-monotone allocation rule x can be
paired with some transfer rule m for an IC and IR mechanism with low type
utility U i˚ “ 0 for some i˚ P N—which would then generate a payoff vector v

with pγλ, 1q ¨ v “ miniPN g
γ,λ
i˚
pxq.
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With these payoff calculations in hand, we now proceed to prove the theorem.
Let XIM denote the set of interim-monotone allocation rules, which Lemma 2
points out are exactly those that can be used in an IC mechanism. In light of
Lemma 5, it suffices to show that an allocation rule x˚ P XIM is used in some
Pareto optimal mechanism if and only if it belongs to argmaxxPXIM miniPN g

γ,λ
i pxq

for some γ P r0, 1s and λ P ∆N .

First, suppose x˚ P argmaxxPXIM miniPN g
γ,λ
i pxq for some γ P r0, 1s and λ P ∆N .

As noted in the above payoff calculations, some transfer rule m˚ is such that the
mechanism px˚,m˚q is IC and IR and generates a payoff vector v˚ P RN`1 with
pγλ, 1q ¨ v˚ “ miniPN g

γ,λ
i px˚q. To show this mechanism is Pareto optimal, let

px,mq be any alternative IC and IR mechanism that generates a payoff vector
v ‰ v˚; our aim is to show that v ğ v˚. We proceed in two cases. First, if xpθq “
x˚pθq almost surely, then the revenue computations in the proof of Lemma 2 show
v˚N`1 ´ vN`1 “ ´pv

˚
i ´ viq for every i P N . Hence, in this case, we cannot have

v ě v˚. Second, suppose xpθq and x˚pθq are not almost surely equal. Then, letting
U P RN denote the profile of low-type interim utilities generated by px,mq, we
have

pγλ, 1q ¨ v “ min
iPN

!

gγ,λi pxq ´ U i

)

ď min
iPN

gγ,λi pxq ă min
iPN

gγ,λi px˚q “ pγλ, 1q ¨ v˚,

where the strict inequality follows from the uniqueness property in Lemma 5.
Because pγλ, 1q ě 0, it follows that v ğ v˚, as desired.

All that remains is to show every Pareto-optimal mechanism px˚,m˚q solves
program (PO) for some for some γ P r0, 1s and λ P ∆N . To see this feature,
observe the set V Ď RN`1 of attainable payoff vectors from IC and IR mechanisms
is convex, because the set of IC and IR mechanisms is itself convex. Hence, the
Minkowski sum V̂ :“ V ´ RN`1

` is convex as well. Letting v˚ denote the payoff
vector generated by mechanism px˚,m˚q, it follows that v˚ is on the Pareto frontier
of V̂ as well. In particular, v˚ lies on the boundary of V̂ because v˚`pε, . . . , ε, εq R
V̂ for any ε ą 0. Hence, the supporting hyperplane theorem delivers some nonzero
λ̃ P RN`1 such that v˚ P argmaxvPV̂ λ̃ ¨ v. Observe, every i P N has λ̃i ě 0, for

otherwise v “ v˚ ´ ei P V̂ would have λ̃ ¨ v ą λ̃ ¨ v˚; and λ̃N`1 ě
ř

iPN λ̃i, for

otherwise v “ v˚`p1, . . . , 1,´1q P V̂ (which is attainable by lowering the transfer
rule by constant 1) would have λ̃ ¨ v ą λ̃ ¨ v˚. Together, that λ̃i ě 0 for every
i P N and λ̃N`1 ě

ř

jPN λ̃j tell us λ̃N`1 ą 0 because λ̃ ‰ 0. Hence, rescaling λ̃

if necessary, we may assume λ̃N`1 “ 1. Then, because λ̃i ě 0 for every i P N
and

ř

jPN λ̃j ď 1, it follows that some γ P r0, 1s and λ P ∆N exist for which

λ̃ “ pγλ, 1q.

Let us now show x˚ solves (PO), for the given γ and λ. Assuming otherwise,
for a contradiction, let x P XIM attain a strictly higher objective in program (PO).
As noted above, some transfer rule m exists such that px,mq is IC and IR with
low type utility U i˚ “ 0 for some i˚ P N . Hence, letting U˚ denote the profile
of low-type utilities generated by px˚,m˚q, and v P V denote the payoff vector

40



generated by mechanism px,mq, we have

λ̃¨v “ gγ,λi˚ pxq ě min
iPN

gγ,λi pxq ą min
iPN

gγ,λi px˚q ě min
iPN

!

gγ,λi px˚q ´ p1´ γqU˚i

)

“ λ̃¨v˚,

a contradiction. Therefore, x˚ solves program (PO).
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