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Abstract

We propose a framework for the fundamental valuation of utility tokens. Our

model endogenizes the velocity of circulation of tokens and yields a pricing for-

mula that is fully microfounded. According to our model, tokens are valuable

because they have to be immediately accessible when the services are needed,

a requirement that is reminiscent of the cash-in-advance constraint. The equi-

librium price paths of successful projects go through two successive phases: A

speculative phase where marginal holders are investors that do not intend to use

the services and, later on, a user phase where all tokens are held by clients. Cal-

ibrating the model, we find that it helps rationalizing the extreme volatility and

significant valuation of tokens early on during the adoption stage.

1 Introduction

The vast majority of startups finance their growth by raising equity from venture

capitalists. This market dominance has recently been challenged by a new fundraising

method that leverages Blockchain technologies. Following the examples of Ethereum

and Ripple, a growing number of startups rely on token sales to raise capital: The

company issues a new cryptocurrency, and investors receive its “tokens” in exchange
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for legal tender or other cryptocurrencies. The tokens derive their value from the fact

that they will be used to purchase the goods or services offered by the issuer once its

project becomes operational. The value of the token is therefore expected to increase

with the popularity of the business, thus rewarding early investors.

Although the disruptive potential of token sales is widely recognized, their adoption

beyond the crypto-community has been hindered by their controversial reputation.

The most common criticism is that Initial Coin Offerings (ICOs hereafter) are used to

draw unsophisticated investors towards nonviable projects. Such practice will only

be curbed through the creation of a reliable framework for the valuation of tokens,

making it possible for investors to identify when they are fairly priced.

This paper takes one of the early steps in that direction by proposing a fully micro-

founded pricing model for utility tokens. We show that tokens intrinsically differ from

other financial instruments, such as debt or equity, and thus cannot be priced using

off-the-shelf valuation techniques. Our model identifies the fundamental value of to-

kens as a function of two sets of primitives: consumers’ preferences and technological

constraints. It characterizes their price trajectory, endogenizing the evolution of token

velocity whereas reduced-form models currently used by investors arbitrarily specify

the speed at which tokens circulate.

Relying on a formal model allows us to clarify the answers to the following three

essential questions: Why are utility tokens valuable? How should they be priced? What

are the actual benefits of tokenization for the issuer?

Our response to the first question is that tokens are valuable to the extent that,

when needed, the application’s services have to be accessed immediately. In other

words, users cannot delay their consumption until they have been able to acquire

the required tokens in the secondary market. This constraint is reminiscent of the

cash-in-advance constraint commonly advocated to endow cash with intrinsic value.

The parallel is not really surprising since, after all, tokens are means of exchange. An

interesting specificity with respect to cash is that the token-in-advance constraint can

be hardwired into the technological specification of the application. For instance, the

platform can impose a lock-in period to slow down the circulation of its tokens.

Provided that the token-in-advance constraint holds, tokens are valuable and we

derive an equilibrium price path that depends on the distribution of preferences

among prospective users. The price of the token evolves over time, reflecting changes

in the efficiency, and thus adoption, of the application it gives access to.

Early on during the adoption phase, the marginal token holder is not a user but
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an investor, or speculator, who has no intention to ever use the token. Then its

price behaves as a pure asset bubble that appreciates at the required rate of interest.

Among the infinity of bubbly paths, the fundamental solution is pinned down by the

requirement that its trajectory should eventually transition to a user regime where all

tokens are held by agents that intend to use the services of the application.

Knowing that the token eventually enters a user regime enables us to derive a

pricing formula which is based on fundamentals only. In a nutshell, the value of

holding tokens for users is equal to the discounted surplus of their next trade. It is

therefore increasing in the rate at which transactions are carried out, as users incur

shorter waiting times, and so smaller opportunity costs, for the immobilization of their

funds. These opportunity costs also depend on the rate of growth of the token price

which incorporates expectations about future technological improvements. When

they are positive, token appreciation compensates users, thereby fostering adoption.

But this feedback loop between technological prospects and token pricing is a double-

edged sword, as pessimistic forecasts entail a depreciation that discourages adoption

in the current period.

Concurrent research also highlights that tokens may accelerate adoption by sharing

the financial returns of the venture with users (see Cong et al. (2018) or Li and Mann

(2018)). A distinctive feature of our model is that, early on during the adoption phase,

the price dynamics is solely driven by speculative factors. In order to meet the expecta-

tions of investors and deliver their required rate-of-return, the token price is a convex

function of the project’s productivity. By Jensen’s inequality, this convexity raises the

expected growth rate of the token price above that of productivity. Hence our model

rationalizes the extreme volatility and significant valuation of tokens when adoption

is low or even marginal, dispelling the popular belief that these two phenomena are

unmistakeable signs of irrational exuberance.

Related literature. ICOs being a very recent phenomenon, the related academic lit-

erature is still in its infancy.1 The first generation of papers focused on the value of

privately-issued digital currencies. Athey et al. (2016) analyze the determinants of their

exchange rates, demonstrating that investors may hoard currencies in anticipation

of future transactional usage. A similar mechanism is at work in the dynamic version

of our model where most tokens are initially held by investors. A related strand of re-

search revisits the indeterminacy of exchange rates between two currencies originally

1The first documented token sale was held by Mastercoin in 2013.
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established by Kareken and Wallace (1981). Garratt and Wallace (2008) distinguish the

central bank from the privately issued currency by introducing a storage cost for the

former and a disaster risk for the later. Pagnotta (2018) explicitly models how the crash

risk is determined by miners’ investment, thus giving rise to price–security feedback

loops that can amplify or dampen the impact of demand shocks on Bitcoin price.

Chiu and Koeppl (2019) demonstrates that seignoriage is more efficient than trans-

action fees to finance mining while Huberman et al. (2019) derives pricing formulas

for Bitcoin transaction fees and studies how limited capacity and priority needs drive

them. Uhlig and Schilling (2018) show that indeterminacy can support a speculative

equilibrium where the cryptocurrency is held in anticipation of its appreciation. Biais

et al. (2018) embed a dual-currency regime into an OLG model and show how their

framework can be taken to the data. Our paper differs from this literature in that

we are not considering cryptocurrencies whose purpose is to serve as a universal

means of payment, but instead utility tokens whose detention is required to consume

a particular product. Hence our pricing formula is directly derived from consumers

preferences rather than from transactional benefits.

Another range of papers study platform-specific currencies issued at a stable price

by digital platforms. Gans and Halaburda (2015) focus on the use of such currencies

to increase activity on the platform and the implications for its business model, taking

into account consumer preferences. Rogoff and You (2019) demonstrate that platforms

will find generally profitable to make such tokens non-tradable. Our paper addresses

also the topic of platforms offering services through a dedicated currency but our

approach considers tokens that are a tradable on crypto-markets instead of being

designed as a platform-specific fiat-equivalent.

Our paper is therefore more closely related to the growing literature studying

ICOs. A first branch focuses on corporate finance issues related to the incentives of

investors and entrepreneurs. Catalini and Gans (2018) show that ICOs may be more

efficient than venture capital when participants in the ICO market are well informed,

as token prices reveal the actual quality of the project to a wider set of investors. Chod

and Lyandres (2018) explain why token sales lead to underinvestment because they

generate an agency conflict between the entrepreneur and investors. In spite of this

drawback, they find that ICOs can dominate traditional venture capital when investors

are underdiversified. Canidio (2018) also underlines the agency conflicts induced

by ICOs since there is a non negligible probability that the entrepreneur will sell all

her tokens and halt the development of her project. Moreover, even when this risk is
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avoided, the entrepreneur will behave myopically by maximizing the project value

in the post-ICO period and not over its all lifetime. Going one step further, Canidio

(2020) finds that, in presence of developers who can self-finance their project and

hence avoid an ICO, only a single platform enters the market leading to a monopolistic

equilibrium. A more positive strand of papers outlines the coordination benefits

of ICOs in applications with network effects. Bakos and Halaburda (2018), Garratt

and Van Oordt (2019), Gryglewicz et al. (2019) and Li and Mann (2018) show that

token sales may help overcome coordination failure, since token sales provide a signal

about consumers’ willingness to use the platform. Similarly, Malinova and Park (2018)

propose an optimally-designed token contract that can reach the same pay-off as

equity and allow the financing of more projects due to the alleviation of moral hazard

induced by ICOs. Gan et al. (2020) reach similar conclusions regarding agency costs,

moral hazard and coordination in the specific framework of asset tokenization. From

an empirical perspective, Howell et al. (2020) study the conditions for an ICO to lead to

a successful project. In accordance with the theoretical literature, they name credible

commitment, quality signal and information disclosure as key success factors.

In order to focus on the pricing of tokens, we abstract from issues related to in-

centives alignment between entrepreneurs and investors. In this respect, the paper

most closely related to ours is Cong et al. (2018). They derive a dynamic asset pricing

model of tokens, showing that token appreciation can accelerate platform adoption by

allowing users to partially internalize network externalities. Mayer (2019) modifies the

set-up of Cong et al. (2018) by exogenously adding speculators as an additional type

of agent. Focusing on platform developement and conflicts of interest, he highlights

the dual role of owner’s holdings that drives her incentives but also determines token

supply, and he provides insights on token liquidity and speculative investment along

the development of the platform. In another study of platform-issued utility tokens,

Sockin and Xiong (2020) assess the relationship between token price and demand

fundamental and show that the market for a utility token can break down with no

equilibrium under conditions that depend on speculator sentiment and user opti-

mism. The main difference between their approaches and our is that we study utility

tokens which have to be exchanged in order to access the platform, whereas they

assume that tokens give access to a stream of services when staked. As a result, in

our model, agents cannot simultaneously benefit from token price appreciation and

enjoy the convenience yield offered by the service. Conversely, the specifications

in these papers – which recall a money-in-the-utility-function approach – preclude
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speculation or require to exogenously introduce a speculator type of agents. Conse-

quently, in Cong et al. (2018), the velocity of circulation is not a relevant statistics in

their model because tokens are always held by users. By contrast, the share of tokens

held by investors is endogenously determined in our model, and its evolution drives

changes in the velocity of circulation, thus explaining why this statistics has been the

subject of intense scrutiny in the crypto-community. In Mayer (2019), speculators are

exogenously introduced with an artificially limited duration in which speculation can

occur. Finally, Sockin and Xiong (2020) need a noisy signal unobservable by platform

users to explain speculative activity whereas our model proposes a less-constrained

framework in which speculators and users have access to the same information re-

garding the evolution of the token price and simply differ by their will to access the

platform services.

Structure of the paper. Section 2 derives the equilibrium price of tokens in steady-

state. Section 3 describes how token velocity evolves over time by extending our

framework to a setup with gradual adoption. In Section 4, we use adoption data for

Maker’s token to calibrate the model, showing that it can capture the relationship be-

tween token price and user adoption. Proofs of claims and propositions are relegated

to the Appendix.

2 Model

2.1 Set-Up

We consider a decentralized platform or application that issues tokens to finance its

development. We do not explicitly model the token sale. Instead, we focus on the

dynamics of the token price in the secondary market, implicitly assuming that the

primary market sale occurred in the past. Tokens are valuable because they allow

their owners to purchase the goods and services provided by the platform. The overall

supply of tokens, or monetary base, is equal to M . To simplify matters, we assume

that, as advertised in most token sales, the mass of tokens remains constant over time.

There are two markets: (i) a trading market where tokens are bought and sold,

and (ii) a commodity market where tokens are exchanged against the output of the

platform. The price or exchange rate of the token in fiat money is denoted by pt.
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It is determined on the perfectly competitive and frictionless trading market. On

the commodity market, the platform is a monopolistic intermediary that connects

users with contributors supplying the service. These contributors are typically miners

in Blockchain-based environments. We assume that contributors are so numerous

compared to the activity required by the platform that their supply can be treated as

vertical.2 Since the costs incurred by contributors, such as hardware or electricity, are

paid in fiat, the contributors’ supply is decoupled from variations in the token price.3

Hence the platform can commit to providing a unit of service at a constant price in fiat

currency by allowing users to acquire n units of service in exchange of n/pt tokens.

We normalize the mass of users to one. In each period, a constant share λ ∈ (0, 1)

of users are willing to consume the platform’s services. Then they derive utility z ∗ u (c)

from consuming c units of service, where u (c) is a standard utility function (u′(c) >

0, u′′(c) < 0, limc→∞ u
′(c) = 0) and z is a demand shifter capturing the technological

efficiency of the platform. In this section, we do not specify the law which governs

the evolution of the demand shifter. The only requirement at this stage is that zt is

perfectly observable by all agents and that it follows a deterministic process. Hence

the per-period utility function of user i ∈ [0, 1] reads

U
(
z, c, di

)
= zu(c) ∗ di, where di =

{
0 with probability 1− λ
1 with probability λ

. (1)

2.2 Equilibrium Price

Each period is divided into two sub-periods. As summarized in Fig. 1, the commodity

market opens first and preference shocks di are revealed. Users can buy the service

only if they have entered the period with some tokens. Then the commodity market

closes and the trading market opens, allowing users to rebalance their token holdings

by selling and buying tokens at the market price pt.

The timing is crucial since it amounts to hardwiring a token-in-advance constraint.

Suppose instead that users first observe their willingness to consume and then adjust

their token holdings. Since tokens do not bear any interest, users would find it optimal

to hold zero tokens at the beginning of the period and the market price pt would

2In Ethereum’s blockchain, where most utility tokens are currently issued, this assumption is equiva-
lent to considering that the gas price is not affected by the usage of a single application.

3For insights on the interactions between miners and the economic mechanisms driving their overall
supply, see Pagnotta (2018), Chiu and Koeppl (2019) or Huberman et al. (2019).
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collapse to zero. The only use of tokens is that they enable consumers to satisfy their

needs. Thus they are valuable because the service is needed immediately and it is too

costly to wait for the next period.

Figure 1: TIMING OF THE MODEL

When the trading market opens, users decide how many tokens m to carry into
the next period. Given that users can instead invest their money at the risk-free rate r,
their optimal returns read

v(pt, pt+1) ≡ max
m≥0

{
λ max
c∈[0,mpt+1]

{
zt+1u(c) + pt+1

(
m− c

pt+1

)}
+ (1− λ)mpt+1 − (1 + r)mpt

}
.

(2)

The value of the dummy variable d is drawn in t+ 1 where it will be equal to 0 with

probability 1−λ. Then the agent will not need the service and so will enter next period’s

trading market with the same amount of tokens mt, earning a reward equal to pt+1mt,

as indicated by the penultimate term in (2). With the complementary probability λ,

the dummy variable d will be equal to 1 and the agent will use the platform. Then she

will choose her optimal level of consumption under the token-in-advance constraint

ct+1 ∈ [0,mtpt+1] because consumption can never be greater than the market value

of token holdings. If the agent does not consume all her tokens, she will end next

period’s trading market with mt − ct+1/pt+1 tokens, thus earning the financial reward

pt+1(mt − ct+1/pt+1) on top of the utility benefits zt+1u(ct+1). Finally, we ensure that

v measures the optimal net returns by subtracting the value that would have been

obtained if the funds mtpt had been invested at the risk-free rate r.

The growth rate of the token price has to be lower than r for the returns function v

to be well defined, as otherwise the agent would find it optimal to hoard an infinite

amount of tokens. In other words, the token cannot appreciate at a rate greater than

r because the trading market would not clear. Instead, investors would bid up the

price of the token until its expected returns are brought down to r. This requirement
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ensures that the constraint ct+1 ≤ mtpt+1 always binds for users that wish to access the

platform’s services.4 To understand why, remember that consumption is determined

after the value of the demand shock d has been revealed, whereas token holdings are

decided beforehand. Given that agents take their investment decisions behind the veil

of ignorance, they face the risk of not needing the service. This is why users ration

their holdings below the level that is optimal when they are hit by a positive demand

shock. Their returns function is therefore equivalent to5

v (pt, pt+1) = max
mt≥0
{λzt+1u (mtpt+1) + (1− λ)mtpt+1 − (1 + r)mtpt} , (3)

and optimal token holdings, denoted by m∗t , are such that

rpt = λpt+1 [zt+1u
′ (m∗tpt+1)− 1]︸ ︷︷ ︸

Convenience Yield

+ pt+1 − pt︸ ︷︷ ︸
Capital Gain

. (4)

The rate of return on tokens can be decomposed into two components: a capital

gain and a convenience yield. The capital gain is standard since it corresponds to

the appreciation in the price of the token. By contrast, the convenience yield is

specific to utility tokens. The marginal token provides a quantity of services pt whose

marginal utility is equal to zt+1u
′(m∗tpt+1). But the service is delivered in exchange of

the token. Thus one also has to take into account the loss of the marginal token and

deduct its price from the marginal benefit. From the standpoint of pricing theory,

this is the main difference between tokens and shares. Since shares do not have to be

exchanged to provide their owners with dividends, their fundamental value is equal

to the discounted sum of all future dividends. Utility tokens, on the other hand, do

not yield any benefits if they are not traded, so their fundamental value is equal to the

discounted surplus of the next trade. In our model, a trade occurs with probability λ,

which explains why the marginal surplus pt+1 [zt+1u
′ (m∗tpt+1)− 1] is multiplied by λ in

the expression of the convenience yield.

All agents being identical, they hoard the same amount of tokens. Given that the

4This result immediately follows comparing the FOC for consumption, zt+1u
′(c∗t+1) = 1, with the

one for token holdings (4). Since we focus on cases where pt+1 ≤ (1 + r)pt, (4) can hold only if
zt+1u

′(m∗t pt+1) = zt+1u
′(ct+1) > 1, so that the feasibility constraint, ct+1 ≤ mtpt+1, binds.

5See Appendix A.2 for an explicit derivation of (3).
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mass of users is normalized to one, the market for tokens clears when

mi,∗
t = M for all t and all i ∈ [0, 1] . (5)

Replacing the market clearing condition into (4), we find that the token price obeys

the following law of motion

pt+1

pt
=

1 + r

λzt+1u′(Mpt+1) + 1− λ
. (6)

Assuming that the demand shifter converges towards a finite value z∞ correspond-

ing to the final development of the platform, and setting pt+1 equal to pt, yields the

following solution for the steady-state price

p̂ =
1

M
u′−1

(
r + λ

λz∞

)
. (7)

As expected, our model features money neutrality since the equilibrium price is in-

versely proportional to the token supplyM . The demand p̂M from each user is inferior

to the demand that would have prevailed if the services could be bought directly in

fiat.6 This reduction is due to the fact that clients have to be compensated for holding

tokens that do not bear any interest. Such incentives are provided at the time of

trade: Users that buy less services enjoy a higher marginal utility, and so, extract some

surplus from the exchange of their marginal token. Hence, by issuing utility tokens,

the company commits to selling less services in the long-run. This insight clarifies the

often muddled debate over the trade-off between ICOs and equity financing, most

notably by dispelling the belief that ICOs are a free lunch for issuers.7

2.3 Endogenous User Base

The equilibrium price ensures that the trading market clears. When users are homoge-

nous, as in the previous subsection, market clearing implies that potential demand

is saturated. By contrast, when users are heterogenous, the user base becomes en-

6The demand from each user reads p̂M = u′−1 ((r + λ)/(λz∞)). It is easily verified that it is inferior
to demand in the tokenless economy u′−1 (1/z∞) – see Section 4.

7It is also sometimes argued that ICOs are costly because they amount to selling for free the amount
of services corresponding to the mass of issued tokens. But this argument is misleading as the company
can always sell back its tokens on the secondary market.
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dogenous. Network effects can easily be introduced by embedding user base in the

utility function of users. Since it is well-known that network effects foster adoption by

amplifying early-stage adoption,8 we shut down this channel in order to focus on the

mechanisms that are specific to our model. For simplicity, we assume that users share

the same per-period utility function (1) but incur different flow costs of accessing

the platform. These flow costs are inversely proportional to the level of technological

expertise χi of user i. The parameter χi captures the opportunity cost of the time

devoted to using the platform. User i finds it optimal to hold some tokens whenever

v(pt, pt+1) ≥ 1

χi
. (8)

Potential users draw their ability from the distribution G(χ) defined over [χ,∞),

where χ > 0. Thus the user base, which we denote by Nt, is equal to

Nt = 1−G
(

1

v (pt, pt+1)

)
. (9)

The equilibrium price p̂ is obtained interacting this condition with the law of

motion for pt. First, we have to adjust the market clearing condition by rescaling the

overall mass of tokens by the number of users, i.e. m∗t = M/Nt. Then the law of motion

(6) generalizes to
pt+1

pt
=

1 + r

λzt+1u′
(
Mpt+1

Nt

)
+ 1− λ

.

Hence the price can be stable solely if

p̂ =
N̂

M
u′−1

(
r + λ

λz∞

)
, (10)

where N̂ ≡ 1−G
(
v (p̂, p̂)−1) . Reinserting (10) in (8), we find that the per-period returns

– and therefore the user base – are independent from the equilibrium price p̂.9 This is

because the price of the service remains constant in fiat. Given that there is no capital

gains at the steady state, agents simply choose their optimal quantity of services. As

this quantity is the value in fiat of their holdings, the demand for tokens is perfectly

price-elastic: Any price change is offset one-for-one so as to keep the purchasing

8See, for instance, Bakos and Halaburda (2018) or Gryglewicz et al. (2019).
9The steady-state value of returns reads v(p̂, p̂) = λz∞u

(
u′−1

(
r+λ
λz∞

))
− (r + λ)u′−1

(
r+λ
λz∞

)
.
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power of token holdings constant.
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Figure 2: EQUILIBRIUM PRICE AND USER BASE FOR PRODUCTIVITY LEVELS z∞ = .7,

z∞ = .85, z∞ = 1. PARAMETERS: r = .15, η = .5, M = 1, χ = 2, α = 5, λ = 1.

A Closed-Form Solution. The model can be solved analytically when the utility func-

tion of users is CRRA and when their abilities are sampled from a Pareto distribution

H1 : u (c) =
c1−η

1− η
,with η ∈ (0, 1) ,

H2 : G (χ) = max

{
0, 1−

(
χ

χ

)α}
for all χ > 0, with χ > 0 and α > 0.

Although restrictive, both hypotheses have some empirical support: CRRA is

among the most common specifications; whereas models with heterogeneous agents

usually rely on Pareto distributions to capture fat tails in the distribution of abilities.

From a formal standpoint, Assumption H1 enables us to explicitly derive net returns

as a function of the steady-state price. Combining this solution with H2 yields a closed-

form expression for the equilibrium condition (9) and for the mass of users N̂ which is
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weakly decreasing in p. Interacting this condition with the rest point requirement (10)

yields a system of two equations for the two unknowns N̂ and p̂.

Claim 1 When H1 and H2 hold, the equilibrium mass of users N̂ and token price p̂ are

uniquely determined by the following system of equations

Participation constraint: N̂ = min

{
1,

[
χ(λz∞)1+ρ

ρ [(r + λ)]ρ

]α}
, (11)

Market clearing: p̂ =
N̂

M

[
λz∞
r + λ

] 1
η

, (12)

where ρ ≡ (1− η) /η.

Proof. See Appendix A.1.1.

Figure 2 illustrates how the equilibrium price and market size are pinned down by

conditions (11) and (12) for different values of the steady-state productivity. It shows

that full adoption is not necessarily achieved at the steady-state if the service is not

attractive enough, i.e. if z∞ is relatively low. The figures also illustrate that, as discussed

above, the participation constraint does not depend on the token price. Instead, it

directly yields the steady-state level of adoption N̂ . The price then follows from the

market clearing condition as cheaper tokens raise the overall demand from users until

it is equal to the available supply.

3 Gradual Adoption

We now turn our attention to the benefits of issuing tokens. We will show in this

section that the opportunity costs for users have to be weighted against the financial

returns made on the token itself. To incorporate this countervailing channel, we need

to consider an environment where the token price evolves over time. Adoption usually

takes a while as users gradually migrate to the platform. Slow adoption can be due to

a variety of reasons ranging from reputation building and growing awareness about

the services provided by the platform, to improvements in the underlying technology.

We adopt the last view and focus on cases where user adoption builds up over time

because the platform becomes more and more efficient. We capture technological

progress through the introduction of the demand shifter zt.
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Building a new platform is a risky business subject to many unforeseen contin-

gencies. In order to take them into account, we generalize our framework and let

productivity fluctuate randomly over time. More precisely, we devise our model in con-

tinuous time because it greatly simplifies the analysis and assume that log-productivity

follows a random walk with constant trend and volatility, so that

dzt = zt (µdt+ σdBt) , (13)

where Bt is a standard Brownian motion.10 We choose a Geometric Brownian Motion

specification for zt because of its widespread use in the asset pricing literature. Our

model could easily be modified so as to accommodate alternative stochastic processes,

a task that we leave to future research.

The continuous time counterparts to equation (3) and (4) read

v (pt, ṗt, zt) = λ [ztu (ptm
∗
t )− ptm∗t ] + ṗtm

∗
t − rptm∗t , (14)

m∗t =
1

pt
u′−1

(
1

λzt

[
r + λ− ṗt

pt

])
, (15)

whereλdenotes the Poisson rate at which users access the platform and ṗt ≡ Et [dpt/dt].11

Reinserting (15) into (14) we see that, due to the neutrality of nominal prices, the flow

returns v depend on the rate of growth of the token price, ṗt/pt, but not on its level pt.

As in Section 2.3, user i draws her ability from the distributionG and buys tokens when

the returns exceed her flow costs, i.e. when v (ṗt/pt, zt) ≥ χ−1
i . Hence user adoption Nt

is a function of the vector (ṗt/pt, zt) that satisfies

N

(
ṗt
pt
, zt

)
= 1−G

 1

v
(
ṗt
pt
, zt

)
 . (16)

Price dynamics. The appreciation rate of tokens depends on whether the marginal

holder is a user or an investor. Assuming a potentially infinitely elastic supply of

10The law of motion for productivity is expressed under the risk neutral measure. Assuming that the
Stochastic Discount Factor Λt follows a GBM under the physical measure, so that

dΛt = −Λt
(
rdt+ ζdBΛ

t

)
,

Girsanov’s theorem implies that µ = µ̂− ρζσ where µ̂ is the deterministic trend of z under the physical
measure, while ρ is the correlation between zt and Λt.

11See Appendix A.2.2 for a formal derivation.
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Figure 3: MARGINAL TOKEN HOLDER AS A FUNCTION OF PRICE AND PRODUCTIVITY.
PARAMETERS REPORTED IN TABLE 1.

capital from investors, the price cannot grow at a rate higher than the interest rate – i.e.

ṗt ≤ rpt. Thus the optimality condition (15) implies thatm∗t ≤ m(pt, zt) ≡ u′−1 (1/zt) /pt.

Since the flow returns v (ṗt/pt, zt) are increasing in ṗt, it also follows from the market

clearing condition (16) that Nt ≤ N(zt) ≡ N (r, zt). Combining these two upper-

bounds, we find that the amount of tokens held by users m∗tNt is at most equal to

M (pt, zt) ≡ m(pt, zt)N(zt). It is easily seen that, for all z, there exists a unique price

p(z) = u′−1

(
1

z

)
N (z)

M
, (17)

such that M (p(z), z) is equal to the overall token supply M .

Figure 3 illustrates how p(z) splits the (z, p) plane into two non-overlapping regions.

If pt > p(zt), overall demand from users is too low to clear the market. Thus the

marginal token is held by agents that only care about its appreciation. Given that we

have assumed that the demand from potential investors is infinitely elastic, the market
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will always clear when the price grows at rate r12

ṗt = rpt, when pt > p(zt). (18)

In this regime, the token behaves as an asset bubble because it has no convenience

yield for the marginal holder. By contrast, when pt ≤ p(zt), the demand from users is

sufficient to clear the market and the rate of appreciation ṗt adjusts below rpt until

market clearing holds. Then the price dynamics is governed by users’ optimality

condition13

ṗt = −λpt
[
ztu
′
(
pt
M

Nt

)
− 1

]
+ rpt, when pt ≤ p(zt). (19)

Since this equation has the exact same structure as its discrete time counterpart (4), we

refer to Section 2.2 for a discussion of the convenience yield. Equations (18) and (19)

ensure that the market clears and that token demand is optimal under rational expec-

tations. Using the law-of-motion (13), we can substitute ṗt = ztµp
′(zt) + (ztσ)2 p′′(zt)/2

into (18)− (19) to express the dynamics of the price as a function of zt.

Proposition 1 A Markov equilibrium with state variable zt is a price function p(zt) that
obeys the law-of-motion

rp(zt) =


−λp(zt) + ztµp

′(zt) +
(ztσ)2

2
p′′(zt) + λztp(zt)u

′
(
p(zt)

M

Nt

)
, when p(zt) ≤ p(zt), (20a)

ztµp
′(zt) +

(ztσ)2

2
p′′(zt), when p(zt) > p(zt), (20b)

where Nt satisfies the participation constraint (16).

Provided that (i) µ̃ ≡ [µ+ (1/η − 1)σ2/2] /η < r and (ii) the utility function of users

is CRRA; the fundamental solution also satisfies the following two boundary conditions

p(0) = 0 and

lim
zt→∞

p(zt) = p̃(zt) =

[
λzt

r + λ− µ̃

] 1
η 1

M
. (21)

The requirements in Proposition 1 ensure that: (i) agents choose the token holdings

that maximize their returns, and (ii) the trading market clears at all time. Hence it

identifies an equilibrium path. Its trajectory can be pinned down by two boundary

12Equation (18) also arises as a limit case of (19) when λ = 0, that is when the platform’s services will
never be needed, as would be the case for pure investors.

13Equation (19) is the FOC of (14) where m∗t has been replaced by M/Nt to take into account the
market clearing condition. See also eq. (30) in Appendix A.2.2 for a derivation of (19) when users are
homogenous.
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conditions since it obeys a second-order ODE. First, given that z = 0 is an absorbing

state, p(0) = 0 should hold. Second, when µ̃ < r and the utility function of users

is CRRA, the limit as z goes to infinity of the price function admits a closed-form

solution. To see why p̃(zt) satisfies the law-of-motion of the fundamental price, note

that µ̃ < r ensures that p̃(zt) < p(zt), hence p̃(zt) needs to verify (20a). Moreover, full

adoption (i.e. N(z) = 1) has to hold for high enough z because we have assumed that

the lower-bound χ of the ability distribution G(χ) is strictly positive. Hence we can

reinsert p̃(zt) along with N(zt) = 1 into (20a) and verify that it indeed solves the ODE.

4 Illustration

4.1 Calibration

The main empirical prediction of our model is that user adoption and token price

should be correlated. To test it, we have to identify a utility token with broad enough

adoption. Given the novelty of utility tokens, few candidates are available. We select

Maker’s token (MK hereafter) because it finances one of the most popular, if not the

most popular, application built on Ethereum’s blockchain. MakerDAO enables its

users to mint stablecoins, named Dai, by locking some collateral in MakerDAO’s smart

contracts. MK is the utility token native to the platform and is used to pay the fees

required to access MakerDAO. Fees are proportional to the amount of stablecoins

created. Hence, as assumed in our model, access fees are expressed in fiat and not in

token units.

Data. Adoption data are not readily available. In order to infer them, we rely on

proxies provided by Nyctale, a startup that focuses on data analytics for crypto-assets.14

Nyctale has classified wallets into different categories depending on the rate at which

their owners rebalance their positions. More precisely, they scanned all the wallets

owning MKs and allocated them into one of the following three groups: (i) Speculators

whose wallets exhibit a significant on-chain exchanged volume and a limited balance

evolution, (ii) holders whose wallet balances remain fix over time, and (iii) incoming or

outgoing users whose wallet balances fluctuate moderately over time. By contrast, we

have only two types of token owners: users that periodically rebalance their position

14For a presentation of Nyctale’s services and technology, see https://nyctale.io/.
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and investors that never use the service. Because our model does not take into account

portfolio management, it does not yield any predictions about trades that are not

motivated by usage but instead by portfolio rebalancing strategies. Thus, in the

absence of better proxies, we treat owners of wallets within the speculators and holders

categories as investors. As for the remaining tokens, we assume that they are held by

prospective users.

Calibration strategy. We assume that users draw their technological proficiency χ

from a Pareto distribution. Under this premise, our model has eight parameters: the

deterministic trend µ̃ and volatility σ2 of the log-productivity process zt, the massM of

issued tokens, the Poisson arrival rate λ at which users need to access the application,

the Pareto shape parameter α and lower-bound χ of the ability distribution G(·), the

curvature η of users’ utility function, and the discount rate r. First, we set the discount

rate r = 5%. Then we follow the common practice of normalizing to one the lower-

bound χ of the ability distribution since it simply amounts to a rescaling of the ability

measure. Finally, in the absence of observable measures, we set the curvature η of

users’ utility function equal to its mid-value of 0.5.

We are left with five parameters. We choose the value of σ that equalizes the

theoretical and empirical volatility of the token price. For the remaining four pa-

rameters, we select their values so as to minimize the distance between the pre-

dicted and observed adoption-price schedules. More precisely, the empirical mo-

ments are summarized by the vector p̂t which contains the token price at differ-

ent time and thus different adoption levels. Using p(Ât; Θ) to denote the price

vector predicted by the model as a function of the observed levels of adoption Ât

and of the vector of parameters Θ ≡ {α, µ̃, λ,M}, we compute the quadratic dis-

tances d(Θ) ≡
(
p(Ât; Θ)− p̂t

)
·
(
p(Ât; Θ)− p̂t

)′
. The calibrated vector Θ̂ solves

Θ̂ = arg minΘ∈R4
+
d(Θ).

The values resulting from this calibration strategy are reported in Table 1, while the

model’s predictions are plotted against the data in Figure 5. It shows that our model is

able to capture the overall shape of the price-adoption schedule. In particular, it fits

its strong concavity early on during the adoption phase, capturing the high elasticity

of the token price with respect to adoption.
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REPORTED IN TABLE 1.

Table 1: Parameters

Calibrated Parameters Value Interpretation Moment
σ 0.62 Volatility of log-productivity Volatility of token price

M 5.4e− 4 Token mass Price level of token

λ 1.06 Rate of arrival of users Relation price-adoption

µ̃ 0.018 Mean of log-productivity Relation price-adoption

α 2.48 Pareto shape parameter Relation price-adoption

Normalized Parameters
r 0.05 Risk-free interest rate

η 0.50 Curvature utility function

χ 1 Lower bound of users’ ability

4.2 Simulations

We now explore the implications of our calibrated model. The token price as a function

of productivity is reported in the upper-panel of Figure 5. The blue area is the region
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Figure 5: TOKEN PRICE, ADOPTION RATE AND VELOCITY OF CIRCULATION AS A FUNC-
TION OF PRODUCTIVITY z. PARAMETERS REPORTED IN TABLE 1

where p(z) < p(z), so that we are in the user regime whenever p(z) belongs to it. The

equilibrium path switches from the investor to the user regime at z, as indicated by

the first vertical line. The second vertical line indicates the value z above which full

adoption holds.

The middle-panel of Figure 5 reports the adoption rate, that is the share of potential

customers who are actually using the platform. As productivity increases, more and

more users migrate to the plaform. When the price enters the user regime, the adop-

tion rate has already reached 91%. The second vertical line indicates the productivity

level above which full adoption holds. This illustrates that full adoption does not

have to hold in the user regime; although only a subset of potential users is using the

platform, their demand is sufficient to clear the market for tokens.

The lower-panel of Figure 5 reports the average velocity at which tokens circulate. It

depends negatively on the share of tokens that are hoarded by investors and thus never

held for transaction purpose. Since this share shrinks over time, velocity increases and

converges to λ, i.e. the rate at which users need to access the platform. This limit is

reached when the market enters the user regime where all tokes are held by agents

who exchange their holdings at the rate λ. Even though the adoption rate may vary in

the user regime it has no effect on the velocity of circulation because tokens are simply
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redistributed among users who exchange them at the same rate. Hence the price and

the velocity are correlated solely in the investor regime, as more and more tokens are

held with the intention to access the platform’s services. This shows that one cannot

exogenously set the velocity of circulation in order to determine the equilibrium price

because both variables are jointly determined and positively correlated. Our model

provides a microfoundation for their relationship, thus supporting the popularity of

velocity measures in the crypto community.

Returns dynamics. The upper-panel of Figure 6 reports the expected returns as a

function of z. In the investor regime, they are by definition equal to the interest rate.

But, as soon as the price enters the user regime, they start to fall to quickly converge to

the growth rate µ̃ of the long-run solution p̃(z) defined in (21). We observe a similar

but more progressive decrease for the volatility of returns depicted in the lower-panel

of Figure 6. To understand why volatility is also higher in the investor regime, it is

useful to look at the expression of the price function. When p(z) starts in the investor

regime, as it is the case in our simulation, we can explicitly derive the function that

solves the law-of-motion (20b) as

p(z) = p(z)

(
z

z

)β
, for all z ≤ z ≡ min{z : p(z) ≤ p(z)}, (22)

where

β ≡
σ2

2
− µ+

√(
σ2

2
− µ

)2
+ 2σ2 (µ+ r)

σ2
> 1.

It is easily verified that, since µ < r, the exponent β is superior to one so that the token

price in the investor regime is a convex function of productivity. By Ito’s lemma, this

convexity raises the expected returns above that of productivity,15 providing investors

with the required rate of return r. In other words, higher volatility is required to raise

returns above their fundamental level so as to entice investors to hold tokens and clear

the market.

Comparison with tokenless economy. We can measure the benefits of introducing

tokens by comparing adoption and revenues with and without tokens. The returns of

15Remember that expected returns are increasing in the convexity of the price function because
E [dpt/dt] = ztµp

′(zt) + (ztσ)
2
p′′(zt)/2.
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PRODUCTIVITY z. PARAMETERS REPORTED IN TABLE 1

users when the platform services can be paid in fiat read

v (zt) = max
c
{λ [ztu (c)− c]− rc} . (23)

Figure 7 show that tokenization incentivizes adoption. To understand why, note

that, under H2, the token price in the user regime reads

p (zt) =

[
λzt

r + λ− ṗ(zt)
p(zt)

] 1
η

1

M
. (24)

This equation is similar to the one prevailing in steady-state but for the inclusion of

the rate of appreciation ṗ(zt)/p(zt). Quite intuitively, an expected increase in price

renders tokens more attractive since it partially compensates users when they do not

need to access the platform in the current period.
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AND WITHOUT TOKENS. PARAMETERS REPORTED IN TABLE 1

Tokens in advance vs. Tokens in the utility function. Before concluding, we outline

how our approach complements the one proposed by Cong et al. (2018). In a nutshell,

we impose a token-in-advance constraint that endows tokens with value, while Cong

et al. (2018) assume that users derive a utility flow from holding tokens. Hence our

two papers reflect the canonical distinction in monetary economics between models

that introduce a cash-in-advance constraint and those that introduce money in the

utility function.16 It is well known that the two approaches are not as different as it

may seem since they often yield consistent predictions.17 However there are instances

where the similarity breaks down, and our models is one of them.

When, as in Cong et al. (2018), tokens are staked instead of being exchanged, agents

16There are other noticeable differences between our models. For instance, Cong et al. (2018) consider
that users have different flow utility but the same participation cost, precisely the opposite of how we
model heterogeneity. We do not dwell on these differences because, although they affect the model’s
algebra, they can easily be accommodated in our setup without modifying its main message.

17For instance, Cong et al. (2018) show that their formulation holds when tokens are used as means
of payment to save on transaction costs, and transactions are uncertain and lumpy.
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solve the following problem

v (pt, ṗt, zt) = max
m
{ztu (ptm) + ṗtm− rptm} . (25)

Given that benefits accrue at a constant rate, the utility flow of users does not depend

on the frequency λ at which transactions are completed. But this is only a formal

distinction since it amounts to a rescaling of the utility function.

There is, however, a more essential difference as tokens are not transferred upon

the completion of each transaction, which explains why the term −λptm does not

appear on the right-hand side of (25). When returns are given by (25) instead of (14),

optimal holdings diverge to infinity as the expected returns ṗt/pt converge to r. The

demand from users is therefore always sufficient to clear the market. Quite intuitively,

since users derive a flow utility from their token holdings, they are willing to hoard any

arbitrary quantity when expected returns fully compensate foregone interests. This

is why there cannot be a speculative regime when token holdings directly enter the

utility function.

In our model, by contrast, the demand from users does not always clear the market.

It remains bounded even when there are no carry costs because users do not get a

free utility flow. They still need to spend their tokens to enjoy the convenience yield.

Hence, when ṗt/pt = r, users hold the amount of tokens corresponding to the optimal

quantity of service, that is the quantity they would have bought if the service were

accessible with fiat. Then token demand is efficient as users are fully compensated

for the cost of holding tokens. They set the marginal utility of the service equals to its

marginal cost (ztu′(c∗t ) = 1). For users demand to diverge to infinity, expected returns

would have to reach r + λ. However, this cannot happen as investors steps in and bid

up the price of tokens until their expected returns are equal to r. This is why the token-

in-advance constraint enables us to generate a speculative regime where a fraction of

the token supply is held by investors who do not enjoy any convenience yield. This

prediction is in line with the current state of the market for Blockchain technologies,

which has seen relatively few adoptions in spite of an ever-growing market size.
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5 Conclusion

Our model provides an answer to three of the most fundamental questions regarding

token pricing; namely, when are tokens valuable, how should they be priced, and

what are the benefits of raising funds through token sales. To the first question, our

answer is that tokens are valuable when speed is so central to the delivery of the

service that users cannot delay its consumption until they have refilled their token

holdings. Provided that this requirement holds, our pricing formula highlights that

tokens fundamentally differ from other financial instruments because they do not

generate any utility until they are exchanged. Hence, users have to be compensated

for the opportunity cost of holding tokens instead of interest-bearing securities. Such

compensations are perceived at the time of exchange, where users enjoy a marginal

surplus, and during the holding period, where users may benefit from the appreciation

of the token. Early on during the adoption stage, the financial returns are strong

enough to entice speculators to hoard tokens without having the intention to use

them. This speculative demand can foster adoption above the level that would prevail

if the platform did not tokenize its services.

Having a microfounded pricing formula opens up many avenues for future re-

search. Embedding network effects and more sophisticated laws of motion for the

demand shifter would generate richer price dynamics. A more ambitious extension

would also endogenize token supply, studying how commitment to some monetary

rule could be used to maximize the expected value of the venture. These lines of

investigation are only the first forays into what promises to be a field of research in

its own right. Tokenomics is far from providing widely accepted guidelines for the

evaluation and design of tokens. As new and more complex tokens are put on the

market, the creativity of token issuers is likely to challenge that of researchers for years

to come.
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A Appendix

A.1 Proofs of Claims and Propositions

A.1.1 Proof of Claim 1

Proof. Let v̂(p) ≡ v(p, p) denote per-period returns when the price remains constant.

Setting pt = pt+1 in (3) yields

v̂ (p) = max
m≥0
{λz∞u (pm)− (r + λ)pm} .

Setting pt = pt+1 in the FOC (4) and using CRRA-utility (H1), we find that

u′(pm∗) =
u(pm∗)

pm∗
(1− η) =

r + λ

λz∞
.

Hence net returns in steady-state are equal to

v̂ (p) = λz∞u (pm∗)− (r + λ)pm∗

= λz∞ηu (pm∗)

= λz∞ηu

(
u′−1

(
r + λ

λz∞

))
=

(λz∞)1+ρ

ρ (r + λ)ρ
,

where ρ ≡ (1− η) /η. As in the general case, we notice that v̂(p) is independent from p.

This solution can be reinserted into the first equilibrium condition (9) to obtain

N̂ = 1−G
(

1

v̂ (p)

)
= min

{
1,
[
χv̂ (p)

]α}
= min

{
1,

[
χ(λz∞)1+ρ

ρ (r + λ)ρ

]α}
,

where the second equality follows from H2.

Finally, the equilibrium price is pinned down by the law of motion evaluated at the
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rest point (10). Rewriting (10) and using H1 leads to (12)

N̂ = p̂M

[
r + λ

λz∞

] 1
η

.

A.2 Dynamic Programming Approach

A.2.1 Dynamic Programming Solution in Discrete Time

Let Vt(m) and Wt(m) denote the value function of a user with m units of token just

before the first and second sub-periods, respectively. Given that the preference shock

is not yet revealed when Vt(m) is evaluated, the value function is by definition equal to

Vt(m) = E
[

max
c∈[0,mpt]

U (c, d) +Wt(m− c)
]

= λ

[
max

c∈[0,mpt]
u(c) +Wt

(
m− c

pt

)]
+ (1− λ)Wt(m). (26)

where E [·] is the expectation operator. The constraint c ∈ [0,mpt] holds because users

cannot consume a quantity of services that is greater than the market value of their

token holdings. The dummy variable d is equal to 0 with probability 1− λ. Then the

agent does not need the service and so she enters the next sub-period with the same

amount of tokens, as indicated by the last term in (26). With the complementary

probability λ, the dummy variable d is equal to 1 and the agent values the platform’s

service. To determine her optimal level of consumption, we need to characterize her

continuation value Wt.

The value function Wt(m) at the beginning of the second sub-period satisfies the

following Bellman equation

Wt(m) = ptm+ max
m′
{−ptm′ + βVt+1(m′)} , (27)

where β is the agent’s discount factor. The agent can freely rebalance her position at

the market price pt. It follows from (27) that W is linear in m as W ′
t(m) = pt. Moreover,

the first order condition implies that V ′t (m
∗
t ) = pt−1/β, wherem∗t is the optimal amount

of tokens by the end of the second sub-period

29



We are now in a position to differentiate (26) with respect to c. Using the fact that

W ′
t(·) = pt, we find that optimal consumption is given by

c∗t =

{
u′−1(1) if mpt ≥ u′−1(1),

mpt otherwise.

Since there is no uncertainty about pt, users will carry the minimum amount of

tokens necessary for the transaction, so that m∗t = c∗t ≤ u′−1(1). Setting c = mpt in (26)

and differentiating the resulting equation with respect to m, we finally obtain

pt−1

β
= λu′(Mpt)pt + (1− λ)pt,

where we have replaced the market clearing condition m = M . Focussing on the

steady-state p̂, it must hold true that

p̂ =
1

M
u′−1

(
1− β(1− λ)

βλ

)
. (28)

Replacing β with 1/(1 + r), we recover equation (28) in the main text.

A.2.2 Dynamic Programming Solution in Continuous Time

Devising the model in continuous time alleviates the algebra. We assume that agents

are hit by demand shocks that arrive at the Poisson rate λ. As before, conditional

on being hit by a demand shock, agents have to buy the service immediately and so

cannot go to the trading market to acquire tokens if needed. DISCUSS

Let ∆ (c) denote the adjustment in token holdings as a function of consumption.

Then there is only one value function which satisfies the following Bellman equation

rVt(mt) = λ max
c∈[0,mtpt]

{u(c)− pt∆ (c)}+ λmax
∆(c)

{
Vt

(
mt −

c

pt
+ ∆ (c)

)
− Vt(mt)

}
+
∂Vt(mt)

∂t
+ [V ′t (mt)− pt] ṁt. (29)

Given that the cost of marginally increasing the amount of tokens is equal to pt, holding

mt units can be optimal only if V
′
t (mt) = pt. Hence we can ignore the last term in (29).

Moreover, the concavity of the value function implies that it is optimal for agents

to restore their token holdings so that ∆∗ (c) = c/pt. Thus the Bellman equation
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consistent with market clearing (mt = M) boils down to

rVt(M) = λ max
c∈[0,Mpt]

{u(c)− c}+
∂Vt(M)

∂t
.

Setting token holdings equal to potential demand, Mpt = c∗, the first order condition

reads

rV ′t (M) = λpt (u′(Mpt)− 1) +
∂2Vt(M)

∂t∂m
.

Reinserting V
′
t (M) = pt into this condition, we find that

rpt = λpt (u′(Mpt)− 1) + ṗt. (30)
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