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Abstract

We consider the problem faced by a group of players who bargain over what

public signal to acquire before deciding on a collective action. The players di¤er in

their privately known state-dependent payo¤s from taking the action, and therefore

di¤er also in their willingness to pay for the public signal. We take a mechanism

design approach to characterize the frontier of outcomes achievable via bargaining

over information. We identify novel distortions in the optimal information structure

that arise from the information asymmetry and because, after the signal is realized,

the outcome is determined in equilibrium of a subsequent voting game.

Keywords: Collective decision-making, Mechanism-design, Information-design,

Rational inattention, Public good provision.

1 Introduction

Situations in which individuals bargain over what information to acquire are quite preva-

lent. Consider, for instance, a group of individuals who need to make a collective decision

�partners in a �rm who need to vote on a merger or an acquisition, a committee that

needs to vote on whether to hire a candidate, or a congressional committee that votes on

a proposal for a regulation. The optimal action depends on the state of nature which is

uncertain. All group members want to take the right decision, but di¤er in their preference

intensity which oftentimes is only privately known. To reduce their uncertainty, the group

members may wish to observe some evidence or analysis before reaching a decision. Since

these means of reducing uncertainty are costly in terms of e¤ort, time and money, the

group has to bargain over what information to acquire. For example, the partners in the
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�rm have to agree on which consulting �rm to hire for market research; the hiring com-

mittee deliberates over what information to collect about the candidate; the congressional

committee negotiates how many expert witnesses to call upon.

Despite being ubiquitous, bargaining over information is largely underexplored in the

literature. In this paper we take preliminary steps towards delineating the frontier of

bargaining outcomes and their implication on the group�s decisions. In particular, what

characterizes the information that the group acquires? How is the acquired information

a¤ected by the fact that the group members will base their collective action on it? How

does the optimal signal look like, compared to the case in which the players�preferences

are commonly know?

To address these questions, we propose the following stylized model. A group of players

is faced with a binary decision �whether or not to depart from a status-quo (the �default

action�). There are two states of nature, and all players would like the action to match

the state. However, they di¤er in their disutility from a mismatch, and this disutility is

privately observed. Prior to making the binary decision, the players have the opportunity

to collectively acquire a costly public signal about the state. The players then proceed in

two steps. First, they bargain over which signal to acquire and how to distribute its cost.

Second, they all observe the signal realization and vote on the binary decision, where a

supermajority is required to depart from the status-quo. If no information is acquired, all

players prefer the status-quo.1

Our group decision problem may be viewed as a variant of rational inattention à la

Sims (2003). In contrast to the single player case on which this literature has focused,

we study a model of collective rational inattention: A group needs to agree on which

signal to acquire, taking into account the trade-o¤ between the cost and bene�t of more

precise information. There are three key di¤erences between the problem we study and

the problem of individual rational inattention. First, the �nal decision following a signal

realization is determined by an equilibrium in a game. Second, the group members may

disagree on the bene�t from each signal. Finally, in order to aggregate the individuals�

willingness to pay for signals, the individuals need to disclose their private information.

To abstract from the particular protocol of bargaining over information, we follow

Myerson and Satterthwaite (1983) and take a mechanism design approach to explore the

bounds on the social surplus that the group can achieve. That is, we characterize the

1Our framework is motivated by the observation that collective binary decisions are typically settled by
voting, and that vote-buying is forbidden. Furthermore, our assumption that the group bargains only over
what information to acquire (and not simultaneously on both the information and the ultimate action) is
based on the fact that, in most environments, group members cannot commit to what collective decision
to take for each possible future realization of the signal. In light of this, we take the voting stage as given,
while allowing for any supermajority requirement.
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optimal feasible mechanism for deciding which signal to acquire, taking into account the

incentive and participation constraints as well as the second stage voting game.

Our paper, therefore, contributes to the budding literature that combines mechanism

design with information design. The novelty of our analysis is that the optimal information

structure depends on the players�private types which have to be elicited. We character-

ize properties of the optimal signal and the distortions that arise from the asymmetric

information.

Since each player bene�ts from the public signal, but prefers others to bear its cost,

information is a public good in our framework. However, unlike a standard public good

problem, here, the public good (the signal) does not directly produce utility for the agent,

but it is instrumental to making a more informed choice in a subsequent game (the voting

game). Additionally, the public good in our framework is a multi-dimensional object.

Nevertheless, we manage to �map� the problem back to one that can be solved using

Myersonian techniques.

In our analysis we represent a signal by a probability distribution over the posteriors

it induces. Following the rational inattention literature (in particular, the posterior-based

approach of Caplin, Dean and Leahy, 2020), we assume that a signal�s cost is proportional

to the expected KL-divergence between the prior belief and the induced posteriors (or

the mutual information between the state and the signal realization), which represents

the reduction in uncertainty caused by the signal. This captures situations where there is

an overwhelming amount of information available and the di¢ culty is in processing and

understanding that information (see, e.g., Máckowiak, Matµejka and Wiederholt, 2018).

While our analysis focuses on this cost speci�cation, our methodology is applicable to a

wider range of cost functions. In particular, we show in the supplementary appendix that

our results extend to the case where a signal�s cost is proportional to the variance of the

induced posteriors.

The mechanism in our analysis is used solely to study the limits of the bargaining stage

(i.e., there is no �real�designer). Hence, in contrast to a standard mechanism that freely

maps reports to outcomes, here, the mechanism cannot control the outcome of the second

stage voting game. To be able to apply standard techniques to characterize the optimal

mechanism (i.e. the frontier of the bargaining outcomes), we proceed in two steps. First,

we introduce an auxiliary direct revelation mechanism in which the players report their

types, the mechanism decides on the signal and then votes on their behalf according to their

reports (in other words, it is as if the players commit to vote according to their reported

types and the signal realization). We show that the optimal auxiliary mechanism satis�es

a property we call �non-wastefulness�. This property means that any acquired signal must
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be instrumental for decision-making: It must have at least one realized posterior for which

the collective action is di¤erent than if no signal was acquired. Second, after solving for

the optimal auxiliary mechanism, we show that its solution coincides with the solution of

the optimal �actual�mechanism (referred to as the �second-best�), which does not control

the players�actions in the ensuing voting game.

Multi-dimensional mechanism design problems are typically di¢ cult to solve. We show

how to transform our problem into a tractable one. We �rst establish that there is no loss

of generality in restricting attention to signals that induce only two posteriors on one of

the states: A high posterior, which is weakly above the prior, and a low posterior, which

is weakly below the prior, where the expected posterior must equal the prior. Thus, the

design problem reduces to choosing the mapping from reported types to the following

variables: The high posterior rH , the probability q of the high posterior being realized and

each player�s share in the cost. Even though the problem remains multi-dimensional, we

show that it can be written as a variant of a public-good provision problem (where the

signal is the public good), with the new twist that the level of the public good a¤ects

actions taken in a subsequent game. In this reformulation of our design problem, the

probability q plays the same role as the allocation rule in a standard public-good problem

in the sense that a player reports truthfully only if the interim expected probability q is

non-decreasing in his type.

In characterizing the optimal mechanism, the crux of the proof is the argument that

establishes the monotonicity of the interim expected q, which is necessary for incentive-

compatibility. The di¢ culty arises from the fact that for some type realizations, the

optimal signal is determined by the binding non-wastefulness constraint. It turns out that

in the optimal auxiliary mechanism, q itself (and not only its interim-expected value) is

monotonic in the types. Consequently, the truthful equilibrium in the auxiliary mechanism

can be attained in dominant strategies. This allows us to show that the solution of the

optimal auxiliary mechanism coincides with the second-best mechanism.

The second-best mechanism exhibits the following features. In one subset of the type

space, no signal is acquired. In a second subset, the acquired signal is at its optimal interior

solution. In a third subset of the type space, non-wastefulness is a binding constraint in

the sense that the high posterior is at its minimal level that induces the non-default action

in the voting game. This last subset illustrates the distortion caused by the presence of a

second stage voting game, which is outside the control of the designer.

In comparison to the solution under common knowledge of types (the ��rst-best�so-

lution), there is under-provision of information in the sense that whenever a signal is not

acquired in the �rst-best solution, it is not acquired in the second-best, but the converse
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is not true. A second distortion that occurs in the second-best mechanism is that for any

pro�le of types, the probability to deviate from the status-quo is lower. A third distortion

is that, conditional on deviating from (remaining with) the status-quo, the probability

that this is the right decision is higher (lower). These observations also mean that the

distortion due to the second-stage voting game - namely, the non-wastefulness constraint -

is not exacerbated in the second-best mechanism: It is never the case that this constraint

is binding in the auxiliary mechanism but not in the �rst-best.

As mentioned above, our analysis combines information-design with mechanism-design.

In a linear environment with a single player, Kolotilin et. al (2017) showed that the optimal

signal can be implemented without relying on the player�s private information. However,

it is well known that in environments with multiple interacting players (as in Bergemann

and Morris, 2013, Alonso and Câmara, 2016, Taneva, 2019, and Mathevet, Perego and

Taneva, 2020) ignoring the players� private information is suboptimal. Candogan and

Strack (2021) show that when there are more than two possible actions, ignoring the

player�s private information is suboptimal even if there is only one receiver.

Several recent works have addressed the problem of designing information for a group

of voters. Notable papers include Wang (2013), Schnakenberg (2015), Alonso and Câmara

(2016), Bardhi and Guo (2018), Chan et al. (2019) and Arieli and Babichenko (2019).

These studies characterize the signal that maximizes the probability that in equilibrium

voters vote on the outcome favorable to the sender. They di¤er in whether the designed

signals are private or public, and in the class of voting rules that is considered. There

are two key di¤erences between these papers and ours. First, in these papers the voters�

state-dependent utilities are commonly known (i.e., voters have no private information),

and hence, in order to design the optimal signal there is no need to elicit information from

the voters. Second, in these papers signals are costless, and the problem is to �nd the

signal that induces voters to coordinate on an equilibrium which is best for the sender.

The question we study is also related to the problem of designing voting rules that

incentivize the voters to acquire costly information. Persico (2003) characterizes the op-

timal size and voting threshold that e¢ ciently aggregates information when each voter

needs to incur a cost to acquire a private binary signal. Gershkov and Szentes (2009)

extend the analysis to a broader class of voting mechanisms. Our approach di¤ers in that

voters�willingness-to-pay for information is private and the signal they acquire is public.

We �x the voting rule and look for the optimal signal, taking into account that this sig-

nal depends on the voters�private information, and taking into account that the signal

realization a¤ects voting behavior.

An alternative approach to the study of collective information acquisition is analyzed
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by Chan et al. (2018). They consider a dynamic model where in each point in time a

group receives an exogenous signal and needs to vote on whether to stop and vote on a

binary action, or continue and receive additional signals. Unlike us, they study a stopping

problem in which the signal is exogenously given and the players�preferences are commonly

known.2 Relatedly, Gersbach (2000) considers a group with known preferences who can

either accept a policy with no information or defer the vote on the policy after the state

is realized.

The remainder of the paper is organized as follows. Section 2 presents the model. The

mechanism-design problem is presented and analyzed in Section 3. We begin by describing

the optimization problem that stems from the optimal auxiliary mechanism in Section 3.1

and characterize the solution in Section 3.2. In Section 3.3 we show that the optimal

auxiliary mechanism coincides with the second-best, which we compare with the �rst-best

solution in Section 3.4. Concluding remarks are presented in Section 4. All proofs are

relegated to the appendix.

2 Model

There are n players who have to jointly agree on a decision a 2 A = f0; 1g. Following the
literature on strategic voting (most notably, Feddersen and Pesendorfer, 1998), we assume

that each player�s payo¤, ui, depends on the joint action, on his type �i 2 � and on the
state of the world ! 2 
 = f0; 1g as follows:

ui(a; !; �i) =

8><>:
1 if a = !

�i if a = 1; ! = 0

1� �i if a = 0; ! = 1

We assume that the players do not observe the realization of ! and have the common

prior belief that the probability that ! = 1 is p. In addition, each player i privately and

independently draws a type �i from a common distribution F on the interval [0; 1� p]
(we explain below why we assume that �i < 1 � p). We assume that F admits a density

f that is strictly positive, continuously di¤erentiable and bounded over [0; 1� p]. Let
v (�i) � �i � (1� F (�i)) =f (�i) denote the virtual valuation of the player�s type �i. We
assume that F is regular, i.e. v (�i) is increasing in �i.

Our speci�cation of the utility function ui implies that player i weakly prefers the joint

decision a = 1 if and only if, given any information he has, his posterior belief on ! = 1 is

2For additional related works that take a collective search approach to sequential information gathering
by a group, see the references in Chan et al. (2018).
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at least 1� �i (the reason is that if the posterior belief on ! = 1 is r, then the action a = 1
yields an expected payo¤ of r � 1 + (1� r) � �i while the action a = 0 yields an expected
payo¤ of r � (1� �i) + (1� r) � 1). From our assumption that p < 1 � �i for every �i it
follows that without further information on the state each player prefers the action a = 0.

This gives a clean benchmark that without additional information, the group remains with

the status-quo.

Before making the joint decision (in a manner described below), the players have the

opportunity to acquire a public signal on the state !. A signal can be represented by

a probability distribution over posterior beliefs on ! = 1, such that the expected poste-

rior belief on ! = 1 equals the prior p. To simplify the exposition we assume that the

distribution is discrete, with countably many possible realizations. We denote by qj the

probability that the posterior belief on the state ! = 1 is rj and by J the total number of

posteriors (where J can be in�nite). We then have:X
j2f1;:::;Jg

qj � rj = p. (1)

where 0 < qj � 1 and 0 � rj � 1 for all j 2 f1; :::; Jg, and
P

j2f1;:::;Jg qj = 1.

The players can decide to acquire no information. Note that this option is equivalent

to choosing the degenerate signal that puts all the probability mass on a single posterior

belief which is equal to the prior p (i.e. J = 1, q1 = 1 and r1 = p).

Signals are costly. The cost of acquiring a signal f(qj; rj)gJj=1 is proportional to the
expected KL-divergence (or relative entropy) between the posteriors and the prior:3

c
�
f(qj; rj)gJj=1

�
= � �

PJ
j=1qjDKL(rj; p) (2)

where � is some positive constant, and:4

DKL(r; r
0) � r log r

r0
+ (1� r) log 1� r

1� r0 . (3)

The cost needs to be shared among the players. We denote by ti player i�s share in

covering the cost of the signal so that
Pn

i=1ti = c
�
f(qj; rj)gJj=1

�
. The net payo¤ of type

3While the details of our results depend on the particular form of this cost function, the qualitative
features of our characterization are not limited to it. In the supplementary appendix we show that our
results extend to an alternative cost function that is proportional to the variance of the induced posteriors
on the high state.

4Since there are only two states, we represent a distribution over the states by the probability on ! = 1.
Thus, the divergence between two distributions can be written as a function of the probabilities that each
distribution puts on the state ! = 1.
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�i from action a in state ! is therefore given by ui(a; !; �i)� ti.
Player i�s share in the signal�s cost ti can be interpreted either as his share in the

collective e¤ort of processing the acquired information (e.g., the amount of documents he

needs to summarize, or the time involved in organizing the data), or as his share in the

monetary cost of the signal (e.g., when di¤erent departments in an organization use their

budgets to pitch in for the cost of hiring a consultant). As is common to the examples

described in the introduction, we assume the group members cannot make any monetary

transfers that are conditional on their votes. This can follow from institutional constraints

that prohibit such vote buying, or because the votes are secret, or because such monetary

arrangements cannot be enforced.

As mentioned in the Introduction, the problem of deciding on which signal to acquire

is akin to the problem of choosing the optimal level of a non-excludable public good.

Following the literature on this topic (see, e.g. Mailath and Postlewaite, 1990, and Hellwig,

2003) we assume that participation is voluntary. More speci�cally, a player can opt out

from the collective bargaining over the signal, in which case he gets the payo¤ of the

status-quo option. This can be interpreted either as assuming that when a player walks

out of the bargaining he prevents the group from making a decision on a signal (as in

Hellwig 2003), or that a player who opts out is excluded from enjoying the bene�t of a

non-default action (for example, if the group eventually decides to hire an IT expert, the

player who opts out cannot bene�t from her services.)5

After the players agree on the signal to acquire, they all observe its realization. The

players then vote on the collective decision using an m�majority rule: the action a = 1
is chosen if, and only if, at least m players vote for this option. Otherwise, the default

action a = 0 is chosen. We assume that the players do not choose weakly dominated

strategies. Thus, player i votes for a = 1 if and only if the realized posterior belief that

the state is ! = 1 is above 1 � �i. Consequently, the alternative a = 1 is chosen if and

only if the realized posterior belief that the state is ! = 1 is above 1 � �(n�m+1), where
�(k) is the kth smallest element in �. For example, if choosing the non-default action a = 1

requires unanimity, i.e. m = n, then for this action to be chosen the realized posterior

belief has to be larger than 1 � �(1), where �(1) is the smallest element in �. Note that,
given � = f�1; :::; �ng, a signal induces a probability distribution over the outcomes of the
vote.

5One could imagine other consequences of opting out. For instance, if a player refuses to lend a hand
in the processing of information, he may still be able to consume the collective action. However, in this
case, the player might su¤er from some form of retaliation by the group. Since alternative notions of
the outside option may required additional assumptions on the model, we take a parsimonious approach,
which is consistent with the literature on public good provision.
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Figure 1: Feasible signals

The players� objective is to choose the signal that maximizes the ex-ante surplus,

taking into account the voting stage that takes place after the signal is realized. Our �rst

observation is that because there are only two available collective actions, signals that

induce only two posterior beliefs on ! = 1 (one on either side of the prior belief) dominate

signals with more posterior beliefs on ! = 1:

Lemma 1 For any signal that induces more than two posterior beliefs, there exists a signal
that induces only two posterior beliefs, generates the same distribution over actions for each

realization of state and types and has a strictly lower cost.

This result is straightforward in standard information design problems where signals

are costless. In such settings all that matters is the distribution over the actions in each

state, and this distribution can be replicated by signals that induce two posterior beliefs

when there are only two actions. In our setup, signals are costly and the cost depends on

the entire distribution of posteriors. However, the convexity of our cost function implies

that the optimal mechanism does not need to employ signals with more than two posteriors

(for an analogous result in a model of individual rational inattention see, e.g., Lemma 1

in Matµejka and McKay, 2015).

In light of this result, we restrict attention to signals that induce at most two posterior

beliefs.6 Thus, a signal can be represented by a pair (q; rH), where q 2 [0; 1] is the

6To see why this is true, recall that our goal is to characterize the constrained-e¢ cient frontier of the
bargaining (over information) outcomes, and to that end, we take a mechanism design approach in the
analysis that follows. Because the players are risk neutral, if we move from a signal with more than two
posteriors to a cheaper signal that induces only two posteriors, it is possible to re-adjust the transfers
between the players such that the decrease in cost is translated into a constant reduction in the interim
payment of each player. This modi�cation maintains ex-post budget balance, incentive compatibility and
interim individual rationality.
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probability that the posterior belief on ! = 1 is rH � p. Equation (1) then implies that with
probability 1�q the other posterior belief induced by the signal is rL � (p�qrH)=(1�q) �
p. Thus, when the realized posterior belief is rL all players agree that the optimal action

is a = 0. When the realized posterior belief is rH there are m players who prefer a = 1

over a = 0 if and only if rH � 1 � �(n�m+1). Notice that, since rL � 0, then it must be

the case that p � qrH . Figure (1) illustrates the set of all possible signals, depicted on the
plane of q and rH .

Choosing q = 0 or q = 1 is equivalent to purchasing no signal (the cost in this case

is 0, by Equation 2). We say that a signal is informative if q 2 (0; 1). We say that a
signal is instrumental for a type pro�le � if at least for one of the signal�s realizations there

is an m�majority for the non-default action a = 1. This means that a signal (q; rH) is

instrumental for � if rH � 1� �(n�m+1).

3 A mechanism for information acquisition

As explained in the Introduction, to characterize the e¢ cient frontier of signals that can

be acquired through bargaining, we take a mechanism design approach that abstracts

from any particular bargaining protocol. By the revelation principle there is no loss of

generality in restricting attention to direct revelation mechanisms in the �rst stage of the

players�interaction, i.e., when they decide on which signal to acquire. We de�ne an actual

direct mechanism to be a vector of functions hq; rH ; t1; :::; tni, where q : �n ! [0; 1] ; rH :

�n ! [p; 1] and ti : �n ! R for every i 2 f1; ::; ng. Thus, following a pro�le of reports
�̂ = (�̂1; :::; �̂n), with probability q(�̂) the players end up with the posterior probability

rH(�̂) on the state ! = 1 and with probability 1 � q(�̂) they end up with the posterior
probability rL(�̂) on that state, where rL(�̂) � (p � q(�̂) � rH(�̂))=(1 � q(�̂)). In addition,
each player i pays his share ti(�̂).

In the actual mechanism the designer cannot directly control the outcome of the second

stage voting game. Thus, a player who misreports his true type to the mechanism (say,

in order to reduce his share in the cost) retains his ability to vote according to his true

preferences in the second stage. As a step towards characterizing the optimal mechanism,

we proceed by considering auxiliary (direct) mechanisms in which, in addition to choosing

which signal to acquire and how to distribute the costs, the mechanism also votes in the

name of the players in the second stage. Thus, an auxiliary mechanism e¤ectively chooses

the collective action a = 1 whenever rH � 1 � �(n�m+1), and the collective action a = 0
otherwise. In other words, we assume that the players commit to vote according to their

reported types and not their true types. Our focus on direct auxiliary mechanisms follows
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from the revelation principle which holds in this environment.

Formally, an auxiliary mechanism is an actual mechanism augmented by two decision

functions, aH(�̂) and aL(�̂), which are the collective actions chosen by the mechanism when

the posterior beliefs rH and rL are realized. We then have:

aH(�̂) =

(
1 rH(�̂) � 1� �̂(n�m+1)

0 otherwise
(4)

aL(�̂) = 0 (5)

Our next result establishes that the surplus-maximizing auxiliary mechanism does at least

as well as the surplus-maximizing actual mechanism:

Proposition 1 The highest expected surplus achievable by an auxiliary mechanism is

weakly higher than the highest expected surplus achievable by an actual mechanism.

This result is not as straightforward as it might seem, because it is not immediately

clear that restricting the mechanism to vote according to the �rst stage reports does

not limit the set of implementable outcomes. Nevertheless, in the proof we show that

any equilibrium play path in the actual mechanism and the ensuing voting game can be

replicated by the auxiliary mechanism. The reason is that deviations from truth-telling in

the auxiliary mechanism are more costly than in the actual mechanism.

In light of Proposition 1 we begin by looking for the auxiliary mechanism that attains

the highest social surplus. We will then show that the equilibrium that attains this surplus

can be replicated by the actual mechanism and the ensuing voting game.

Fix a player i and suppose that the remaining players report their types truthfully.

The expected utility of player i of type �i who reports �̂i is then given by:

V
�
�i; �̂i

�
= E��i

h
q(�̂i; ��i) � [rH(�̂i; ��i) � u(aH(�̂i; ��i); 1; �i) + (1� rH(�̂i; ��i)) � u(aH(�̂i; ��i); 0; �i)]

+ (1� q(�̂i; ��i)) � [rL(�̂i; ��i) � u (0; 1; �i) + (1� rL(�̂i; ��i)) � u (0; 0; �i)]

�ti(�̂i; ��i)
i

(6)

where ��i 2 �n�1 represents the vector of true types of all players other than i, and E��i
is evaluated according to the probability distribution of the true types ��i.

Since we are interested in the auxiliary mechanism that maximizes the total surplus,

it is useful to represent the players�payo¤s as the expected gain from information (rather

than the utility per-se) compared to the case in which the players do not participate in

the mechanism and no information is acquired. Note that in the latter case, the default
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action a = 0 is chosen and type �i�s payo¤ is p � (1� �i) + (1� p). Thus, the gain from
information of type �i of player i who reports �̂i is given by:

U(�i; �̂i) = V (�i; �̂i)� (p � (1� �i) + (1� p)) (7)

To simplify the exposition, when all players report truthfully, we use the shorter notation

U (�i) � U(�i; �i).
The objective of the mechanism is to maximize the total ex-ante expected gain from

signals under truthful reporting. Since the players�preferences are quasi linear, this is

equivalent to maximizing the sum:

nX
i=1

E�iU (�i) . (OBJ)

The auxiliary mechanism has to be ex-post budget balanced: the cost of any signal

that is acquired has to be fully covered by the players. In what follows we slightly weaken

this requirement and allow the auxiliary mechanism to be balanced only ex-ante, so that

the cost of the acquired signal has to be covered only on average (that is, we allow the

mechanism to have a budget de�cit in some cases, so long as on average the costs are fully

covered):

E�
nX
i=1

ti (�) = E� [c (q (�) ; rH (�))] (BB)

However, as is well known (see, e.g., Borgers, 2015, p.47), if a mechanism is ex-ante

budget balanced, one can modify the transfers to satisfy ex-post budget balanceness with-

out a¤ecting the interim expected transfers or the incentives for truthful reporting. That

is, if a mechanism is incentive-compatible, individually rational and ex-ante budget bal-

anced, then there is another mechanism that achieves the same allocation of types to

signals, and which is also incentive-compatible and individually rational but is ex-post

budget balanced. In light of this, we will focus on ex-ante budget-balance in the analysis

that follows.

The players cannot be forced to participate in the mechanism. Since when a player opts

out, he gets the payo¤ of the status-quo option (evaluated according to the prior belief),

then the gain from participation must be non-negative for any type �i of any player i:

U (�i) � 0. (IR)

Finally, to guarantee that truthtelling is indeed an equilibrium, the following incentive

compatibility condition must hold:
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U (�i) � U(�i; �̂i) (IC)

for any type �i of any player i, and for any report �̂i.

In sum, we look for an auxiliary mechanism that maximizes (OBJ) subject to the

constraints (IR), (IC) and (BB).

3.1 The optimization problem

Fix a player i and suppose that all other players �i report truthfully ��i 2 �n�1. If player
i�s report is such that rH(�̂) � 1 � �̂(n�m+1), where �̂ = (�̂i; ��i), then player i�s utility is
given by q(�̂)�(�i�(1�rH(�̂)))�ti(�̂).7 If player i�s report is such that rH(�̂) � 1��̂(n�m+1)

then no signal is acquired and player i�s utility is �ti(�̂). Thus, we can rewrite the utility
of type �i of player i who reports �̂i when all other players report truthfully (Equation 7)

as follows:

U(�i; �̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q
�
�̂i; ��i

�
�
h
�i �

�
1� rH

�
�̂i; ��i

��i
dF n�1 (��i)

�
Z
��i

ti(�̂i; ��i)dF
n�1 (��i)

To express U(�i; �̂i) more compactly, we introduce the following notations. Given a

report �̂i, denote by Q(�̂i) the expected probability that the auxiliary mechanism chooses

the action a = 1. Denote byM(�̂i) the expected probability that the auxiliary mechanism

chooses a = 1 but the state is ! = 0 (this is the probability that the auxiliary mechanism

deviates from the default action when it shouldn�t). Denote by Ti(�̂i) the expected payment

of player i. Thus:

Q(�̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q(�̂i; ��i)dF
n�1 (��i)

M(�̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q(�̂i; ��i) �
�
1� rH(�̂i; ��i)

�
dF n�1 (��i)

Ti(�̂i) =

Z
��i

ti(�̂i; ��i)dF
n�1 (��i)

The expected utility of player i with type �i who reports �̂i is then given by:

U
�
�i; �̂i

�
= Q(�̂i) � �i �M(�̂i)� Ti(�̂i) (8)

7To see this, plug in equations (4), (5) and (6) into equation (7) and simplify.
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Note that our speci�cation of the players�utility has the convenient feature that it is as

if a player gets a payo¤ of �i every time the collective action 1 is chosen, but he pays a

penalty (M(�̂i)) that is equal to the probability that this is the wrong collective action.

The designer�s objective function (OBJ) can therefore be written as

nX
i=1

Z 1�p

0

[Q (�i) � �i �M (�i)� Ti (�i)] dF (�i) (9)

while incentive compatibility (i.e., Equation IC) requires

Q(�i) � �i �M(�i)� Ti(�i) � Q(�̂i) � �i �M(�̂i)� Ti(�̂i)

for all �̂i and �i and every player i. Note that U (�i) is the upper envelope of a family

of a¢ ne functions in �i, and is therefore convex. If follows that an auxiliary mechanism

satis�es incentive compatibility if and only if Q(�i) is non-decreasing and U 0 (�i) = Q (�i)

(see, e.g. Krishna, 2010, p. 64). Thus U (�i) =
R �
0
Q (x) dx�M(0)� Ti(0).

The above allows us to express the auxiliary mechanism design problem in the following

compact form:

Lemma 2 The design problem consists of �nding q(�) and rH (�) that maximize the ag-

gregate surplus,

nX
i=1

Z 1�p

0

[�i �Q(�i)�M(�i)] dF (�i)�
Z
�

c(q(�); rH(�))dF
n(�), (10)

subject to the following constraints: (i) Q(�i) is monotone and (ii) the aggregate virtual

surplus is non-negative,

nX
i=1

Z 1�p

0

[v(�i) �Q(�i)�M(�i)] dF (�i)�
Z
�

c(q(�); rH(�))dF
n(�) � 0. (11)

This inequality is both necessary and su¢ cient for individual rationality and ex-ante

budget balance.

We have therefore transformed the design problem of acquiring the (ex-ante) welfare

maximizing signal and sharing its cost into a problem of choosing a welfare maximizing

public good and sharing its cost but with the following �twists�. First, the public good

is multi-dimensional: it is a distribution over posterior beliefs, which can be summarized

by a pair of numbers, the high posterior rH and the probability q of realizing it: Second,

unlike a standard problem of public good provision, the characteristics of the public good
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a¤ect the players�actions in a game that is played after the good is provided. Third, both

in our environment and in a standard public good set-up, the marginal utility from the

public good is increasing in types. In the latter case, the cost of the optimal level of the

public good typically also increases in the types. However, this is not true in our set-up:

Even when types are known, the cost of the optimal signal is not monotonic in the types.8

3.2 Characterization

Assigning a type pro�le � to an informative signal that is not instrumental is wasteful:

The players�incur a cost, but do not change their behavior relative to having no signal.

We therefore introduce the following property:

De�nition 1 (Non-wastefulness) An auxiliary mechanism is non-wasteful if almost

every informative signal that it acquires is instrumental, i.e., q (�) 2 (0; 1) implies rH (�) �
1� �(n�m+1) for almost all �.

We then have that:

Lemma 3 The optimal auxiliary mechanism is non-wasteful.

Note the e¤ect of the supermajority requirement on the distortion of the signal: In one

extreme, if one vote for a = 1 is enough to make that decision, then non-wastefulness is

never binding; in the other extreme, if n is large and a unanimous decision is required,

then rH will be very high such that any information may be too costly.

By Lemma 3, an optimal auxiliary mechanism solves the constrained optimization

problem of the previous subsection subject to an additional constraint that the mechanism

is non-wasteful. Since q (�) = 0 whenever rH (�) < 1 � �(n�m+1), we can simplify the
expressions of Q(�i) and M(�i) as follows:

Q(�i) =

Z
��i

q(�i; ��i)dF
n�1 (��i) (12)

M(�i) =

Z
��i

(1� rH(�i; ��i)) � q(�i; ��i)dF n�1 (��i) (13)

8For example, suppose that n = 20, � = 3, p = 0:4 and that the players�types are commonly known.
In Section 3.4 we explain how the optimal signal is determined in this case. It is easy to verify that when
all players�types are 0:4 then the cost of the optimal signal is ~1:45, when all players�types are 0:55 then
the cost of the optimal signal is ~1:58 and when all players�types are 0:6 the cost of the optimal signal is
~1:56 (regardless of the required supermajority). This non-monotonicity is not an artifact of our particular
cost speci�cation since it also arises when the cost is equal to the variance of the posterior beliefs.
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Consider the Lagrangian associated with maximizing Equation (10) under the con-

straint (11):9

L =
Z
�

�
w (�; �) � q(�)� (1� rH(�)) � q(�)�

1

n
� c(q(�); rH(�))

�
dF n(�) (14)

where

w(�; �) =
1

n

nX
i=1

�
1

1 + �
�i +

�

1 + �
v(�i)

�
.

The characterization of the optimal solution is given in the following proposition.

Proposition 2 There exists �� > 0 for which the optimal auxiliary mechanism is charac-

terized as follows. First,10

r�H (�; �
�) = max

�
e
n
� � en�w(�;��)

e
n
� � 1

; 1� �(n�m+1)
�

(15)

Second, r�L (�; �
�) is determined such that

DKL(r
�
H (�; �

�) ; r�L (�; �
�)) =

n

�
[r�H (�; �

�)� (1� w (�; ��))] (16)

provided a solution exists and is in (0; p); otherwise, r�L (�; �
�) = p:

Third,

q� (�; ��) =
p� r�L (�; ��)

r�H (�; �
�)� r�L (�; ��)

(17)

Finally, both r�H (�; �
�) and r�L (�; �

�) are decreasing in each player�s type, and q� (�; ��) is

increasing in each player�s type.

At an interior solution in which r�H (�; �
�) > 1 � �(n�m+1) (i.e., non-wastefulness has

slack), the low posterior is given by

r�L (�; �
�) = min

�
e
n
�
(1�w(�;��)) � 1
e
n
� � 1

; p

�
.

Our proof proceed as follows. First, for any � � 0 and �; we �nd q�(�; �) and r�H(�; �)
that maximize L under the non-wastefulness constraint. Then, we show that the solution

9To obtain the Lagrangian L (�), write the aggregate surplus given by Equation (10) plus � times the
aggregate virtual surplus given by Equation (11). Now plug in the expressions for Q(�i) and M(�i) given
by Equations (12) and (13) and divide by (1 + �) � n.
10We do not restrict rH(�) to be at most one if no signal is acquired (i.e., if q(�) = 0). Indeed, r�H(�) > 1

whenever w(�; �) < 0: But in this case, r�L(�) = p, and hence, q(�) = 0. Also notice that since �i � 1� p,
it follows that 1� �(n�m+1) � p:
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(q�(�; �); r�H(�; �)) is unique for every � and � and satis�es that q
�(�; �) is increasing in

any �i and that r�H (�; �) and r
�
L (�; �) are decreasing in any �i, for any � � 0. Finally, we

establish the existence of some �� > 0 for which (q�(�; ��); r�H(�; �
�)) is a feasible solution

for all �, which guarantees that q� and r�H are indeed optimal.

One can view the signal purchased by the mechanism as a binary classi�cation test of

whether departing from the default action is desirable. Under this view, the ratio rH
1�rH is

proportional to the positive likelihood ratio (PLR), that is, conditional on the test recom-

mending the non-default action, PLR is the ratio between the probability that departing

from the default is the right thing to do, to the probability that this is a mistake. Ad-

ditionally, rL
1�rL is proportional to the negative likelihood ratio (NLR), that is, conditional

on the test recommending the default action, NLR is the ratio between the probability

that choosing the default is a mistake, to the probability that this is the correct action.

Our results show that when types are higher, the two likelihood ratios are higher. Thus,

the �quality�of the recommendation to depart from the default action increases with the

types, but the quality of the recommendation to take the default action decreases. How-

ever, the ratio between the two likelihood ratios, also known as the diagnostic odds ratio

is constant at an interior solution and equal to en=�. In the statistical literature (mainly

in the context of medical experiments) this measure is sometimes considered as a measure

of the e¤ectiveness of the classi�cation test (See, e.g. Glas et al., 2003).

Note that Proposition 2 established that q�(�) is increasing in each of its components.

An immediate corollary of this is the following (see Mookherjee and Reichelstein, 1992):

Corollary 1 There exists an optimal auxiliary mechanism in which truthtelling is a dom-
inant strategy equilibrium.

3.3 From the auxiliary mechanism to the actual mechanism

Up to now we analyzed an auxiliary mechanism in which the players commit to vote for the

collective action according to their reported types. When a player considers misreporting

in the auxiliary mechanism he takes into account that in the subsequent voting game, his

vote will not be cast according to his true preferences. For instance, if a player reports a

type higher than his true one, any signal that is acquired will be non-wasteful relative to

his report. If, in addition, the high posterior rH realizes, then the mechanism votes for

a = 1 on his behalf even though according to his true type the player would have preferred

to vote for a = 0. However, in the actual mechanism that will be run, a player is free to

vote according to his true preferences. In that case, a player may have an incentive to

a¤ect the choice of signal, knowing that he can vote in favour of the default action in the
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Figure 2: Projection of the second-best mechanism�s regions on the type space

ensuing voting game.

Consider now the �actual� mechanism, which di¤ers from the auxiliary mechanism

in that the players� reports a¤ect only the signal acquisition but have no e¤ect on the

ensuing voting game. The question is whether the mapping from reports to signals of the

optimal auxiliary mechanism, q� and r�H , remain incentive-compatible, budget-balanced

and individually rational when players vote on the collective action according to their true

preferences?

Proposition 3 The optimal actual mechanism is characterized by Equations (15)-(17).

We refer to the optimal actual mechanism as the �second-best�. Its characterization

highlights three cases. First, there may be realizations of � in which no signal is purchased,

i.e. q� (�) = 0. Second, there are realizations of � for which the non-wastefulness constraint

is binding, i.e. r�H (�) = 1 � �(n�m+1). Finally, for other realizations, the signal that is
purchased is given by the interior solution to the optimization problem, i.e. r�H (�) =
e
n
� �e

n
�w(�;�

�)

e
n
��1

.

To illustrate the projection of these three cases on the players�type space, we consider

two players who need a unanimous vote in order to depart from the status-quo and choose

a = 1 (i.e., m = n = 2). We also place additional structure on F by assuming that the

inverse failure rate (1 � F (�i))=f(�i) is concave.11 Figure 2 shows how the above three

cases map onto three regions in (�1; �2) space. By symmetry, it is su¢ cient to consider

only the type realizations �1 � �2, i.e., only the �top-left�triangle. The other triangle is
a mirror image. The following proposition summarizes the key features of the second-best

mapping from type realizations to signals.

11For example, the uniform and exponential distributions satisfy this property.
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Proposition 4 Consider the type realizations (�1; �2) for which �1 � �2. In the second-

best mechanism, for any type �2 there exist two unique cuto¤s, �;1 (�2) and �
W
1 (�2), such

that:

(i) A signal is acquired if and only if �1 > �;1 (�2),

(ii) The cuto¤ �;1 (�2) is decreasing in �2,

(iii) If a signal is acquired and �1 < �W1 (�2) then the non-wastefulness constraint is

binding, but if �1 > �W1 (�2) then the constraint holds with slack, and

(iv) The cuto¤ �W1 (�2) is increasing in �2.

The characterization for the case that �1 > �2 is symmetric.

3.4 Comparison with the e¢ cient mechanism

To better understand the distortions that are introduced by the players�private informa-

tion, it is instructive to compare the optimal mechanism to the ex-ante e¢ cient acquisition

of information when the players�types are known and the only constraint is that they col-

lectively cover the cost of the signal. We maintain the assumption that the players are free

to vote on their desired action after they observe the signal realization. An e¢ cient ac-

quisition rule maps every pro�le of types � to a signal qe (�), reH (�), r
e
L (�) that maximizes

the objective function that is given by (OBJ) above. Obviously, it cannot be e¢ cient to

purchase a signal that leads to the same outcome as acquiring no signal at all. Hence, an

e¢ cient rule must also be non-wasteful.

From the proof of Proposition 2 it follows that the e¢ cient acquisition rule is obtained

by simply replacing the term w(�; ��) in equations (15)-(17) (which is due to the incentive-

compatibility constraint) with w(�; 0); which is the average (across players) type realiza-

tion. Since w(�; �) is increasing in each �i, decreasing in � and w((1�p; :::; 1�p); �) = 1�p
for any �, it follows that

w (�; ��) < w (�; 0) � w ((1� p; :::; 1� p); 0) = 1� p

Since w(�; ��) is a continuous function in each �i, there exists �0 � � (i.e., �0i � �i for all i,
with at least one strict inequality) such that w (�0; ��) = w (�; 0). This has the following

implications.

Observation 1. If � is such that in both the �rst-best and second-best mechanisms

a signal is acquired and the non-wastefulness constraint has slack, then reL (�) < r�L (�),

reH (�) < r
�
H (�) and q

e (�) > q� (�).
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Since q(�) is the probability of taking the non-default action, this observation means

that in the second-best this action will be taken with a lower probability. However, since

reH(�) < r
�
H(�) then whenever the non-default action is taken in the second-best, it is taken

with greater con�dence. On the other hand, since reL(�) < r
�
L(�) then whenever the default

action is taken in the second-best, it is taken with lower con�dence.

To see why this observation is true, note that when the posterior probabilities are all

interior, the fact that w(�; ��) < w(�; 0) implies that both the low and high posteriors in

the e¢ cient mechanism are lower than the corresponding posteriors in the second-best.

In addition, since w(�0; ��) = w(�; 0) then q� (�0) = qe (�). By the monotonicity of q� in

each �i; we have that q� (�) < q� (�0) and therefore qe (�) > q� (�). This last argument also

implies the following:

Observation 2. If qe(�) = 0 then q�(�) = 0; but the converse is not true.

Put di¤erently, there are realizations of � for which the e¢ cient rule acquires a signal

but the second-best rule does not. Hence, the fact that players do not observe each other�s

type can lead to under-provision of information for the collective decision.

Observation 3. Whenever non-wastefulness is binding in the second-best mechanism, it
is also binding in the e¢ cient mechanism.

The fact that players vote after they observe the realization of the acquired signal

introduces an ex-ante distortion even when players�types are known. This occurs when

the signal (q; rH) that maximizes ex-ante welfare subject to only budget balance and

individual rationality satis�es q > 0 and p < rH < 1� �(n�m+1). In this case, the acquired
signal will be distorted such that rH will increase to 1��(n�m+1). Observation 3 establishes
that introducing private types does not exacerbate this distortion.

4 Concluding remarks

This paper is concerned with the question of how groups who want to make an informed

collective decision bargain over which information to acquire. Instead of committing to

a particular bargaining protocol, we took a mechanism-design approach that looks for

the signal that maximizes the players�expected sum of utilities, taking into account that

(i) players must be willing to participate in the mechanism, (ii) they must be willing

to disclose their private willingness-to-pay for information, and (iii) players vote on the

outcome after they jointly observe the realization of the acquired signal.

The optimal mechanism exhibits two types of distortions in information acquisition.

First, the fact that the group members vote on the basis of the signal realization means
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that the signal that maximizes the net expected surplus is not necessarily the signal that

is acquired (even when types are commonly known). This stems from the fact that it is

wasteful to purchase a signal that will not persuade a supermajority to vote against the

default. Second, the fact that players need to be incentivized to disclose their types (as

this determines what the optimal signal is), further distorts the type of information that

is acquired: the probability of acquiring the signal decreases while the induced posterior

beliefs increase (i.e., when the players vote for a = 1 they do so with higher con�dence,

but when they vote for a = 0 the do so with lower con�dence).

These distortions suggest that relative to a single individual who acquires costly infor-

mation before acting, a group of individuals (say, committees, boards or households) that

collectively chooses what information to acquire, will be more inattentive: for the same

cost of information, the group is less likely to acquire any signal. Moreover, even when

information is acquired, the group is more likely to stick with the default.

In real life there are many situations in which a group of individuals with con�icting

interests need to design their information structure and choose how to respond to it. We

take a �rst step in analyzing these situations by identifying novel properties of this set-up

relative to the single information designer problem that is studied in the literature. There

are several interesting open questions that remain to be explored. For instance, what is the

e¢ cient information to acquire when making a decision with a continuum of values (say,

how much to invest in a project or what is the size of a �ne that needs to be imposed)?

How does the decision to acquire a public signal interact with opportunities of the group

members to privately acquire information on their own? While addressing these questions

goes beyond the scope of this paper, we hope that our analysis lays the foundations for

this direction of future research.
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[18] Máckowiak, Bartosz, Filip Matµejka and Mirko Wiederholt (2018): �Rational

Inattention: A Disciplined Behavioral Model.�Working paper.

[19] Mailath, George J. and Andrew Postlewaite (1990): �Asymmetric Information
Bargaining Problems with Many Agents.�The Review of Economic Studies, Volume

57(3), 351�367.

[20] Matµejka, Filip and Alisdair McKay (2015): �Rational Inattention to Discrete
Choices: A New Foundation for the Multinomial Logit Model.�American Economic

Review, 105(1), 272�298.

[21] Mathevet, Laurent, Jacopo Perego and Ina Taneva (2020): �On Information
Design in Games.�Journal of Political Economy 128(4), 1370-1404.

[22] Mookherjee, Dilip and Stefan Reichelstein (1992): �Dominant Strategy Imple-
mentation of Bayesian Incentive Compatible Allocation Rules.�Journal of Economic

Theory 56, 378-399.

[23] Myerson, Roger B. and Mark A. Satterthwaite (1983). �E¢ cient mechanisms
for bilateral trading.�Journal of Economic Theory, 29(2), 265-281.

[24] Persico, Nicola (2004): �Committee Design with Endogenous Information.�The
Review of Economic Studies, 71(1), 165�191.

[25] Schnakenberg, Keith E. (2015): �Expert Advice to a Voting Body.� Journal of
Economic Theory 160, 102-113.

[26] Sims, Christopher A. (2003): �Implications of Rational Inattention.�Journal of
Monetary Economics 50(3), 665-690.

[27] Taneva, Ina (2019): �Information Design.�American Economic Journal: Microeco-
nomics 11(4), 2019, 151-185.

[28] Wang, Yun (2013): �Bayesian Persuasion with Multiple Receivers.�Working Paper.

23



5 Appendix: Proofs

Proof of Lemma 1

Let � 2 [0; p]n be the players�types. Consider a signal that induces a probability distrib-
ution q over a set R 2 [0; 1]J of posterior beliefs (on state ! = 1) such that the expected
posterior equals p, i.e.

P
r2R q (r) � r = p. Let �R (respectively, R) be the set of posterior

beliefs above (respectively, below) 1 � �(n�m+1). Suppose that �R contains (at least) two

distinct elements r0 and r00, where r0 < r00. Both r0 and r00 lead to the same collective

action a = 1 in the voting game.

Consider now a modi�ed signal that induces a distribution q̂ over a set of posterior

beliefs R̂. The set R̂ is identical to R, with one di¤erence: The posteriors r0 and r00 are

replaced by the posterior r̂ � q(r0)
q(r0)+q(r00)r

0 + q(r00)
q(r0)+q(r00)r

00. The distribution q̂ is de�ned

such that q̂(r) = q(r) for all r 2 Rnfr0; r00g, while q̂(r̂) = q(r0) + q(r00). Note that since

r̂ 2 (r0; r00), then r̂ is above 1 � �(n�m+1) and so it induces the collective action a = 1,

which is the same as the collective action induced by r and r0. Thus, the modi�ed signal

q̂ (over R̂) induces the same distribution over outcomes as the original signal q (over R).

By construction, the modi�ed signal also satis�es
P

r2R̂ q̂ (r) � r = p.
To show that the modi�ed signal is cheaper than the original one, we de�ne the function

h (r) � DKL (r; p), where DKL is de�ned in Equation (3). Note that the costs of the two

signals, as computed by Equation (2), di¤er only in the summands q(r0)�h (r0)+q(r00)�h (r00)
that appear in the cost of the original signal (and not in that of the modi�ed one) and the

summand q̂ (r̂) �h (r̂) that appear in the cost of the modi�ed signal (and not in that of the
original one). However, since h is a convex function,12 then we have:

q(r0)

q(r0) + q(r00)
h (r0) +

q(r00)

q(r0) + q(r00)
h (r00) > h

�
q(r0)

q(r0) + q(r00)
r0 +

q(r00)

q(r0) + q(r00)
r00
�

or, equivalently,

q(r0) � h (r0) + q(r00) � h (r00) > q̂ (r̂) � h (r̂) .

Thus, the modi�ed signal induces the same distribution over outcomes as the original one

but it is cheaper. The proof for the case in which there are more than two elements in R

is analogous. �

12To see this note that d
2h

(dr)2
= 1

r(1�r) > 0.
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Proof of Proposition 1

Consider the two stage game in which players �rst participate in the actual direct mech-

anism, and then following the signal realization (if a signal was acquired) they play the

voting game. Consider a perfect Bayesian equilibrium of this game in which the players

report truthfully in the �rst stage. Call this the �original�truthful equilibrium. Since the

players do not choose weakly dominated actions in the voting game, each player i votes

for the action a = 1 if and only if rH(�) � 1� �i: Hence, in this equilibrium, the collective
action 1 is chosen in the second stage if and only if this inequality holds for at least m

players.

Consider next an auxiliary mechanism that has the same hq; rH ; t1; :::; tni as the actual
mechanism, and where aH(�̂) and aL(�̂) are de�ned as in (4)-(5). Suppose all players other

than i report truthfully in the auxiliary mechanism. If player i also reports truthfully, then

his expected payo¤would be the same as in the original truthful equilibrium. If i deviates

and misreports �0i 6= �i, the induced distribution over signals would be exactly the same as
if he had deviated in the same way from the original truthful equilibrium. However, the

auxiliary mechanism�s decision on which collective action to take is weakly suboptimal for

player i. This is because in the auxiliary mechanism player i is �forced�to vote for the

action a = 1 if and only if the realized posterior is above 1 � �0i (and not above 1 � �i,
which is the preferred threshold for player i). Thus, deviations from truthtelling are less

pro�table in the auxiliary mechanism. Therefore, truthtelling must also be an equilibrium

in the auxiliary mechanism. It follows that under truthtelling, aH(�) and aL(�) replicate

the mapping from types to collective decisions in the original equilibrium. In light of this,

any surplus that is attainable in the original equilibrium can also be attained in a truthful

equilibrium of the auxiliary mechanism. �

Proof of Lemma 2

From U (�i) =
R �
0
Q (x) dx�M(0)� Ti(0) we obtain:

Ti(�i) = Q(�i) � �i �M(�i)�
Z �

0

Q (x) dx+M(0) + Ti(0). (18)

Player i�s ex-ante expected utility is given by
R 1�p
0

U(�i)dF (�i). Applying integration by

parts we obtain:Z 1�p

0

U(�i)dF (�i) =

Z 1�p

0

Q(�i)[
1� F (�i)
f(�i)

]dF (�i)� Ti(0)�M(0)
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Plugging in U (�i) = Q(�i) � �i �M(�i)� Ti(�i) and rearranging yields:Z 1�p

0

Ti(�i)dF (�i) = Ti(0) +M(0) +

Z 1�p

0

[v(�i) �Q(�i)�M(�i)] dF (�i) (19)

where v(�i) is the virtual valuation of type �i.

Substituting Equation (19) into Equation (9) yields that the designer�s problem is to

maximize
nX
i=1

Z 1�p

0

�
1� F (�i)
f(�i)

Q(�i)

�
dF (�i)�

nX
i=1

Ti(0)�
nX
i=1

M(0) (20)

subject to the following ex-ante budget balance constraint (which is obtained by plugging

Equation 19 into Equation BB):Z
�

c(q(�); rH(�))dF
n(�) =

nX
i=1

Ti(0) +
nX
i=1

M(0) +
nX
i=1

Z 1�p

0

[v(�i)Q(�i)�M(�i)] dF (�i)

(21)

where individual rationality requires �M(0)� Ti(0) � 0 for every player i, and therefore
0 � �

Pn
i=1 [Ti(0) +M(0)]. Since the constants T1 (0) ; : : : ; Tn (0) enter the objective func-

tion and the constraint only through the aggregate
Pn

i=1 Ti(0), we can assume that they

are all equal. We therefore denote T (0) = T1 (0) = : : : = Tn (0). We then use the ex-ante

budget-balance constraint to substitute for �
Pn

i=1 Ti(0) �
Pn

i=1M(0) in Equation (20)

and obtain the objective function and the conclusion that inequality (11) is a necessary

condition for individual rationality and ex-ante budget-balance.

To show that inequality (11) is a su¢ cient condition for individual rationality and ex-

ante budget-balance, �rst denote by q� and r�H the solution to the optimization problem

stated in the lemma. Let 	� denote the aggregate virtual surplus (the left-hand side

of Equation 11) evaluated at q� and r�H . Second, compute M
� (0) using the q� and r�H .

Third, set T � (0) = �M�(0)� 1
n
	�. This guarantees ex-ante budget balance according to

Equation (21). Since the aggregate virtual surplus 	� is non-negative by Equation (11)

then individual rationality is satis�ed (i.e. �T � (0) �M�(0) � 0). Finally, to complete

the description of the mechanism it remains to de�ne the transfer functions (t�i (�))
n
i=1 such

that for each player i; E��i(t�i (�i; ��i)) = T �i (�i). One way to do this is to simply let

t�i (�i; ��i) = T
�
i (�i). �

Proof of Lemma 3

Suppose that hq; rH ; t1; :::; tni is an auxiliary mechanism that satis�es incentive compatibil-
ity, individual rationality and ex-ante budget balance, but does not satisfy non-wastefulness.
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We show a modi�cation that increases the expected payo¤ to the players without a¤ecting

the constraints. Therefore, the given mechanism is not optimal.

Since the mechanism does not satisfy non-wastefulness, there exist a non-zero measure

of type realizations (�i; ��i) for which q(�) > 0 and rH(�) < 1 � �(n�m+1). Suppose we
modify q into q0 as follows:

q0(�) =

(
q(�) if rH(�) � 1� �(n�m+1)

0 if rH(�) < 1� �(n�m+1)
.

That is, whenever the original mechanism purchases a non instrumental signal, the modi-

�ed mechanism does not purchase a signal. Notice that

Q0(�i) =

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

q0(�i; ��i)dF (��i)

=

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

q(�i; ��i)dF (��i) = Q(�i)

M 0 (�i) =

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

(1� rH(�i; ��i)) � q0(�i; ��i)dF (��i)

=

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

(1� rH(�i; ��i)) � q(�i; ��i)dF (��i)

=M (�i) .

Denote the expected decrease in the cost of purchasing signals by

� =

Z
�jrH(�)<1��(n�m+1)

c(q(�); rH(�))dF (�) > 0.

For every i 2 f1; : : : ; ng de�ne
t0i(�̂) = ti(�̂)�

�

n
.

The new mechanism satis�es incentive compatibility and individual rationality because

Q0 = Q and M 0 = M , and the transfers decreased by a constant for all types (so that

�M (0) � T (0) � 0). By construction the mechanism is budget-balanced, and since

the expected payment of type 0 decreased, then by Equation (20) the expected surplus

increased. �
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Proof of Proposition 2

The proof consists of three parts. First, we �nd three functions, r�H (�; �) ; r
�
L (�; �) and

q� (�; �), that satisfy non-wastefulness and maximize the Lagrangian that is given by

Equation (14), for any multiplier � and any pro�le of types �. Second, we show that

for any � � 0, the function q� (�; �) is increasing in each player�s type while r�H (�; �)

and r�L (�; �) are decreasing in each player�s type. Hence, the function Q
� (�i; �) that is

induced by q� (�; �) (according to Equation 12) is monotone. Third, an argument of Hell-

wig (2003) guarantees the existence of some �� � 0 for which the mechanism de�ned

by r�H (�; �
�) ; r�L (�; �

�) and q� (�; ��) has a non-negative virtual surplus. Thus, by the

Lagrange Su¢ ciency Theorem (see, e.g., Theorem C.1 in Kelly and Yudovina, 2014), the

functions r�H (�; �
�) ; r�L (�; �

�) and q� (�; ��) de�ne the mechanism that attains the maximal

aggregate surplus (Equation 10) subject to (i) Q (�i) is monotone and (ii) the aggregate

virtual surplus (Equation 11) is non negative.

PART I. Fix a pro�le of types � and a multiplier �. The part of the Lagrangian (Equation
14) that is a¤ected by q and rH is:

L (q; rH ; w) = q(rH � (1� w))�
1

n
� c(q; rH) (22)

where rH ; w and q are used for brevity instead of rH (�; �) ; w(�; �) and q (�; �). Note that

� and � a¤ect the values of the maximizers q and rH only through w. Di¤erentiating

L (q; rH ; w) with respect to q and rH and equating to zero yields:

L1 (q; rH ; w) = rH � (1� w)�
1

n
� c1 (q; rH) = 0, (FOCq)

L2 (q; rH ; w) = q �
1

n
� c2 (q; rH) = 0. (FOCr)

where c1(q; rH) is the derivative of the function c(q; rH) with respect to its �rst argument

q, and c2(q; rH) is the derivative of c(q; rH) with respect to its second argument rH .

We begin by looking for a pair (~q; ~rH) that solves (FOCq) and (FOCr). Plugging in

c2 (q; rH) (for the derivation of c2 and all other partial derivatives of the cost function see

the supplementary appendix B) into (FOCr) and simplifying yields:

ln

�
~rH
~rL

1� ~rL
1� ~rH

�
=
n

�
. (23)
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where ~rL =
p�~q~rH
1�~q . Plugging c1 (q; rH) into (FOCq), and using Equation (23) we obtain:

ln

�
1� ~rL
1� ~rH

�
=
n

�
(1� w) .

We therefore have that:

~rL =
e
n
�
[1�w(�;�)] � 1
e
n
� � 1

; (24)

~rH =
e
n
� � en�w(�;�)

e
n
� � 1

; (25)

~q =
p� ~rL (�)

~rH (�)� ~rL (�)
(26)

We say that the solution (~q; ~rH) is interior if ~q 2 (0; prH ) and ~rH 2 (p; 1) and we say it
is non-wasteful if ~rH � 1� �(n�m+1).
Since L is not a concave function in general, it is not a priori guaranteed that (~q; ~rH)

is a maximizer of L. Note, however, that the corner solutions rH = 1 or q = p
rH
(or,

equivalently, rL = 0) never maximize L. This is because limrH!1 c2 (q; rH) = 1 and

therefore L2 (q; 1 ; w) < 0 for any q � 0 and w. Hence rH = 1 is not a maximizer of L.
Similarly, limq! p

rH
c1 (q; rH) = 1, and therefore L1

�
p
rH
; rH ; w

�
< 0 for any rH and w.

Hence q = p
rH
is not a maximizer of L. Thus, the only candidates for a corner solution are

q = 0 or ~rH = p, i.e. solutions in which no signal is acquired.

Our next result establishes that although L is not concave, if (~q; ~rH) is interior and
non-wasteful then it is indeed a maximizer of L.

Lemma 4 For any w, if (~q; ~rH) is interior and non-wasteful, then it maximizes L (q; rH ; w).

Proof. Given w, suppose that (~q; ~rH) is interior and that it is non-wasteful (i.e. ~rH �
1 � �(n�m+1)). We prove the lemma in two steps. First, we show that (~q; ~rH) is a local
maximizer of L (q; rH ; w). Then, we show that L (~q; ~rH ; w) is greater than the value of
L in the corner solution in which no signal is acquired.
To show that (~q; ~rH) is a local maximum it su¢ ces to show that L11 (q; rH ; w) < 0

and that the determinant of the Hessian matrix of L (q; rH ; w) is positive when evaluated
at (~q; ~rH). The former is true because L11 (~q; ~rH ; w) = � 1

n
� c11 (~q; ~rH) < 0. To see the

latter, note that the determinant of the Hessian matrix of L (q; rH ; w) is given by:

D � L11 (~q; ~rH ; w) � L22 (~q; ~rH ; w)� (L12 (~q; ~rH ; w))2

=

�
� 1
n
� c11 (~q; ~rH)

�
�
�
� 1
n
� c22 (~q; ~rH)

�
�
�
1� 1

n
� c12 (~q; ~rH)

�2
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Plugging in c11; c22 and c12, and using Equation (23), we obtain:

D =
��
n

�2
� q

(1� q) �
1

rH
� 1
rL
� (rH � rL)2

(1� rH) (1� rL)
> 0.

It remains to show that L (~q; ~rH ; w) is greater than zero, which is the value of L in the
corner solution in which no information is acquired. For any rH and w, de�ne q̂ (rH ; w) to

be the value of q for which (FOCq) is satis�ed (whenever such a value exists), and de�ne

r̂L (rH ; w) :=
p� rH � q̂ (rH ; w)
1� q̂ (rH ; w)

to be value of rL that is uniquely determined by rH and q̂ (rH ; w). By de�nition we have

that ~q = q̂ (~rH ; w) and ~rL = r̂L (~rH ; w). Let L̂ (rH ; w) be the value of the Lagrangian
when q is computed according to q̂ (rH ; w):

L̂ (rH ; w) � L (q̂ (rH ; w) ; rH ; w) = q̂ (rH ; w) �
1

n
� c1 (q̂ (rH ; w) ; rH)�

1

n
� c(q̂ (rH ; w) ; rH).

Substitute the expressions for c (�) and c1 (�) into the right-hand side and simplify to obtain:

L̂ (rH ; w) =
1

n
�
�
p � ln

�
p

r̂L (rH ; w)

�
+ (1� p) � ln

�
1� p

1� r̂L (rH ; w)

��
. (27)

Inspection of Equation (27) reveals that the value of L̂ (rH ;w) is decreasing in r̂L (rH ; w)
when r̂L (rH ; w) � p.13 This means that L̂ attains its minimal value when r̂L (rH ; w) = p,
in which case L̂ is zero. Note, however, that since (~q; ~rH) is interior, then ~rL = p�~rH �~q

1�q < p.

This means that L̂ (~q; ~rH ; w) > 0, which completes the proof.

Suppose that (~q; ~rH) is interior but wasteful. Since we look for maximizers of L that
satisfy non-wastefulness, and since L is not in general a concave function, the question is
whether rH should be �corrected�so that non-wastefulness exactly binds or should it attain

an even higher value. Our next result shows that in this case non-wastefulness should bind,

i.e. r�H = 1� �(n�m+1). The values of r�L and q� that maximize L are determined according
to (FOCq), whenever possible.

Lemma 5 Given w, suppose that (~q; ~rH) is interior but is wasteful. Let r�H = 1��(n�m+1).
Let r�L be the solution to DKL (r

�
H ; rL) =

n
�
(r�H � (1� w)) if a solution exists in [0; p], and

r�L = p otherwise. Then, r
�
H and q

� =
p�r�L
r�H�r�L

are maximizers of L (q; rH ; w).

13This is because d
drL

�
p ln

�
p
rL

�
+ (1� p) ln

�
1�p
1�rL

��
= � p�rL

rL(1�rL) .
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m
+
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� 0(n�

m
+
1)

r̂L(�; w0)

r�L(1� �0(n�m+1); w0)

r�L(1� �(n�m+1); w)

Figure 3: r̂L(�; w)

Proof. Suppose �rst that r�H is given. We begin by �nding the value of q
� that maximizes

L (q; r�H ; w). The fact that L11 (q; r�H ; w) = � 1
n
� c11 (q; r�H) < 0 implies that q� satis�es

(FOCq) whenever possible. Since c1 (q; r�H) = � � DKL (r
�
H ; rL), we can rewrite (FOCq),

when evaluated at r�H , as follows:

r�H � (1� w)�
�

n
�DKL (r

�
H ; rL) = 0 (28)

Thus, r�L is the solution to this equation, whenever the solution is in [0; p]. The value of

q� is then uniquely determined such that q� = p�r�L
r�H�r�L

.

If there is no solution to Equation (28) within the range [0; p], then r�L = p and q
� = 0.

This is because when there is no solution to Equation (28) then it must be the case that

its left-hand side is negative for all rL 2 [0; p].14 In this case, decreasing q increases L,
hence q� = 0.

We proceed to show that if ~rH < 1 � �(n�m+1); then the optimal solution is r�H =

1 � �(n�m+1). To achieve this, we use the notation de�ned in the proof of Lemma 4 to
show the following three properties of the function r̂L (rH ; w) (whenever this function is

de�ned), which are depicted in Figure 3.

(P1) For any w, the function r̂L (rH ; w) attains a minimum at ~rH . Recall that the

function L̂ (rH ;w), de�ned in Equation (27), is decreasing in r̂L (�). Therefore, for any w,

14To see this, note that DKL (r�H ; 0) =1 and therefore the left-hand side of Equation (28) is negative
for rL = 0. If there is a value rL 2 [0; p] for which the left-hand side is positive, then the fact that DKL is
continuous implies, by the intermediate value theorem, that there must also be a solution to the equation
within [0; p].
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the function L̂ (rH ;w) attains a maximum when r̂L (rH ;w) is at its minimum value. Since
L̂ (rH ;w) is maximized at ~rH , is follows that r̂L (rH ; w) attains a minimum at ~rH .

(P2) For any w, the function r̂L (rH ; w) is convex in rH . De�ne

g (rH ; rL) �
1

n
� c1
�
p� rL
rH � rL

; rH

�
� rH

so that (FOCq) can be written as:

g (rH ; rL) = w � 1:

Substituting for c1 we obtain:

g (rH ; rL) =
�

n

�
(1� rH) ln

�
1� rH
1� rL

�
+ rH ln

�
rH
rL

��
� rH .

The function g (rH ; rL) is decreasing in its second argument (rL) and strictly convex. The

former property follows from the fact that g2 = ��
n
1
rL

rH�rL
1�rL < 0 while the latter follows

from the fact that g11 = 1
rH(1�rH) > 0 and that the determinant of the Hessian of g is

positive.15

To see that r̂L (rH ; w) is convex in rH , denote x � (rH ; r̂L (rH ; w)) and x0 � (r0H ; r̂L (r0H ; w))
for some two values rH and r0H such that 1 � r0H > rH � p. For any � 2 (0; 1), convexity
of g implies that:

g(�x+ (1� �)x0) < �g(x) + (1� �)g(x0)

or, equivalently,

g(�rH+(1��)r0H ; �r̂L (rH ; w)+(1��)r̂L (r0H ; w)) < �g (rH ; r̂L(rH ; w))+(1��)g (r0H ; r̂L(r0H ; w)) :
(29)

Since g (rH ; rL(rH)) = g (r0H ; rL(r
0
H)) = w � 1, the right-hand side of (29) equals w � 1.

Denote r00H := �rH+(1��)r0H and recall that, by de�nition, we have that g(r00H ; rL (r00H)) =
w � 1. It therefore follows that

g(r00H ; �r̂L(rH ; w) + (1� �)r̂L(r0H ; w)) < g(r00H ; r̂L (r00H ; w)).

15This is because g12 = ��
n

1
rL(1�rL) and g22 =

�
n
r2L�2rHrL+rH
r2L(1�rL)

2 and therefore (g11) (g22) � (g21)2 =�
�
n

�2 1
rHr2L

(rH�rL)2
(1�rH)(rL�1)2

> 0
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And since g is decreasing in its second argument we obtain:

r̂L (r
00
H ; w) = r̂L(�rH + (1� �)r0H ; w) < �r̂L(rH ; w) + (1� �)r̂L(r0H ; w).

Thus, for any w, the function r̂L(rH ; w) is convex in rH .

(P3) For any rH , the function r̂L (rH ; w) is decreasing in w: Suppose that w0 > w. Then,

by de�nition, for every rH we have that g (rH ; r̂L (rH ; w)) = w�1 and g (rH ; r̂L (rH ; w0)) =
w0 � 1. Therefore:

g (rH ; r̂L (rH ; w
0)) > g (rH ; r̂L (rH ; w)) .

Since g is decreasing in its second argument (as we showed in P2 above) it immediately

follows that r̂L (rH ; w0) < r̂L (rH ; w).

(P1) and (P2) establish that for any w, the function r̂L (rH ; w) is convex in rH and

attains minimum at ~rH . We therefore deduce that for all values of rH � 1��(n�m+1) > ~rH
the function r̂L (rH ; w) is increasing in rH . Since L̂ is decreasing in r̂L (see Equation 27)
it follows that if rH is restricted to the domain

�
1� �(n�m+1); 1

�
, so that non-wastefulness

is satis�ed, then the maximum of L̂ is attained at rH = 1� �(n�m+1). Thus, r�H (�1; �2) =
1� �(n�m+1), which completes Part I of the proof.

PART II. We now turn to show that q� (�; �) is increasing in each player�s type while
r�H (�; �) and r

�
L (�; �) are decreasing in each player�s type, where � � (�i; ��i). Fix ��i

and �. Suppose that �0i > �i and denote w � w (�i; ��i; �) and w0 � w (�0i; ��i; �) so that
w0 > w. We also denote �0 � (�0i; ��i).
If (~rH (�; �) ; ~q (�; �)) is not interior, then no signal is acquired when the players report

�, i.e. q� (�; �) = 0 and r�L (�; �) = p. Without loss of generality we can assume that in

this case r�H (�; �) = 1, and it immediately follows that q
� (�0; �) � q� (�; �) and r�L (�0; �) �

r�L (�; �) and r
�
H (�

0; �) � r�H (�; �).
For the rest of Part II we then assume that (~rH (�; �) ; ~q (�; �)) is interior. This also

implies that (~rH (�0; �) ; ~q (�0; �)) is interior. To see why, note that assigning the signal

~rH (�; �) and ~q (�; �) whenever the type realization is �0 yields a total surplus which is

higher than the total surplus attained by the same signal when the realization is � (which

is positive). Hence, the corner solution in which no signal is acquired (i.e., the only possible

corner solution) cannot be optimal when the type realization is �0.

We divide the analysis into four cases:

Case 1: Suppose that ~rH (�; �) � 1� (�i; ��i)(n�m+1) and ~rH (�0; �) � 1� (�0i; ��i)
(n�m+1).

In this case both (~rH (�; �) ; ~q (�; �)) and (~rH (�0; �) ; ~q (�0; �)) are interior and non-wasteful.
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Since ~rH and ~rL (as given by Equations 25 and 24) are decreasing in w (�i; ��i; �) and

w (�i; ��i; �) is increasing in �i, then:

r�L (�
0; �) = ~rL (�

0; �) =
e1�

n
�
w0 � 1

e� 1 <
e1�

n
�
w � 1

e� 1 = ~rL (�; �) = r
�
L (�; �) ,

r�H (�
0; �) = ~rH (�

0; �) =
e� en�w0
e� 1 <

e� en�w
e� 1 = ~rH (�; �) = r

�
H (�; �) .

And since ~q is decreasing in ~rL and decreasing in ~rH for all ~rL � p � ~rH we obtain:16

q� (�0; �) = ~q (�0; �) =
p� ~rL (w0)

~rH (w0)� ~rL (w0)
>

p� ~rL (w)
~rH (w)� ~rL (w)

= ~q (�; �) = q� (�; �) .

Case 2: Suppose that ~rH (w) � 1 � (�i; ��i)(n�m+1) and ~rH (w0) � 1 � (�0i; ��i)
(n�m+1).

In this case both (~rH (�; �) ; ~q (�; �)) and (~rH (�0; �) ; ~q (�0; �)) are interior but wasteful.

Therefore, by Part I of the proof, we have that r�H (�
0
i; �i; �) = 1 � (�0i; ��i)

(n�m+1) and

r�H (�i; ��i; �) = 1� (�i; ��i)
(n�m+1). Since (�0i; ��i)

(n�m+1) � (�i; ��i)(n�m+1) we deduce:

r�H (�i; ��i; �) � r�H (�0i; ��i; �) � ~rH (�0i; ��i; �)

and therefore r�H (�i; ��i; �) is decreasing in each player�s type.

Next, recall that in the proof of Lemma (5) we showed that due to (P1) and (P2) the

function r̂L (rH ; w0) is increasing in rH when rH > ~rH (�
0
i; ��i; �). Hence,

r̂L (r
�
H (�

0
i; ��i; �) ; w

0) < r̂L (r
�
H (�i; ��i; �) ; w

0) .

In that proof we also established (P3), by which for any rH the function r̂L (rH ; w) is

decreasing in w. Since w0 > w we have that r̂L (r�H (�i; ��i; �) ; w
0) < r̂L (r

�
H (�i; ��i; �) ; w)

and therefore:

r�L (�
0
i; ��i; �) = r̂L (r

�
H (�

0
i; ��i; �) ; w

0) < r̂L (r
�
H (�i; ��i; �) ; w) = r

�
L (�i; ��i; �) .

Finally, since q� = p�r�L
r�H�r�L

is decreasing in r�L and decreasing in r
�
H for all r

�
L � p � r�H then

q� (�0i; ��i; �) > q
� (�i; ��i; �).

Case 3: Suppose that ~rH (�i; ��i; �) < 1 � (�i; ��i)
(n�m+1) and ~rH (�

0
i; ��i; �) � 1 �

(�0i; ��i)
(n�m+1). The functions ~rH (x; ��i; �) and 1 � (x; ��i)(n�m+1) are both continuous

16This is because d
drL

�
p�rL
rH�rL

�
= � rH�p

(rH�rL)2
and d

drH

�
p�rL
rH�rL

�
= � p�rL

(rH�rL)2
.
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in x. Hence, there must be at least one value �00i 2 (�i; �0i) for which

~rH (�
00
i ; ��i; �) = 1� (�00i ; ��i)

(n�m+1) .

According to Case 2 above we know that q� (�00i ; ��i; �) > q
� (�i; ��i; �). According to Case

1 above we know that q� (�0i; ��i; �) > q
� (�00i ; ��i; �). We thus conclude that q

� (�0i; ��i; �) >

q� (�i; ��i; �). Analogous arguments show that r�L (�
0
i; ��i; �) < r�L (�i; ��i; �) and that

r�H (�
0
i; ��i; �) < r

�
H (�i; ��i; �).

Case 4: Suppose that ~rH (�i; ��i; �) > 1�(�i; ��i)(n�m+1) and ~rH (�0i; ��i; �) � (�0i; ��i)
(n�m+1).

As in Case 3 above we can �nd a value �00i 2 (�i; �0i) for which

~rH (�
00
i ; ��i; �) = 1� (�00i ; ��i)

(n�m+1) .

According to Case 1 above we know that q� (�00i ; ��i; �) > q� (�i; ��i; �). According to

Case 2 above we know that q� (�0i; ��i; �) > q� (�00i ; ��i; �). We thus again conclude that

q� (�0i; ��i; �) > q
� (�i; ��i; �). Analogous arguments show that r�L (�

0
i; ��i; �) < r

�
L (�i; ��i; �)

and that r�H (�
0
i; ��i; �) < r

�
H (�i; ��i; �).

Part III. From the above two lemmas, it follows that for any � � 0 and for each pro�le of
types �; the values q�(�; �) and r�H(�; �) that maximize L (q; rH ; �) are such that q�(�; �) is
unique and r�H(�; �) is unique whenever q

�(�; �) > 0 (i.e., whenever a signal is purchased).

It remains to verify that there exists �� � 0 for which q�(�; ��) and r�H(�; ��) induce a non-
negative expected aggregate virtual surplus (i.e., there exists �� � 0 for which q�(�; ��)
and r�H(�; ��) are feasible). Let S(�) denote the ex-ante expected virtual surplus (that is
given by Equation 11) as a function of � :

S(�) = E�

"
nX
i=1

(v(�i)q
�(�; �)� (1� r�H(�; �)) q�(�; �))� c(q�(�; �); r�H(�; �))

#

Lemmas 1 and 2 in Hellwig (2003) guarantee that S(�) is continuous in � and that S(�) � 0
for a su¢ ciently large �. This completes the proof. �

Proof of Proposition 3

By Corollary 1, there exists an optimal auxiliary mechanism in which truthtelling is a dom-

inant strategy. Consider an actual mechanism with the same functions q�, r�H and r
�
L and

the same transfer rules (the only di¤erence between the auxiliary and actual mechanisms

is that in the latter the players are not bound by their report in the ensuing voting game).

We will show that truthtelling is a dominant strategy also in the actual mechanism.
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Assume, by contradiction, that truthtelling is not a dominant strategy in the actual

mechanism. This means that there is a type �i of player i that prefers to report some

�0i 6= �i in the actual mechanism, but not in the auxiliary mechanism, when the other

players report some ��i (which may not coincide with their true types).

It cannot be that q�(�0i; ��i) = 0 (to simplify the notation we omit throughout this

proof the dependence of q�, r� and r�L on the value of �
�). To see why, note that when no

information is acquired (i.e., q�(�0i; ��i) = 0) player i prefers the action a = 0 in the voting

game that follows the actual mechanism. But this is precisely the action that the auxiliary

mechanism chooses when q�(�0i; ��i) = 0. Since player i does not want to deviate and report

�0i in the auxiliary mechanism, he has no incentive to do so in the actual mechanism.

Suppose that q�(�0i; ��i) > 0. When the posterior belief r�L(�
0
i; ��i) is realized, the

auxiliary mechanism votes for a = 0 on player i�s behalf. But since r�L(�
0
i; ��i) < p this is

also the action that player i prefers in the voting game that follows the actual mechanism.

Suppose then that the posterior r�H(�
0
i; ��i) is realized. Recall that since signals that

are purchased in the optimal auxiliary mechanism are non-wasteful then r�H(�
0
i; ��i) �

1� (�0i; ��i)
(n�m+1) � p. If for such a posterior, player i votes for a = 1 in the second stage

game following the actual mechanism, then again his action coincides with the action that

the auxiliary mechanism chooses for him. Therefore, for i to have a pro�table deviation in

the actual mechanism but not in the auxiliary mechanism, it must be the case that after

r�H(�
0
i; ��i) > 1� (�0i; ��i)

(n�m+1) player i prefers to vote for a = 0. This means that player

i of type �i strictly gains by increasing the chances of the default action. He may further

increase his utility if m(�0i; ��i)+ ti(�
0
i; ��i) < m(�i; ��i)+ ti(�i; ��i). Since by monotonicity

of q� we have q� (0; ��i) � q� (�i; ��i), and sincem(0; ��i)+ti(0; ��i) � m(�i; ��i)+ti(�i; ��i)
(which immediately follows from the fact that type 0 does not want to report �i in the

auxiliary mechanism), then the most pro�table deviation is to report �0i = 0.

If q� (0; ��i) < q� (�i; ��i) or m(0; ��i) + ti(0; ��i) < m(�i; ��i) + ti(�i; ��i) then player i

has a pro�table deviation already in the auxiliary mechanism by reporting that his type

is 0. This contradicts truth-telling being a dominant strategy. Otherwise, player i is

indi¤erent between reporting the truth and his most pro�table deviation in the actual

mechanism, contradicting our initial assumption that player i has a pro�table deviation

in the actual mechanism. We have therefore established that truthtelling is a dominant

strategy in the actual mechanism.

Finally, note that in the optimal auxiliary mechanism in which truthtelling is a domi-

nant strategy the budget balance constraint is satis�ed only ex-ante. Therefore, the bud-

get of the actual mechanism de�ned above is also balanced only ex-ante. However, since

truthtelling is a dominant strategy in the actual mechanism then it is also a Bayesian
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Figure 4: The functions ~rH(�1; �2; ��) and 1�minf�1; �2g for some �xed �2

Nash equilibrium. Thus, by Borgers (2015, p.47), we can modify the transfers to satisfy

ex-post budget balanceness without a¤ecting the interim expected transfers, and hence,

truthtelling remains a Bayesian Nash equilibrium. Furthermore, the individual rationality

of the auxiliary mechanism also carries over to the real mechanism. Thus, the resulting

actual mechanism satis�es incentive compatibility, individual rationality and it is budget-

balanced ex-post. Since, by Proposition 1, the expected surplus that is achievable by the

optimal actual mechanism is bounded above by the expected surplus that is achievable by

the optimal auxiliary mechanism, it follows that the actual mechanism we de�ned above

is the optimal one. �

Proof of Proposition 4

We use the notation de�ned in the proof of Proposition 2. Let �� be the value that is

determined by Proposition 2.

(i) Fix �2. For any type �1, a signal is purchased in the second best mechanism whenever

r�L (�1; �2; �
�) < p. By Proposition 2, we know that r�L (�1; �2; �

�) is decreasing in �1.17

Thus, for any �01 > �1 we have that r�L (�
0
1; �2; �

�) < r�L (�1; �2; �
�) < p, implying that if

a signal is purchased in the second best mechanism for some �1 then it is purchased also

for �01 > �1. It follows that for any �2 there is a unique cuto¤ �
;
1 (�2) for which a signal is

purchased if and only if �1 > �;1 (�2).

17We are also guaranteed that r�L (�1; �2; �) > 0 for any �1 because, as we discuss in the proof of
Proposition (2), the corner solution in which rL is 0 (or, equivalently, rH = p=q) never maximizes the
(partial) Lagrangian that is given by Equation (22).

37



(ii) Suppose that �1 and �2 are such that r�L (�1; �2; �
�) < p, so that a signal is purchased

in the second best mechanism. By Proposition 2, r�L (�1; �2; �
�) is decreasing in �2, and

therefore r�L (�1; �
0
2; �

�) < p for any �02 > �2. Thus, the cuto¤ �
;
1 (�2), below which a signal

is not purchased for any �1 < �;1 (�2), is decreasing in �2.

(iii) Fix �2. Since w(�1; �2; ��) is increasing in �1 then ~rH (�2; �2; ��) = e
2
��e

2
�w(�1;�2;�

�)

e
2
��1

is

decreasing in �1. In addition, our assumption that
1�F (�1)
f(�1)

is concave in �1 implies that

~rH (�2; �2; �
�) is also concave in �1.18 Also note that 1 � minf�1; �2g is decreasing and

convex in �1. Figure (4a) illustrates the functions ~rH (�2; �2; ��) and 1 � minf�1; �2g for
some �2, where the values if �1 are depicted on the horizontal axis.

When �1 = �2 we know that ~rH (�2; �2; ��) > 1� �2. The reason is that by (FOCq) we
have ~rH (�2; �2; ��)� (1� w (�2; �2; ��)) = c1 (~q (�2; �2; ��) ; ~rH (�2; �2; ��)), and since

c1 (~q (�2; �2; �
�) ; ~rH (�2; �2; �

�)) = DKL (~rH (�2; �2; �
�) ; ~rL (�2; �2; �

�)) > 0,

where ~rL (�2; �2; ��) =
p�~q(�2;�2;��)�~rH(�2;�2;��)

1�~q(�2;�2;��) , then ~rH (�2; �2; ��) � (1� w (�2; �2; ��)) > 0.
Since w (�2; �2; ��) � �2 we obtain that ~rH (�2; �2; ��) > 1� �2.
Thus, holding �2 �xed, the functions ~rH (�1; �2; ��) and 1 � minf�1; �2g cross each

other at most once in the range �1 2 [0; �2]. If the functions never cross each other, i.e.
~rH (�1; �2; �

�) > 1 �minf�1; �2g for all �1 2 [0; �2], then non-wasefulness is never binding
and in that case �W1 (�2) = �;1 (�2). If the functions cross each other exactly once, then

�W1 (�2) is the value of �1 at the point of crossing. Thus, ~rH (�1; �2; �
�) > 1 �minf�1; �2g

for any �1 > �W1 (�2) and ~rH (�1; �2; �
�) < 1�minf�1; �2g for any �1 < �W1 (�2).

(iv) Suppose that for some �2 we have �W1 (�2) > �;1 (�2), so non-wastefulness is binding

for some values of �1. From (iii) we know that �W1 (�2) < �2. Pick some �02 > �2. If

�W1 (�
0
2) > �2 then �

W
1 (�2) < �

W
1 (�

0
2) and the proof is complete. Otherwise, in the range

�1 2 [0; �02] we have that 1�minf�1; �02g = 1��1, as illustrated in Figure (4b). In addition,
since ~rH (�1; �2; ��) is decreasing in �2 then ~rH

�
�W1 (�2) ; �

0
2; �

�� < ~rH
�
�W1 (�2) ; �2; �

�� =
1 � �W1 (�2) (note that in Figure (4b) ~rH (�1; �2; ��) and 1 � minf�1; �2g are the dashed
lines). From (iii) we also know that ~rH (�02; �

0
2; �

�) > 1 � �02. Therefore, continuity of ~rH
implies that there exists x 2

�
�W1 (�2) ; �

0
2

�
for which ~rH (x; �02; �

�) = 1 � x. The cuto¤
�W1 (�

0
2) is then given by x, implying that �

W
1 (�

0
2) � x > �W1 (�2).

18This is bacuase: (i) ~rH is decreasing and concave in w, and (ii) w is convex in �1, due to our assumption

that 1�F (�1)f(�1)
is concave. Thus, d2~rH

(d�1)
2 =

d2~rH
(dw)2

�
�
dw
d�1

�2
+ d2w

(d�1)
2 � d~rHdw < 0.
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