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Abstract
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1 Introduction

The most successful currencies in Medieval Europe (e.g., the Florentine florin) were coins made of gold or

silver obtained through mining activities. The first crypto-currency, Bitcoin, was designed to mimic gold-

based coinage: the supply of money increases gradually over time and becomes constant in the long run.1

Following Bitcoin, hundreds of new crypto-currencies have been introduced over the last decade, bringing

some foundational questions of monetary theory to the forefront. Can privately-produced, intrinsically useless

objects be traded at a positive price? How is the initial value of a new money determined and how does its

price evolve over time? Is a boom and burst of crypto-currency prices consistent with rational expectations?

Is the private production of money socially effi cient?

The goal of this paper is to revisit these questions by studying the dynamics of an economy where money

is privately produced at some cost, possibly endogenous, through mining – a time-consuming activity. Our

theory applies to the mining of commodity monies, e.g., gold and silver, as well as the production of fiat

currencies, e.g., Bitcoins. (Throughout the paper, we use Wallace’s (1980) definition of a fiat money as an

object that is inconvertible and intrinsically useless.)2 Because the determination of currency prices is better

understood in models where there is an essential role for a medium of exchange, we adopt the search-theoretic

model of monetary exchange of Shi (1995) and Trejos and Wright (1995). In this environment, trades take

place within pairwise meetings that are formed randomly. Heterogeneity in preferences and specialization in

production generate a lack-of-double-coincidence-of-wants problem and rule out barter trades. In addition,

agents, who are anonymous, cannot finance random consumption opportunities by issuing private debts,

hence a role for money (Kocherlakota, 1998). Money is indivisible and there is a unit upper bound on

individual money holdings. While this assumption was originally made for tractability, it captures the

notion that the quantity of liquid assets is scarce and affects the measure of transactions.3

We add two components to the Shi-Trejos-Wright model. First, we introduce a mining technology.

We distinguish technologies that correspond to the mining of tangible objects (e.g., gold) from mining

technologies for crypto-currencies. Second, we add a cost to mining that can take various forms. It can be

1 In Nakamoto (2008), the creator of Bitcoin, Satoshi Nakamoto, wrote: “The steady addition of a constant amount of new
coins is analogous to gold miners expending resources to add gold to circulation. In our case, it is CPU time and electricity
that is expended.”

2Goldberg (2005) discusses the notion of fiat money in monetary economics and disputes the common wisdom that fiat
monies defined as inconvertible and intrinsically useless media of exchange ever existed. In that regards, crypto-currencies
might be the first creation of fiat monies as defined by monetary theorists.

3 In the Appendix E we study a version of the model where money is perfectly divisible and agents adjust their unrestricted
asset holdings in competitive exchanges. The results are qualitatively similar.



an exogenous cost associated with the use of input factors, such as computers and electricity, or an endogenous

opportunity cost due to occupation choice. We will characterize for different mining technologies the set of

all deterministic equilibria under perfect foresight starting from the initial time where money is introduced.

1.1 Preview of our results

In accordance with monetary folk-theorems, a privately-produced fiat money can be valued if agents are

suffi ciently patient and trading frictions are not too severe. The assumption that monies are privately

produced makes the condition for the existence of a monetary equilibrium more stringent. The threshold

for the rate of time preference below which money is valued decreases with the maximum amount of money

that can be mined and the speed of mining.

Our leading example assumes the speed of mining decreases with the amount of money already mined.

We show that the initial price of money is indeterminate within a nonempty interval. The largest value in

this interval corresponds to the unique equilibrium leading to a positive value of the currency in the long run.

For all lower but positive initial values, the equilibrium path for the value of money is first increasing and

then decreasing, and it vanishes asymptotically. So unless agents can coordinate on the highest equilibrium

—one equilibrium among a continuum of perfect-foresight equilibria – the life cycle of a privately-produced

currency is composed of a boom, where agents mine money, and a bust where agents trade a depreciating

money. Across equilibria, the peak for the value of money is positively correlated with its initial value. This

result shows that the starting value of a new currency is crucial for its long-run viability.

Increases in the amount of money that can be privately mined, e.g., through discoveries of new mines

or through an increase in the supply of crypto-currencies, generates price waves. The value of money falls

initially and then increases gradually over time. The overall trend for the price of money is downward

slopping. The correlation between the quantity of money and its price can change sign in the short and long

run: the correlation is positive along the transitional path but negative across steady states.

A critical component to the fundamental value of a new currency is the extent of its transaction role

(Tirole, 1985). A new money can have a transactional role in the long run even if does not serve as a means

of payment in the short run. In all equilibria of our model, the new money does not circulate initially and

this outcome is shown to be constrained-effi cient. To an outside observer, the new currency looks like a

speculative bubble since it is only held for its capital gains. It is only when money is suffi ciently abundant
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that agents stop hoarding it. We obtain similar outcomes when we endogenize the acceptability of a new

currency through a costly ex ante investment.

Dynamics of currency prices depend on the mining technology. If miners compete for the revenue of

money creation and the cost of mining is exogenous and constant, then the price of the currency falls over

time in all equilibrium trajectories. This result is overturned if acceptability of money is endogenous, as in

Lester et al. (2012), or if the cost of mining is an endogenous opportunity cost. Moreover, the model with

costly acceptability generates sunspot equilibria according to which the acceptability of the currency varies

with a sunspot state that is independent of fundamentals, and the value of money is positively correlated

with acceptability. In a version of the model with endogenous opportunity cost, the currency issuer can

stabilize prices by choosing a money growth rate that is proportional to the fraction of the money supply

that is yet to mine, where the coeffi cient of proportionality depends on market structure and preferences.

This formula resembles the Bitcoin growth rate.

1.2 Empirical evidence.

We present motivating facts regarding the production and pricing of gold and crypto-currencies.

Gold mining and prices. In the following, we describe two historical episodes that illustrate the joint

dynamics of the supplies and prices of gold and silver. The left panel of Figure 1 plots the price level in

England and the inflow of silver and gold into Europe in 1300-1700.4 The inflow of precious metals from

America started to increase at the beginning of the 16th century. At the same time, Europe experienced

the so-called Price Revolution —a sustained increase in the price level. The positive correlation between

the price level and the quantity of gold and silver over that period of time is consistent with the quantity

theory. It is also consistent with the long-run comparative statics of our model when the changes in the

quantity of money are due to exogenous changes in the potential supply of gold or silver, e.g., because of

mine discoveries. Note that the late 16th century and early 17th century exhibit multiple price waves that

are also consistent with the short-run dynamics of our model following discoveries of new gold mines or

progress in mining technologies.

The second period we consider is the end of the 19th century and first half of the 20th century. The right

4The data is from Edo and Jacques (2019) on the cause of inflation in Europe in the period 1500-1700. The inflow of precious
metals includes the mine production in Europe as well as the import from America. The inflows is measured in tones of silver
and the inflow of gold is converted into silver-equivalent tones. The price level is computed by dividing the nominal GDP (in
pounds) by a real output index. We HP filtered the price data.
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Figure 1: (Left) Price level and inflow of precious metal in Europe during 14th to 17th centuries. (Right)
Purchasing power of gold in England and world mine production during 19th and 20th centuries.

panel of Figure 1 plots the deviations from trend of the purchasing power of gold and its production.5 The

two are positively correlated. Moreover, a two-variable vector autoregression model finds that the purchasing

power of gold Granger-causes its production in the same time period at a 5-percent significance level. (See

our Online Appendix A.) While this result seems to contradict the quantity theory, we will show that the

long-run correlations can differ from the short-run ones as the mining of gold in the short-run responds

positively to its price.6

Mining and pricing of Bitcoin. We take Bitcoin as our leading example for cryptocurrencies. The

left panel of Figure 2 shows the daily closing price of Bitcoin and its trend component as estimated by the

HP filter.7 Since 2017 there have been two large boom-and-bust cycles, the first one being larger than the

second one.8 From December 2016 to December 2017, the price of Bitcoin increased from $1130 to $19000

– a 17 times increase, then dropped by 5.5 times to around $3500 in December 2018. Our model will

establish conditions to generate boom-and-bust fluctuations under perfect foresight and will show how such

fluctuations can repeat themselves. Another feature of the data is the high volatility of the Bitcoin price.

According to Klein et al. (2018), the standard deviations of daily return for Bitcoin, gold and S&P500 are

5The data on purchasing power and production are from Jastram (2009). The purchasing power of gold is an index of the
nominal price of gold in England deflated by an index of commodity prices in England.

6Bordo (1981) uses a similar idea to show a rising purchasing power of gold induces an increase in the monetary gold stock.
7We use a smoothing parameter of 80000 which is in between the value used by Hodrick and Prescott’s original paper and

the one recommended by the Ravn-Uhlig rule.
8 In 2017 and 2018 there are around 20 Bitcoin hard forks. Although the crypto-currencies created by these hard forks are

not necessarily perfect substitutes of Bitcoin, one can view them as increases in the potential total supply of crypto-currencies.
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Figure 2: (Left) Daily Bitcoin price. (Right) Bitcoin price change and acceptability.

5.76, 1.05, and 0.89, respectively, from July 2011 to December 2017. A version of our model with endogenous

acceptability generates sunspot equilibria that can help explain the high volatility of currency prices.

Bitcoin has been designed so that its supply is predictable. The total supply of Bitcoins is controlled by

varying the diffi culty level of the mathematical puzzles that miners have to solve. If there is a sudden rise in

the number of miners, then the diffi culty level increases to keep the money supply along a pre-determined

path. As a result, one can infer the intensity of the mining activities (e.g., the number of miners and the CPU

time they invest into mining) by looking at the diffi culty level of the puzzles. We show in Online Appendix

A that the growth rate of Bitcoin prices Granger-causes the growth rate of the mining diffi culty level at

a 1-percent significance level. This finding is consistent with our assumption that the intensity of Bitcoin

mining is driven by the real value of Bitcoins. Relatedly, Prat and Walter (2018) use the Bitcoin-to-US

dollar exchange rate to predict the computing power of Bitcoin’s network.

In our model, the decision of an agent to accept money depends on its anticipated value. We test this

mechanism by comparing the number of new venues accepting Bitcoin each month and the growth rate of

Bitcoin prices at a monthly frequency.9 The right panel of Figure 2 shows that the growth rate of Bitcoin

prices leads the number of new venues accepting it. Statistically, the growth rate of prices Granger-causes

the number of new venues at a 1-percent significance level, and the correlation between the two series is 0.17.

9The data on Bitcoin’s acceptability is from CoinMap. It documents venues accepting Bitcoin as a means of payment since
2013. These venues include retailers, restaurants, ATMs, lodging, attractions etc. The daily data of Bitcoin prices is from
CoinMarketCap.com. For both data series, we plot the 6-month moving average.
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1.3 Literature review

Our model builds on the search-theoretic models of monetary exchange of Shi (1995) and Trejos and Wright

(1995) by adding a time-consuming mining activity and, in one version of the model, an occupation choice

with an endogenous opportunity cost of money production.10 Related papers include Burdett, Trejos and

Wright (2001) where the quantity of commodity money (cigarettes) is endogenous, Cavalcanti and Wallace

(1999) and Williamson (1999) where banks issue inside money, Lotz and Rocheteau (2002) and Lotz (2004)

who study the launching and adoption of a new fiat money, Cavalcanti and Nosal (2011) who interpret the

production of counterfeited notes as the issuance of a private money that is diffi cult to monitor, Hendrickson

and Luther (2017) who study the coexistence of Bitcoin and a regular currency under endogenous matching.

A thorough review of this class of models is provided by Lagos et al. (2017).

Fernandez-Villaverde and Sanches (2018) study currency competition in the Lagos-Wright model ex-

tended to have a unit measure of entrepreneurs who can issue distinguishable tokens at an exogenous cost.

Complementing their approach, in our model the measure of miners is endogenous. We study the case of

an exogenous cost of mining and the case of an endogenous opportunity cost and compare price dynamics.

Our description of the mining technology differs as we model its time dimension explicitly. Our focus is also

different as we emphasize price dynamics starting from the creation of a new currency up to its disappear-

ance. We use the Shi-Trejos-Wright model with indivisible money instead of the Lagos-Wright model with

divisible money as it is simpler to illustrate price dynamics in continuous time. Also, in the Shi-Trejos-Wright

model, there is an optimum stock of money, so mining is a meaningful activity, i.e., it is part of the planner’s

problem. In Appendix E, we present a version of the Lagos-Wright model in continuous time (as in Choi

and Rocheteau, 2019b) with mining and show that the dynamics are qualitatively equivalent.

We adopt an implementation approach to study the constrained-effi cient production of money and price

stabilization. Chiu and Koeppl (2017) study the optimal design of crypto-currencies to overcome double-

spending and show that the Bitcoin scheme creates a large welfare loss. Chiu and Koeppl (2018) provide

necessary conditions for blockchain-based settlement to be feasible. Biais et al. (2019) formalize the proof-

of-work blockchain protocol as a stochastic game and show it has multiple equilibria, including ones with

forks and orphaned blocks. They also identify negative externalities that lead to excessive investment in

10While we adopt the search-theoretic approach to obtain an essential role for media of exchange, there is a related literature
on rational bubbles in the context of OLG models, e.g., Wallace (1980) and Tirole (1985), among many others. An application
to crypto-currencies is provided by Garratt and Wallace (2018).
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computing capacity. Pagnotta (2018) adopts a version of Rocheteau and Wright (2005) and assumes miners

contribute resources that enhance network security and compete for mining rewards in the form of Bitcoins.

The equilibrium level of network security and the price of Bitcoins are jointly determined and, among many

insights, the price of Bitcoins can vary non-monotonically with the growth rate of Bitcoin supply.

2 The model

2.1 Environment

Time, agents, and goods Time is continuous and indexed by t ∈ R+. The economy is composed of

a unit measure of ex ante identical, infinitely-lived agents indexed on [0, 1], and a perishable good that

comes in J ≥ 3 distinct varieties. In order to create a need for trade, agents are divided evenly across J

types corresponding to their specialization in consumption and production. Agent of type j ∈ {1, ..., J} can

produce variety j but she only consumes variety j + 1 (modulo J). The type-j’s utility from consuming

q ∈ R+ units of good j + 1 is u(q) with u(0)=0, u′>0, u′(0)=+∞, and u′′<0. The type-j’s disutility from

producing q units of good j is q. There exists a q∗ > 0 such that u′(q∗) = 1 and a q̄<+∞ such that u(q̄)= q̄.

Agents discount future utility at rate r>0. Agents’preferences are represented in the left panel of Figure 3.

)(qu

*q

etΛ

)(eC

Preferences Mining speed and cost Money supply

0 1tA A

Money
in circulation

Unmined
money

Fractions of agents
without money

Figure 3: Description of the environment.

Random pairwise matching Agents meet bilaterally and randomly according to a Poisson process with

arrival rate α>0. Conditional on a meeting, the probability that an agent is matched with a type-j partner is

σ ≡ 1/J ∈ [0, 1], where σ is the probability of single coincidence of wants. The specialization in preferences
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and technologies described earlier rules out double-coincidence-of-wants matches. The terms of trade in

pairwise meetings are determined through bargaining.

Frictions and money Agents are anonymous (i.e., there is no public record of trading histories), they

lack commitment, and there is no technology to enforce private debt contracts. These frictions create a need

for a medium of exchange (Kocherlakota, 1998). There is an intrinsically useless object, called money, that

is perfectly storable and durable. It is indivisible, and individual holdings of money, ai, are restricted to

{0, 1}.11 We denote At ≡
∫ 1

0
at,idi which is both the measure of agents with one unit of money at time t

and the aggregate money supply. The flow of meetings between money holders and agents without money is

αAt(1 − At). Among those meetings, only a fraction will generate a trade because the buyer must like the

seller’s output, the potential seller must choose to produce instead of mining (in a version of the model with

endogenous occupation choices) and he must have the technology or expertise to accept money (in another

version with endogenous acceptability).

Money mining Money is produced privately according to a time consuming activity called mining and

the initial stock of money A0 is given. The individual effort devoted to mining by agent i ∈ [0, 1] is denoted

ei ∈ E , where E is the set of feasible mining intensities from which the agent can choose. If E = R+,

then mining effort is a continuous variable, e.g., ei is a variable input such as CPU time and electricity. If

E = {0, 1}, then mining is a discrete choice, e.g., mining is an indivisible occupation choice. The aggregate

mining effort across all agents is

mt =

∫ 1

0

ei,tdi. (1)

If E = {0, 1}, mt is simply the measure of miners. Given the effort e, an agent mines a unit of money

according to a Poisson process with time-varying intensity Λ(At,mt)e. The factor, Λ(At,mt), captures the

effi ciency of mining. It is a function of the amount of money already mined, At, and the aggregate mining

effort, mt. We provide two examples of functional forms for Λ.

Example 1: Gold mining. A leading example of a mining technology is

Λ(At,mt) = λ(Ā−At), (2)

11We relax the indivisible money assumption in a working paper, Choi and Rocheteau (2019a), and show the results are robust.
We also consider variants of the model where different competing monies, with different physical properties or acceptabilities,
coexist.
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where Ā ∈ (0, 1) is the overall fixed quantity of money and Ā − At is the amount of money that has yet

to be mined. We interpret this technology as miners being randomly allocated at locations where units of

money can potentially be found. With that specification, the individual mining rate declines as the quantity

of money that has been mined, At, increases. The individual mining rate, however, is unaffected by the

aggregate mining intensity, i.e., the congestion effect from other miners is only indirect through At. One

can also interpret this mining technology as the creation of many distinct crypto-currencies, where the total

number of potential crypto-currencies is Ā.

Example 2: Crypto mining. Our second example captures the virtual mining of a crypto-currency:

Λ(At,mt) =
π(At)At
mt

, (3)

where π(At) is the exogenous money growth rate of the currency expressed as a function of At and set by

the designer of the currency at the time of its creation. The total money creation at time t is π(At)At.

It is allocated to miners randomly with probabilities proportional to their mining effort: if there is a small

measure di of agents mining with intensity ei, their probability to be allocated a unit of money newly created

is eidi/m. By construction, the aggregate quantity of money mined is
∫ 1

0
Λ(At,mt)eidi = Λ(At,mt)mt =

π(At)At. The money growth rate of Bitcoin can be approximated by π(A) = λ(Ā−A)/A.12 From (3),

ΛBitcoin(At,mt) =
λ(Ā−At)

mt
. (4)

The only difference between the two technologies, (2) and (4), is the congestion factor, 1/mt.

Cost of mining The flow cost of mining is C(e) where C(0)=0, C ′>0, and C ′′≥0. A simple specification

is C(e)=ek where k>0 is a constant representing the unit cost of the variable input going into mining. We

represent graphically the mining intensity and cost of mining in the middle panel of Figure 3. In one version

of the model, e ∈ {0, 1} and C(1) is the endogenous opportunity cost from mining instead of producing

consumption goods. According to this version, mining is an occupation choice and agents who choose to

mine cannot take advantage of production opportunities in pairwise meetings.

In order to take into account how occupation choices affect buyers’trading probabilities, we denote χt the

fraction of agents without money who are active producers, e.g., they choose not to mine money when mining
12 In July 2016 the reward for mining a block is 12.5 bitcoins, plus any transaction fees from payments. The reward for adding

a block will be halved every 210,000 blocks (approximately 4 years). The reward will eventually vanish and the limit of 21 million
bitcoins will be reached in 2140. Given this description the supply of Bitcoin can be approximated by At = Ā[1− 2−t/4] where
t is the number of years since Bitcoin is introduced. Hence the growth rate of Bitcoin is π(A) = Ȧ/A = (1/A− 1/Ā)Log(2)Ā/4.
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and producing are mutually exclusive occupations. In the version of the model with costly acceptability of

money, χt will denote the fraction of producers who have the technology or expertise to accept money.

Altogether the unit measure of agents is divided between buyers, active producers, and inactive producers

as shown in Figure 4. There is a measure At of buyers, all agents with one unit of money. The remaining

1− At agents are potential producers. A fraction χt of those potential producers are active, either because

they choose not to mine, if mining is an occupation choice, or because they invest in a costly technology to

accept money, depending on the version of the model. The remaining (1−At)(1−χt) agents are inactive as

they either decide not to produce or have not made the required investment to accept money.

Unit measure
of agents

Active producers

Inactive producers
(e.g., miners or producers
who don’t accept money)

BuyerstA

tA−1

tχ

tχ−1

Figure 4: Distribution of agents’roles.

2.2 Definition of equilibria

We define an equilibrium as a list of Bellman equations, bargaining outcomes, optimal mining choices, and

a law of motion for the money supply.

Bellman equations Let Va,t be the value of an agent holding a ∈{0, 1} unit of money at time t. The

lifetime expected discounted utility of a money holder solves the Hamilton-Jacobi-Bellman (HJB) equation

rV1,t = ασ (1−At)χt [u(qt) + V0,t − V1,t] + V̇1,t, (5)

where a dot over a variable represents a time derivative. According to the right side of (5) the agent meets

another agent at Poisson rate α; this potential trading partner drawn at random from the whole population

holds no money with probability 1 − At; her production type corresponds to the good that the agent likes

with probability σ; and she is an active producer with probability χt. In versions of the model where agents
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can produce and mine simultaneously, i.e., these activities are not mutually exclusive, χt = 1. In contrast, if

mining is a full time occupation, then χt = (1−At −mt)/(1−At) is the fraction of agents with a = 0 who

choose e = 0 instead of e = 1. When a trade takes place, one unit of money buys qt units of output, where

qt is determined through bargaining. The last term on the right side is the change in the value function over

time. Note that money holders choose not to exert any mining effort, e = 0, since they have reached the

upper bound on money holdings and cannot accumulate an additional unit.

The value function of an agent with a = 0 solves the following HJB equation:

rV0,t = ασAt (−qt + V1,t − V0,t) + max
e∈E
{Λ(At,mt)e(V1,t − V0,t)− C(e)}+ V̇0,t. (6)

By the first term in the right side, a non-holder of money meets a money holder who likes her good at Poisson

arrival rate ασAt in which case she produces qt at a linear cost in exchange for one unit of money. By the

second term, the agent chooses the mining effort to maximize the expected gain from mining net of the flow

cost, C(e). At Poisson rate Λte she is rewarded a unit of money and enjoys the capital gain, V1,t − V0,t. In

the version of the model where mining corresponds to an occupation choice, C(1) is the opportunity cost

from not producing, which is equal to the first term on the right side.

Bargaining over output The quantity q produced in a bilateral match is determined according to the

Kalai (1977) bargaining solution that gives a constant fraction of the match surplus to the buyer.13 Formally,

u(qt) + V0,t − V1,t = θ [u(qt)− qt] , (7)

where θ ∈ [0, 1] is the buyer’s share. Solving for the value of money, V1,t − V0,t, we obtain:

V1,t − V0,t = ω(qt) ≡ (1− θ)u(qt) + θqt. (8)

Substituting V1,t − V0,t by its expression given by (8) into (5) and (6) leads to:

rV1,t = ασ (1−At)χtθ [u(qt)− qt] + V̇1,t (9)

rV0,t = ασAt(1− θ) [u(qt)− qt] + max
e∈E
{Λ(At,mt)eω(qt)− C(e)}+ V̇0,t. (10)

Upon trading, the surplus of the buyer is θ [u(q)− q] while the surplus of the seller is (1 − θ) [u(q)− q]. If

rewarded a unit of money, the gain of the miner is ω(q). Subtracting (10) from (9) and making use of (8)

13We use Kalai bargaining instead of Nash because of its simplicity. For the merits of this solution, see Aruoba et al. (2007).
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we obtain that q is the solution to the following ODE:

rω(qt) = ασ[(1−A)χtθ −At(1− θ)] [u(qt)− qt]−max
e∈E
{Λ(At,mt)eω(qt)− C(e)}+ ω′(qt)q̇t. (11)

Optimal mining choice From (11) an optimal mining intensity is

e∗ ∈ E∗t ≡ arg max
e∈E
{Λ(At,mt)eω(q)− C(e)} . (12)

Let e∗ (e∗) be the lowest (highest) element in E∗. Then, allowing for asymmetric choices, aggregate mining

intensity is

mt ∈ [(1−At)e∗t , (1−At)e∗t ] . (13)

There is a measure 1−At of agents without money who choose their mining effort in E∗.

The law of motion for the supply of money in circulation in the economy is:

Ȧ = mΛ(A,m). (14)

Given the aggregate mining intensity, m, money creation is mΛ(A,m). We now define an equilibrium.

Definition 1 An equilibrium is a pair of value functions, V0,t and V1,t, the quantity traded in each match,

qt, the aggregate mining intensity, mt, and the quantity of money in circulation, At, that solve: (9), (10),

(11), (13), (14), and the initial condition A0.

Below we characterize the set of equilibria for different classes of mining technologies and cost functions.

3 Gold mining

We first adopt the mining technology in (2), Λ(A, q) = λ(Ā− A). This technology has the key feature that

the congestion from mining occurs only indirectly through A. In addition, mining is an occupation choice,

e ∈ {0, 1}, and the mining cost is an opportunity cost equal to C(1) = ασA(−q+ V1 − V0).14 An agent who

mines gives up the opportunities to produce, but agents can move freely between the production and mining

sectors. The chance that an agent without money chosen at random in the population is able to produce,

i.e., she is a producer rather than a miner, is

χ =
1−A−m

1−A .

14There is plenty of evidence to justify that money mining has an endogenous opportunity cost by diverting input factors from
alternative productive uses. The California Gold Rush (1848—1855) is a case in point. The Gold Rush tripled the population
in California by bringing approximately 300,000 people from the rest of the world (see Britannica). South Africa offers another
example where gold mining had a large impact on the allocation of workers across sectors of the economy (Gilbert, 1933).
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Occupation choice

The net instantaneous gain from being a miner rather than a producer is ∆(q, A)≡λ
(
Ā−A

)
ω(q)−C(1), i.e.,

∆(q, A) ≡ λ
(
Ā−A

)
ω(q)− ασA(1− θ) [u(q)− q] . (15)

From (10) or (11) the measure of miners is given by:

m
= 1−A
∈ [0, 1−A]
= 0

if ∆(q, A)
>
=
<

0. (16)

By (15) the indifference condition, ∆(q, A) = 0, can be rewritten as:

A = µ(q) ≡ λĀω(q)

ασ(1− θ) [u(q)− q] + λω(q)
. (17)

Since ω(q)/ [u(q)− q] increases in q by the concavity of u(q), so does µ(q). Therefore, as A increases, so

must q for agents to be indifferent across occupations.

3.1 Steady states

We first describe steady-state equilibria where q and A are constant over time and m=0. We focus on the

steady state with the lowest A as it is the one that will be reached from the initial condition A0 =0. By (11):

rω(q) = ασ (θ −A) [u(q)− q] . (18)

Substituting ω(q) by its expression given by (8) and rearranging,

rq = {ασ(θ −A)− r(1− θ)} [u(q)− q] . (19)

There is a unique q > 0 solution to (19) provided that r < ασ(θ − A)/(1− θ). Hence, a necessary (but not

suffi cient) condition for a monetary equilibrium to exist is θ > A. Moreover, ∂q/∂A < 0, i.e., an increase in

the money supply reduces the purchasing power of money.

The condition for m = 0, ∆(q, A) ≤ 0, holds if A ≥ µ(q), which from (17) and (18) can be reexpressed as

rA(1− θ) ≥ λ
(
Ā−A

)
(θ −A) . (20)

We represent inequality (20) in Figure 5. The left side is linear in A while the right side is quadratic with

two roots, A = Ā and A = θ. They intersect for two values, A1 < min{Ā, θ} and A2 > max{Ā, θ}. The left

side is located above the right side for all A ∈ (A1, A2). Since A cannot be greater than θ for a monetary

12
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Figure 5: Steady states.

equilibrium to exist, we must have A < min{Ā, θ}. So a steady-state monetary equilibrium exists for all A

in the half-closed interval
[
A1,min{Ā, θ}

)
. In the following we focus on the steady state As = A1.

The steady-state equilibrium is determined recursively. First, As is obtained as the smallest solution to

(20). Given A = As, qs exists if and only if r < ασ(θ −As)/(1− θ) by (19) or, equivalently,

As < θ − r(1− θ)
ασ

. (21)

Figure 5 provides a graphical representation of the determination of the steady-state equilibrium.

Proposition 1 (Steady-state monetary equilibria) There exists a unique steady-state monetary equi-

librium (where ∆(q,A) = 0) if and only if

r <
ασθ

1− θ

[
1− λĀ

θ (ασ + λ)

]
(22)

where the steady-state money supply is

As =
λθ + λĀ+ r(1− θ)

2λ
−

√(
λθ + λĀ+ r(1− θ)

2λ

)2

− Āθ. (23)

Comparative statics are summarized in the following table:

∂λ ∂Ā ∂θ ∂r ∂(ασ)

∂As/ + + + − 0
∂qs/ − − ± − +
corr(qs, As) − − ± + 0

Table 1: Comparative statics.
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Under which conditions can fiat money be privately produced and maintain a positive value in the long

run? According to (22), the existence of a monetary equilibrium requires agents to be suffi ciently patient –

a standard “folk theorem”in monetary theory. The first term on the right side of (22), ασθ/(1− θ), is the

threshold for r below which money is valued in the Shi-Trejos-Wright model with a fixed supply of money.

The second term between squared brackets is new and captures the effect of the private production of money

on the existence of a monetary equilibrium. Because this term is less than one, the private production of

money makes it harder to sustain an equilibrium with a valued fiat money. Higher Ā or λ are associated

with higher incentives to mine, and hence a higher money supply at the steady state. A higher As reduces

buyers’trading opportunities, thereby making it harder for money to be valued.

Comparative statics in Table 1 have implications for the correlation between the endogenous money supply

and price level. The sign of this correlation (the bottom row in Table 1) depends on which fundamentals drive

the movements of As and qs. If λ or Ā rises, then As rises and qs falls. Then there is a positive correlation

between money supply and price level (1/qs), which is consistent with the quantity theory. However, if r

rises, then both As and qs fall. There is now a negative correlation between the money supply and the price

level. A change in θ generates a non-monotone relation between As and qs: numerical examples show that

for low θ, there is a positive correlation between As and qs while for high θ there is a negative correlation.

Finally, an increase in α or σ does not affect incentives to mine and the money supply but it raises qs.

3.2 Dynamics

We now turn to transitional dynamics from an arbitrary initial condition, A0. Without loss of generality,

we set A0 = 0 because the equilibrium is time consistent, i.e., if the equilibrium reaches At at time t from

A0 = 0, then the path onward is the same as the one obtained from the initial condition At.

From (11), C(1)=ασA(−q+V1−V0), and (14), (q, A,m) solve the following system of differential equations:

ω′(q)q̇ =
[
r + λ

(
Ā−A

)]
ω(q)− ασ (1−A−m) θ [u(q)− q] (24)

Ȧ = mλ
(
Ā−A

)
(25)

m ≤ 1−A “= ” if ∆(q, A) > 0. (26)

Equation (24) is an asset pricing equation for the value of money. The first term on the right side is the

appreciation of the value of money over time if it does not provide transactional services: ω grows at rate

r + λ
(
Ā−A

)
, which compensates the buyer for her rate of time preference and the foregone opportunities
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of mining. The second term on the right side corresponds to the liquidity services that money provides to a

buyer as measured by the expected surplus from a trade. These liquidity services constitute a non-pecuniary

return that reduces the appreciation rate of money. Equation (25) is the law of motion of the stock of money.

Equation (26) is the optimality condition for the occupation choice between producing or mining.

We distinguish two regimes. In the first regime, all agents without money (the potential producers)

engage in mining, namely m = 1−A. Then by (24) and (25):

q̇ =
[
r + λ

(
Ā−A

)] ω(q)

ω′(q)
(27)

Ȧ = (1−A)λ
(
Ā−A

)
. (28)

By (27) the value of money, ω, grows at a rate larger than r because it provides no liquidity services yet.

Along the equilibrium path, by (27) and (28), the relation between q and A is given by

∂q

∂A

∣∣∣∣
m=1−A

=
ω(q)[r + λ

(
Ā−A

)
]

ω′(q)(1−A)λ
(
Ā−A

) . (29)

Since the right side is positive, the path is upward sloping in the (A, q) space.

Consider next the regime where miners and producers coexist, m ∈ (0, 1−A). In that case A = µ(q)

and by (25) the measure of miners is

m =
µ′(q)

λ
[
Ā− µ(q)

] q̇. (30)

The measure of miners increases with the capital gain q̇. The next proposition characterizes the unique

dynamic equilibrium that converges to (qs, As).

Proposition 2 (Transitional Dynamics to Steady-State Monetary Equilibrium) Suppose (22) holds

and A0 = 0. There exists a unique monetary equilibrium such that (qt, At) converges to (qs, As) > 0. Along

the equilibrium path qt and At increase over time. Moreover:

1. There exists t0 > 0, such that for all t < t0, mt = 1−At, and

At =
Ā
[
1− e−λ(1−Ā)t

]
1− Āe−λ(1−Ā)t

(31)

ω(qt) = ertω0

[
1− Āe−λ(1−Ā)t

1− Ā

]
. (32)

2. If
µ′(qs)/µ(qs)

ω′(qs)/ω(qs)
>

1− θ
θ

, (33)
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then mt < 1 − At in the neighborhood of the steady state and convergence to (qs, As) is asymptotic.

Otherwise, mt = 1−At until the steady state is reached in finite time.

Proposition 2 proves the existence and uniqueness of a dynamic equilibrium leading to (qs, As) starting

from an initial condition A0 = 0. It allows us to study how the supply of privately-produced money and its

price covary over time. The equilibrium features monotone trajectories for qt and At. As the money supply

increases, the price level falls, and quantities traded in pairwise meetings increase.15 This result seems in

contradiction with the quantity theory according to which the price level increases with the money supply

and the long-run comparative statics in Table 1 where an increase in Ā reduces q. Intuitively, the value of

money must appreciate over time in order to induce agents to mine because as A increases the mining speed

λ(Ā−A) falls but the frequency ασA of trading opportunities in the production sector rises.

Proposition 2 also answers the question: can money be valued if it does not serve as a medium of

exchange? Early on, when A is close to 0, all agents without money choose to be miners and all agents with

money hoard it because they have no opportunity to use it as a medium of exchange. From the viewpoint of

an outside observer, money resembles a pure speculative bubble: it does not play any role in exchange, and

hence it should not have any liquidity premium, but its value grows at a rate larger than r. This path for

the value of money is sustainable because in finite time money starts being used as a medium of exchange.

Can a government prevent the emergence of a private money? The government can discourage money

mining by supplying A0 > As. If A0 is suffi ciently large, then the gains from being a producer exceeds that

from mining. As shown in Table 1, the larger λ and Ā, the larger A0 has to be to prevent money mining.

Finally, we showcase the tractability of the model by solving the equilibrium path in closed form in

(31)-(32). This result follows from the observation that the law of motion for A, (25), when m = 1−A, is a

Riccati equation that admits an analytical solution (see Section 2.15 in Ince (1956) for details).

The equilibrium in the neighborhood of the steady state can take two forms as illustrated in Figure 6.

There are equilibria where miners and producers coexist. In this case, the steady state is only reached

asymptotically. There is another type of equilibrium where all agents without money strictly prefer mining

until the steady-state money supply is reached, which occurs in finite time. These regimes have implications

for the transaction velocity of money measured by Vt≡ασ (1−At −mt). Early on Vt=0 since all potential

15As shown in Online Appendix C, we can obtain less dramatic results with alternative matching functions, i.e., agents trade
at all dates, but the insight that market tightness measured by the ratio of producers to buyers increases over time is robust.
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Figure 6: Dynamic equilibria with mining.

producers prefer to mine. If (33) holds, then Vt > 0 for some t>0 and it rises as mt falls toward its steady-

state value. If (33) does not hold, then Vt=0 until the steady state is reached, at which point V=ασ (1−As).

Along the equilibrium path, the velocity, price and supply of mone are positively correlated. The next lemma

provides conditions for mining and production to coexist along the equilibrium path.

Lemma 1 (Coexistence of trades and mining)

1. If ε(q)≡u′(q)q/u(q) is non-increasing in q, then there exists λ∗<+∞ and κ∗∈(0,+∞) such that mt <

1−At in the neighborhood of (As, qs) if and only if λ < λ∗ or σα ≥ κ∗. Moreover, if ασ > λθ/(1− θ),

then the equilibrium features at most one regime switch.

2. If θ ≤ 1/2 and λ is suffi ciently large, then mt = 1−At for all t such that At < As.

The condition on the elasticity of u(q) in Lemma 1 is satisfied by u(q) = q1−a or u(q) = 1− e−aq. Part 1

of Lemma 1 establishes that if the effi ciency of mining is low and the matching rate is high, then mining and

trades coexist near the steady state. Part 2 provides a global characterization of the occupation choice. If

the mining technology is suffi ciently effi cient and producers have more bargaining power than buyers, then

no trade takes place until the supply of money reaches its steady-state level.

The next proposition addresses the question of the determination of the initial value of money by char-

acterizing the set of all initial values of a new currency that are consistent with a monetary equilibrium.
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Figure 7: (Left) Phase diagram of different equilibria (Right) The value of money under different equilibria
for the same parameters.

Money can be valued and privately produced even it is anticipated that it will be worthless in the long run.

Below we use (Ât, q̂t) to denote the unique equilibrium that leads to the monetary steady state (As, qs).

Proposition 3 (Boom/Bust equilibria)

1. For all q0 ∈ (0, q̂0), there exist 0 < T0 ≤ T1 < +∞ such that a monetary equilibrium exists with the

following properties:

(a) Boom phase: For all t ≤ T0, mt = 1−At and ω̇/ω = r + λ
(
Ā−A

)
> 0.

(b) Bust phase: For t > T1, mt = 0, ω̇t = rωt − ασ (θ −AT1) [u(qt)− qt] < 0, and limt→+∞ ωt = 0.

2. If (33) holds, then there is a continuum of monetary equilibria indexed by T ∈ {t ∈ R+ : Ât = µ(q̂t)}

such that q0 = q̂0 and:

(a) Boom phase: For all t ≤ T , (At, qt) = (Ât, q̂t).

(b) Bust phase: For t>T , mt=0, At=ÂT , ω̇t=rωt−ασ
(
θ−ÂT

)
[u(qt)−qt]<0, and limt→+∞ ωt=0.

There is a continuum of monetary equilibria featuring a boom and a bust of the currency price. Those

equilibria are indexed by the initial value of money in the interval (0, q̂0). If the initial beliefs are not

optimistic enough to bootstrap the value of money to q̂0, then a boom/bust equilibrium exists.16 Along the
16Such equilibria capture the idea that new currencies might be likely to fail in the absence of coordination mechanisms. See

Selgin (1994) for historical examples.
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equilibrium path the value of money first increases at a rate larger than r. It reaches a maximum at which

point agents stop mining. Even though the money supply remains constant afterwards, the value of money

declines and converges to 0 asymptotically. In the phase diagram of Figure 7, the equilibrium path is upward

sloping until it reaches the locus A = µ(q). At that point it becomes vertical since the money supply remains

constant with arrows of motion oriented toward the horizontal axis as money loses its value over time.

There can also be boom/bust equilibria where q0 = q̂0. Such equilibria occur when agents are indifferent

between mining or producing in the neighborhood of the steady state, i.e., (33) holds, and they are indexed

by the time T at which the value of money starts falling. Such an equilibrium path is represented in the

left panel of Figure 7 by a trajectory starting at q0 = q̂0. The trajectory is upward sloping and follows the

A = µ(q) locus for a while until it becomes vertical and falls toward the horizontal axis. From the viewpoint

of an outside observer, it would be impossible to tell whether the currency will be successful until the time

T at which the value of currency starts declining.

Models with a fixed supply of fiat money also feature a continuum of deterministic monetary equi-

libria, see, for example, Trejos and Wright (1995), Coles and Wright (1998), and more recently He and

Wright (2018). There is typically a unique steady-state monetary equilibrium (there can be multiple steady

states in some versions with barter trades) and a continuum of equilibria where the value of money declines

over time and vanishes asymptotically. Those equilibria generate outcomes that are analogous to the bust

phase of our equilibria with privately-produced monies. The boom phase is new and illustrates how the

dynamics of the money supply and its price are intertwined.

Given the existence of a continuum of equilibria, is it possible to refine the equilibrium set and focus on

a single one? In order to answer this question, we consider the equilibrium set of a similar economy where

money is endowed with a commodity value, d > 0, e.g., a utility flow from a commodity money or a real

interest payment, and we take the limit as d goes to 0. (The value functions and equilibrium conditions are

detailed in Online Appendix D.) This selection method is sometimes referred to as the commodity-money

refinement (e.g., Wallace and Zhu, 2004, or Garratt and Wallace, 2018). If money creates a flow dividend

d>0, then in any equilibrium the value of money ωt is bounded below by the discounted sum of dividends,

d/r, at all t. This rules out the continuum of boom-and-bust equilibria where the value of money vanishes

asymptotically. Hence, if money pays an arbitrarily small interest d > 0, there exists a unique equilibrium

and it is such that (At, qt)→ (As, qs) as t→∞.
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3.3 Price waves

Historically, the world supplies of silver and gold have increased through sequential discoveries of new mining

sites, e.g., South America during the 16-17th centuries, South Africa, and Australia during the 19-20th

centuries. In the context of crypto-currencies, one can interpret mine discoveries as an unexpected increase

in the potential supply of a currency or the introduction of new currencies.17

To capture mine discoveries and their impact on price dynamics, we describe a sequence of unanticipated

shocks on Ā starting from a steady state. Initially, Ā= Ā0 and the economy is at a stationary equilibrium

(qs0, A
s
0). At time 0, the maximum amount of money agents can mine, Ā, rises from Ā0 to Ā1. This could

correspond to a new estimate of the gold resources of the planet. After the economy reaches a new steady

state, (qs1, A
s
1), another discovery happens that raises the potential money supply from Ā1 to Ā2. And so on.

In the phase diagram of the left panel of Figure 8, the locus A = µ(q) shifts to the right. The new

steady state is such that the money supply increases, As1 > As0, and money loses some value, q
s
1 < qs0. At

time 0+, q falls below qs1 so that the value of money overshoots its steady state. Along the transition to

the new steady state the value of money increases. The sequence of unanticipated increases in Ā generates

fluctuations in the value of money around a downward trend. The impact of an unanticipated increase in

the mining intensity λ is similar to that of an increase in Ā: the value of money falls on impact and then

rises to reach a new steady state with a lower q and higher A.

We now compare the dynamics of our model where the role of money is endogenous to the dynamics of a

commodity price (e.g., minerals) if the commodity is durable and produced slowly through time but it does

not serve as a medium of exchange. Suppose the commodity generates a flow of marginal utility, ϑ(A), to

its holder, where A is the supply of the commodity and ϑ′(A) < 0. The value of this commodity, ω, obeys

the following HJB equation:

rω = ϑ(A) + ω̇. (34)

The flow value from holding the commodity is composed of its marginal utility and the capital gain (or

loss) as the value of the commodity varies over time. We are agnostic as to the exact functional form of

the mining technology and simply assume Ȧ > 0 for all A < Ā and Ȧ = 0 otherwise. The supply of the

commodity grows continuously until it reaches a maximum potential supply, Ā. The steady-state value of

17Another interpretation is the “forking" of an existing crypto-currency into an old and new one, e.g., the fork between
Bitcoin and Bitcoin Gold. But the old and new currency are often imperfect substitutes, as their prices might not comove.
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Figure 8: (Left) Mine discoveries: Unanticipated increases of Ā. (Right) Dynamics of commodity prices

the commodity is ωs = ϑ(Ā)/r. Starting from some initial condition A0 = 0, the value of the commodity

decreases over time, ω̇ < 0, as illustrated in the phase diagram in the right panel of Figure 8. Now suppose

that the economy is at a steady state and Ā increases. Graphically, the vertical dashed line moves to the

right. In that case, the price of the commodity jumps downward and keeps falling afterwards until it reaches

its new steady state.

So why are the dynamics of a commodity price different from the dynamics of the price of money? The

answer has to do with the endogenous role of money as a medium of exchange. One might think that the

non-pecuniary services that money provides to its holder decrease with its stock, so that there exists an

indirect utility function of the form ϑ(A), which would make the dynamics of the value of money analogous

to (34). The analogy fails in this version of the model for two reasons. First, the surplus that the money

holder obtains in a trade match depends on the real value of money and not its nominal stock. In other

words, q depends on ω = V1−V0 but not A. A higher A reduces the matching probability of a buyer, so that

for given q the expected surplus of a money holder decreases with A. But this congestion effect alone does

not dictate the dynamics of the value of money. Second, and importantly, the use of money as a medium

of exchange and its velocity, ασχtAt(1−At), are endogenous and depend on χt. As At increases over time,

money becomes more widely held and, as a result, potential producers are more likely to meet buyers with a

positive payment capacity. Hence, potential producers have more incentives to participate in the market for

goods and services, i.e., χt is weakly higher. Since χt rises, buyers have more opportunities to spend money
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and thus the value of money can rise over time.

3.4 Effi cient gold mining

We now ask whether the decentralized private production of money can generate a socially effi cient outcome.

We describe the problem of a social planner who is subject to both the mining technology and the matching

technology between money holders and producers. Implicit in the latter constraint is the requirement that

all trades take the form of one unit of money for some q, i.e., trades are quid pro quo. The planner chooses

agents’occupation and output in pairwise meetings to maximize the discounted sum of all agents’utilities

(The planner’s problem is defined explicitly in Lemma 2 in the Appendix). We then provide an incentive-

feasible mechanism to implement such constrained-effi cient allocations. In the following recall that q∗ is the

solution to u′(q∗) = 1 and it is the effi cient level of production in a trade meeting.

Proposition 4 (Constrained-effi cient allocation) Assume A0 = 0.

1 Effi cient allocations are such that qt = q∗ for all t and mt = 1−At for all t < T ∗ where T ∗ > 0 is the

time it takes to mine A∗ where

A∗ =
1

4

[(
2Ā+ 1 +

r

λ

)
−
√(

2Ā+ 1 +
r

λ

)2

− 8Ā

]
. (35)

For all t ≥ T ∗, mt = 0 and At = A∗.

2 Implementation. If

r ≤ ασ(1−A∗) [u(q∗)− q∗]
q∗

and (36)

λ
(
Ā−A∗

)
≤ ασA∗(1−A∗) [u(q∗)− q∗]− rq∗

(1−A∗)u(q∗) +A∗q∗
, (37)

then the constrained-effi cient allocation is implementable with

θt = 1 if t < T ∗

= θ∗ ≡ rq∗ + (ασA∗ + r) [u(q∗)− q∗]
[u(q∗)− q∗] (ασ + r)

if t ≥ T ∗. (38)

The planner chooses q∗ in all trade matches and it assigns all non-asset holders to mining until the

effi cient quantity of money A∗ has been produced. Intuitively, it is more effi cient to assign agents to the

production sector when the chance of forming trade matches is higher. Since the chance that a non-asset

holder matches with a trading partner rises in A, the planner assigns agents to the production sector only
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after A∗ is reached. We show in the proof of Proposition 4 that along the optimal path the shadow value of

money ξ (i.e. the co-state variable associated with At) satisfies

ξ̇

ξ
= r + λ(1 + Ā− 2A).

If we compare with the equilibrium ODE, (24), when m = 1−A,

ω̇

ω
= r + λ

(
Ā−A

)
,

we see that the rate of growth of ξ is larger than the rate of growth of ω by a term equal to λ(1 − A).

According to this additional term, the planner internalizes the fact that as more money is taken out of the

ground, it becomes harder for future miners to find new units of money. The optimal quantity of money,

A∗, is less than 1/2, which is the quantity that would maximize the measure of trades. As agents become

infinitely patient, limr→0A
∗ = min{1/2, Ā}. By comparing (35) and (23) we obtain that As > A∗ if θ > 1/2

and As < A∗ if θ < 1/2. There is over-production of money in equilibrium if buyers get more than half of

the trade surplus. Even if θ = 1/2 so that As = A∗, the number of trades is constrained-effi cient but the

equilibrium output in trade matches might differ from q∗.

In the second part of Proposition 4, we propose an incentive-feasible trading mechanism that implements

the constrained-effi cient allocation. The mechanism is incentive feasible if it satisfies the individual rationality

constraints of the buyer, u(q) + V0 − V1 ≥ 0, and the producer, −q + V1 − V0 ≥ 0, in a pairwise meeting.

Any incentive-feasible trading mechanism is described by a sequence of time-varying bargaining shares, θt.

By (38) an incentive-feasible trading mechanism that implements the constrained-effi cient allocation is such

that buyers have all the bargaining power until the effi cient quantity of money, A∗, has been dug at time

T ∗. Giving no bargaining power to producers initially guarantees that agents without money choose to be

miners rather than producers. Following T ∗ the buyer’s bargaining power is θ∗ > 0, which is the value that

implements q∗ in all pairwise meetings.

Condition (36) is a standard implementation condition of the first best in monetary search models

(see, e.g., Wright 1999). It requires the opportunity cost of holding money, as measured by rq∗, to be

smaller than the expected surplus from holding money when the buyer has all the bargaining power,

ασ(1 − A∗) [u(q∗)− q∗]. A key difference from the existing literature is that the money supply here is

endogenous and depends on fundamentals. As r vanishes, A∗ tends to min{Ā, 1/2}. Hence (36) is satisfied

for r suffi ciently small.
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Condition (37) is new and guarantees that agents have no incentive to over-produce money. Assuming

that the buyer’s bargaining share is θ∗, it requires that the expected gain from mining, λ
(
Ā−A∗

)
ω∗ where

ω∗ ≡ (1− θ∗)u(q∗) + θ∗q∗, is smaller than the expected gain from being a producer ασ(1− θ∗) [u(q∗)− q∗].

If Ā < 1/2, then this condition holds for r suffi ciently close to 0.

4 Crypto mining

A characteristic of the gold mining technology described in Section 3 is that the more miners, the more

money is created or discovered. In contrast, some crypto-currencies (e.g., Bitcoin) are designed such that

the aggregate rate of money creation does not vary with the measure of miners. The designer of the currency

chooses a path for the money supply, Ȧt = π(At)At, where π(At) is the state-contingent rate of money

creation, which is independent of the measure of miners. Each unit of newly created money is allocated

to a miner with a probability proportional to their mining effort, as described by (3). We will study the

implications of this mining technology for currency price dynamics under alternative cost functions and

compare those dynamics to the ones obtained in Section 3.

4.1 Variable mining intensity

Suppose that every agent without money chooses a mining intensity, e ∈ R+, at cost C(e) = ek. In this

version of the model, mining and producing are not mutually exclusive, hence χt = 1. By the first-order

condition of (12) where Λ(At,mt) = π(At)At/mt, the aggregate mining intensity is

mt =
π(At)At

k
ωt. (39)

It is the real value of money creation divided by the unit cost of mining. We focus on symmetric equilibria

where all miners choose the same e. Aggregate money supply evolves according to

Ȧ = π(At)At. (40)

From (9)-(10), the value of money solves

rωt = ασ (θ −At)S(ωt) + ω̇t, (41)

where S(ω) ≡ u[q(ω)] − q(ω) denotes the match surplus as a function of the value of money, where q is a

function of ω through (8). An equilibrium is a list, {mt, At, ωt}, that solves (39)-(41) and A0 given. It can
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be solved recursively as follows. Equation (40) together with the initial condition A0 gives At. Given At, ωt

can be solved by (41). Given {At, ωt}, the time-path for the aggregate mining effort is given by (39).18

Figure 9: Phase diagram for crypto mining under variable mining intensity.

In Figure 12 we represent the phase diagram associated with (40)-(41) under the assumption that π(At) >

0 for all At < Ā and π(At) = 0 for all At ≥ Ā. For instance, such assumptions are satisfied for the

Bitcoin money growth rate, π(A) = λ(Ā − A)/A. The ω-isocline is downward-sloping and ω = 0 for all

A > θ− r(1− θ)/ασ. It has a strictly positive intercept if r < ασθS′(0) = ασθ/(1− θ) by (41). By the same

logic as in Section 3, we obtain the following proposition:

Proposition 5 (Crypto mining with variable intensity) Suppose the mining technology is given by (3)

where π(At) > 0 for all At < Ā, π(At) = 0 for all At ≥ Ā, and π′(Ā) < 0. Moreover, C(e) = ek for all

e ∈ R+. There exists a steady-state monetary equilibrium,
(
Ā, ωs

)
, if and only if

Ā <
ασθ − r(1− θ)

ασ
, (42)

and, if it exists, it is unique. Given A0 =0, there is a unique equilibrium leading to
(
Ā, ωs

)
where ω0 = ω̂0>0

and ω̇<0. There is also a continuum of equilibria indexed by ω0∈(0, ω̂0) such that ω̇<0 and limt→∞ ωt=0.

In contrast to the gold mining model in Section 3, here the value of money declines over time in all

monetary equilibria. There are two key differences that explain this result. First, the path for the money

18The dichotomy between {At, ωt} and mt can be broken, e.g., by assuming that mt facilitates the coordination on a monetary
equilibrium (Pagnotta, 2018), or by assuming the cost of mining depends on m (as in Section 4.4).
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supply is determined independently from the mining activity. Second, the cost of mining does not depend

on the state of the economy, including the money supply and value of money. As a result, as the money

supply rises, the liquidity value of money falls, since the buyer’s matching probability falls, which reduces the

currency price. In the rest of this section, we will show how small changes to this environment can generate

dynamics where the currency price rises over time or is non-monotone (rises first and then falls).

4.2 Endogenous acceptability

Following Lester et al. (2012), we assume that in order to accept a new currency a seller must incur a flow

cost ψ > 0. The variable χt now represents the fraction of agents without money (sellers) who incur that

cost and accept the new currency. The cost of accepting money has several interpretations: the cost to

authenticate a new money, the cost to get informed about the characteristics of this money (supply, security

protocols), to acquire the technology to receive it in payment, and so on.

Since in equilibrium mining creates zero expected profit, the HJB equation of an agent without money

is:

rV0,t = max {−ψ + ασAt(1− θ)S(ωt), 0}+ V̇0,t. (43)

According to the first term on the right side, an agent without money enjoys the gains from trading with

money holders by incurring the flow cost ψ to accept money. Hence the fraction of sellers who accept the

new currency solves

χt

= 1
∈ [0, 1]
= 0

if ψ
<
=
>
ασAt(1− θ)S(ωt). (44)

Money is universally accepted, χ= 1, if the cost ψ to accept it is no greater than the expected gains from

trade of the seller. If ψ is exactly equal to the gains from trade, then money is partially accepted, χ∈(0, 1).

By (5) and (43) the law of motion for ω solves:

rωt − ω̇t =

{
ασ (θ −At)S(ωt) + ψ
ασ(1−At)χtθS(ωt)

if χt
=
≤ 1. (45)

If money is universally accepted, namely χt = 1, then the law of motion for ω is analogous to (41) except

for the last term corresponding to the cost of accepting money. If money is only partially accepted, then its

flow value is equal to the expected gains from trade of the money holder.

In Figure 10 we show the phase diagram corresponding to (45). The locus of the points where χt∈(0, 1)

is given by At=ψ/ [ασ(1− θ)S(ωt)]. It is ⊂-shaped in the (A,ω) space as S(ωt) is concave and maximized
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at ωt=(1− θ)u(q∗)+θq∗. Assuming Ā<θ, the locus ω̇=0 conditional on χt=1 is downward sloping for all

A∈
[
0, Ā

]
.

Figure 10: Dynamics with endogenous acceptability.

Proposition 6 (Crypto mining with endogenous acceptability) Suppose (42) holds. There is a ψ̄ > 0

such that for all ψ < ψ̄ there exists:

1. A unique steady-state monetary equilibrium, (ω̄s, Ā), with universal acceptability, χ = 1. If A0 = 0,

then there is a unique equilibrium, (ωt, At), leading to (ω̄s, Ā). It is such that ωt = ω̂0 > 0 and χ0 = 0.

There exists (t, t̄) with 0 < t ≤ t̄ such that for all t < t, ω̇/ω = r and χt = 0 and for all t > t̄, ω̇ < 0

and χt = 1.

2. A unique steady-state monetary equilibrium, (ωs, Ā), with partial acceptability, χ < 1, and ωs < ω̄s .

If A0 = 0, then there is a continuum of equilibria indexed by ω0 ∈ (0, ω̂0) leading to (ωs, Ā).

The model of crypto mining with an endogenous acceptability decision generates dynamics that are

reminiscent to the ones from gold mining, but there are important differences. The price trajectory leading

to the high steady state where money is universally accepted is non-monotone. Initially, the supply of money

is low and hence sellers do not invest to accept money. Since money is not accepted for transactions, its

value must increase at the rate of time preference so that agents are willing to hold it. Once the supply
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reaches a certain threshold, then sellers start accepting money and its value declines for reasons similar to

that behind Proposition 5.

There is no equilibrium where money is valued initially, ω0>0, but its value vanishes asymptotically. If

ωt were close to 0 for some t, then money would not be accepted, in which case ω̇t/ωt > r, which prevents

ωt from converging to 0 from above. But there is a continuum of equilibria leading to a steady state where

money is partially accepted and its price is ωs>0.19 The time path for ωt is either hump-shaped or monotone

increasing. Hence, if the initial value of money is ω0, then ωt ≥ min{ω0, ω
s} for all t. For instance, if the

initial value of money is very low, then it will keep growing at rate r until it reaches ωs at the steady state.

It is only when the steady state is reached that money becomes partially acceptable and circulates as a

medium of exchange. The left panel of Figure 11 provides a numerical example of Proposition 6.20

4.3 Sunspot equilibria and volatility of currency prices

Our model with endogenous acceptability can provide an explanation for large changes in crypto-currency

prices that are disconnected from fundamentals. Indeed, we can build on the existence of multiple steady

states to construct sunspot equilibria where currency price and acceptability depend on some extrinsic

uncertainty. We start with the existence of stationary sunspot equilibria when At = Ā. Suppose there are

two sunspot states, ` and h, that are unrelated to fundamentals. The economy transitions from state h to `

at Poisson rate $h > 0 and from ` to h at Poisson rate $` > 0. The value of money is ωh in state h and ω`

in state `. The acceptability of money is one in state h and χ < 1 in state `. At a stationary equilibrium,

(ωh, ω`, χ) is a solution to the following system:

rωh = ασ(θ − Ā)S(ωh) + ψ +$h
(
ω` − ωh

)
(46)

rω` = ασ(1− Ā)θχS(ω`) +$`
(
ωh − ω`

)
(47)

ψ = ασĀ(1− θ)S(ω`). (48)

Equation (46) is the HJB equation for the value of money in the state where it is accepted with probability

one. The difference with respect to (45) is the last term on the right side according to which the value of

19The indeterminacy of the initial value of a new currency was acknowledged by earlier adopters of Bitcoins. Luther (2018)
reports the following post on bitcoin-list in January 2009, the month when Bitcoin was first introduced: “One immediate
problem with any new currency is how to value it. Even ignoring the practical problem that virtually no one will accept it at
first, there is still a diffi culty in coming up with a reasonable argument in favor of a particular non-zero value for the coins."
20The parameters used in this example are u(q) = qB , A(t) = Ā(1 − 2−λt) and {B, θ, α, σ, Ā, r, ψ, λ} =
{0.8, 0.905, 5, 0.9, 0.9, 0.04, 0.02, 0.9}.
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money responds to a change of the sunspot state from h to ` at Poisson rate $h. Equation (47) is the HJB

equation for the value of money in the state where it is only partially accepted, χ < 1. Finally, (48) is

the condition for partial acceptability in the low state. Provided that the conditions for the existence of a

monetary steady-state equilibrium hold, there is also a continuum of sunspot equilibria indexed by ($h, $`).

To see this, note that ω` is uniquely determined by (48) and coincides with the lowest steady state. Given

ω`, ωh is uniquely determined by (46). Finally, χ is determined by (47) and it is less than one provided $`

is not too large.

Figure 11: Equilibrium with Endogenous Acceptability. Left panel: All deterministic equilibria. Middle and
right panels: Example of sunspot equilibria for $ ∈ {0.001, 0.01}.

From any stationary sunspot equilibrium, we can construct non-stationary sunspot equilibria starting

from A0 = 0. For the sake of illustration, we still restrict the set of sunspot states to {`, h}. The value of

money is now a function of time, t, and the realization of the sunspot state, x, and it solves the following

system of ODEs:

rωxt =ασ(1−At)θχxt (ωxt )S(ωxt )−max {−ψ + ασAt(1− θ)S(ωxt ), 0}

+$x
(
ωx
′

t − ωxt
)

+ ω̇xt , for x, x
′ ∈ {`, h} .

The middle and right panels of Figure 11 provide numerical examples of sunspot equilibria under the

assumption that sunspot states are equally likely, $h = $l = $. The middle panel plots equilibria for

$ = 0.001 while the right panel assumes $ = 0.01. The equilibrium trajectory transitions between the dark

green line, which corresponds to ωht , and the cyan line, ω
`
t, at Poisson rate $. As $ increases, ωh and ω`

get closer to each other and the highest steady state rises.
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4.4 Opportunity cost of mining

So far, we took the unit cost of mining as exogenous and constant. However, it seems reasonable to think

that crypto mining, just like gold mining, has an endogenous opportunity cost: the inputs in the mining of

crypto-currencies (e.g., labor, computer power, and electricity) can be devoted to the production of goods

and services.21 We capture this opportunity cost in a tractable way, as in Section 3, by assuming that agents

are either producer or miner, e ∈ {0, 1}. The opportunity cost of mining is then C(1) = ασ(1−θ)A[u(q)−q],

which corresponds to the flow expected surplus of a producer. This assumption breaks the dichotomy between

ω and m and it makes the measure of miners relevant for allocations. We will also show in Section 4.5 that

under this formulation the path for the money growth rate that implements price stability is reminiscent

to the one of Bitcoin with some differences. For now we keep the mining technology as in (3). The money

growth rate is π(A) = λ[(Ā − A)/A]I(A≤Ā), which approximates the path of the supply of Bitcoins (see

footnote 12).

By the same reasoning as above, the value of money and the measure of miners solve:

ω̇ =

[
r +

π(A)A

m

]
ω − ασ (1−A−m) θS(ω), (49)

m = min

{
π(A)ω

ασ(1− θ)S(ω)
, 1−A

}
. (50)

At a steady state, As = Ā and
ωs

S(ωs)
=
ασ
(
θ − Ā

)
r

. (51)

A monetary steady state exists if r < ασ(θ− Ā)/(1−θ). Figure 12 shows the phase diagram and price

trajectories.

Proposition 7 (Crypto mining with endogenous opportunity cost.) Suppose A0 = 0 and r<ασ(θ−

Ā)/(1−θ).

1. There exists a unique monetary equilibrium such that (At, ωt) converges asymptotically to (As, ωs).

The value of money, ωt, rises over time from ω0 = ω̂0 > 0 to ωs if λ ≥ λ̄ ≡ (1 − θ)rĀ/[θ(θ − Ā)];

otherwise, ωt rises and then falls before converging to ωs.

21CoinDesk reported that the number of blockchain jobs posted in the U.S. rised by 207% in 2017 and 631% since November
2015. Upwork, a large freelancing website, ranked blockchain as the top fastest-growing skill in the first quarter of 2018. This
rapid growth is consistent with the rise in the number of crypto-currencies – according to investing.com, there were less than
1600 crypto-currencies in February 2018 and there are 2520 of them in February 2019.
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Figure 12: Phase diagram for crypto mining under occupation choice.

2. There is a continuum of monetary equilibria indexed by ω0 ∈ (0, ω̂0) such that limt→+∞ ωt = 0. For

each ω0, there exist 0 < T0 < +∞ such that ω̇t ≥ 0 for t ≤ T0 and ω̇t < 0 for all t > T0.

The value of money rises along the equilibrium path leading to the unique steady state when the mining

intensity λ is large (left panel of Figure 12). However, for smaller λ, the time-path for ωt is hump-shaped

(right panel of Figure 12). In order to understand why ωt drops along the trajectory, recall that under the

gold mining technology the individual mining speed, λ(Ā − A), falls over time. Thus ωt must rise so that

agents are willing to participate in mining. This logic fails for the crypto mining technology as the individual

mining speed, λ(Ā − A)/m, falls in m. The mining rate can rise over time if agents expect the value of

money to fall and, as a result, fewer agents choose to mine.

In addition to the equilibrium leading to (As, ωs), there is a continuum of equilibria where ωt rises initially

and then falls to 0. The velocity of money is 0 early on, in which case ωt grows faster than the rate of time

preference. When At is close to Ā, the velocity of money is positive as producers and miners coexist.

4.5 A mining rule for price stability

In Proposition 7 we characterized price dynamics assuming a money growth rate analogous to that of Bitcoin.

Suppose instead that we design the money growth rate, πt, to implement price stability. How does this money

growth rate compare to that of Bitcoin? Consider the model in Section 4.4 and take the potential money

supply, Ā, as given. The next proposition derives the path for πt such that ωt is constant over time.

Proposition 8 (Stabilizing the value of money) In any equilibrium where the value of money is con-
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stant, ω = ωs(Ā), the rate of money creation evolves according to:

π∗t = π∗(At) ≡ λ
(
Ā−At
Ā

)
where λ ≡ (1− θ) Ā

θ
(
θ − Ā

)r. (52)

The money growth rate that achieves price stability in (52) is proportional to the fraction of the money

supply that is left to mine. Interestingly, it resembles the growth rate of Bitcoin which is proportional to(
Ā−At

)
/At instead of

(
Ā−At

)
/Ā. The coeffi cient of proportionality, λ, (which is equal to λ̄ in Proposition 7)

rises with Ā, r, but falls with θ.

5 Conclusion

This paper was motivated by the recent multiplication of privately-produced monies and the questions

raised about the dynamics of their prices and their use as medium of exchange. To address these questions,

we studied the dynamics of a random-matching economy where money is produced according to a time-

consuming mining technology. We distinguish different mining technologies for tangible and cryptomonies,

both in steady states and out of steady states. We showed that our model can generate trajectories for prices

and money velocity that are qualitatively similar to those observed: the price of a new money can increase

initially as its supply increases even though it does not circulate as a medium of exchange; the currency price

can feature booms and busts triggered by self-fulfilling beliefs; a new money can be valued and produced

even when it is anticipated that its value will vanish in the long run.

Many interesting questions remain open, e.g., the determination of the relative prices of competing private

monies, the competition among currency designers, and the role of reputation and public monitoring for the

private provision of monies. In Choi and Rocheteau (2019a), we address some of these questions by extending

our model to include two divisible monies and we study their joint price dynamics and the conditions under

which they can coexist in the long run. But much more can be done on these topics.
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Appendix: Omitted Proofs

Proof of Proposition 1. The steady-state money supply is the lowest root of (20) at equality, i.e.,

A2 −
[(
θ + Ā

)
λ+ r(1− θ)
λ

]
A+ Āθ = 0. (53)

The lowest root of (53) is (23). If θ > 0, then As > 0. From (19), qs > 0 is a solution to

Γ(q) ≡ {ασ(θ −As)− r(1− θ)} [u(q)− q]− rq = 0. (54)

If ασ(θ−As)− r(1− θ) > 0 then Γ(q) is strictly concave with Γ′(0) = +∞ and limq→∞ Γ(q) = −∞. Hence,

there exists a unique qs > 0 solution to Γ(qs) = 0. If ασ(θ−As)− r(1− θ) ≤ 0 then Γ(q) is decreasing with

Γ(0) = 0. Hence, there is no qs > 0 solution to Γ(qs) = 0. Comparative statics are straightforward. As an

example, consider the effects of changes in λ. Differentiating (53) with respect to A and λ we obtain:

∂As

∂λ
=

(
Ā−As

)
(As − θ)

2λAs −
[(
θ + Ā

)
λ+ r(1− θ)

] .
Using that As is the lowest root of (53), it follows that the denominator is negative (graphically, the slope

of the parabola is negative when it intersects the horizontal axis at As). Using that As < min{Ā, θ}, the

numerator is negative and ∂As/∂λ > 0. From (54) Γ(q) decreases with As for all q such that u(q)− q > 0.

Hence, ∂qs/∂λ > 0. As another example, consider a change in r. From (53),

∂As

∂r
=

(1− θ)As

2λAs −
[(
θ + Ā

)
λ+ r(1− θ)

] < 0.

Since agents are indifferent between mining or producing at As, namely ∆(qs, As) = 0, by (15) we have

u(qs)− qs
ω(qs)

=

{
1− θ +

qs

u(qs)− qs

}−1

=
λ
(
Ā−As

)
ασAs(1− θ) .

The left side falls in qs and the right side falls in As. Thus qs and As comove as r varies and ∂qs/∂r < 0.

Proof of Proposition 2. The first two claims and Part 1: We first provide a condition that

determines which regime, m = 1 − A or m ∈ (0, 1−A), is relevant along the equilibrium trajectory. We

use the condition to create two ODEs that fully characterize the dynamics of qt and At. Then we will use a

standard result for systems of ODEs to prove the existence and uniqueness of qt and At.

Suppose the economy is at (A′, q′) where A′ < As and consider the trajectory as we move backward in

time. If µ(q′) > A′, then the equilibrium path cannot follow (17) because the solution path is continuous.
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To see this, note that the path of At is continuous by (14) since At cannot jump and
∣∣∣Ȧ∣∣∣ ≤ λĀ. The value of

money, ω(qt) ≡ V1,t−V0,t, is continuous over time because the continuation values V1,t and V0,t are integrals

of payoffs that arrive randomly according to Poisson processes. As a result m = 1−A′ when µ(q′) > A′. In

this case it is optimal for agents to mine because ∆(q′, A′) in (15) is strictly positive when µ(q′) > A′.

Next suppose µ(q′) = A′. The equilibrium is in the regime with m = 1−A if and only if

∂q

∂A

∣∣∣∣
m=1−A

≤ ∂q

∂A

∣∣∣∣
m∈(0,1−A)

(55)

where the first derivative is defined by (29) and the second is obtained by differentiating (17) with respect

to A, namely ∂q/∂A = 1/µ′(q). If (55) is binding, then both regimes imply m = 1−A and thus they imply

the same trajectory. If (55) holds strictly, then the trajectory defined by (27) and (28) converges to (A′, q′)

from the left of the line µ(q) = A, and thus it is optimal for all agents without money to mine, m = 1− A.

The trajectory µ(q) = A is not an equilibrium near (A′, q′) because by (24) and (25)

∂q

∂A
=
m−1{

[
r + λ

(
Ā−A

)]
ω(q)− ασ (1−A) θ [u(q)− q]}+ ασθ [u(q)− q]

λ(Ā−A)ω′(q)
. (56)

For any (A, q) such A = µ(q), the right side rises in m because the expression in the braces is negative by

(17) and (20). Using that the left side of (55) coincides with (56) when m = 1 − A, it follows that if (55)

holds strictly at (q′, A′), then the measure of miners m implied by the trajectory A = µ(q) must strictly

exceed 1−A′, and thus it cannot be an equilibrium path.

If (55) does not hold, then the trajectory defined by (27) and (28) converges to (q′, A′) from below

A = µ(q) and, hence, no agent has an incentive to mine. In this case, the equilibrium path is in the regime

where m ∈ (0, 1−A) and the measure of miners, m, implied by A = µ(q) satisfies m < 1−A by (56).

We are now ready to characterize the equilibrium by a system of ODEs in backward time. Let y ≡ As−A.

Then we can define q as a function of y along the equilibrium path. From (17) and (29), the two sides of the

inequality (55) can be expressed as:

∂q

∂y

∣∣∣∣
m=1−A

= g1(y, q) ≡ − ω(q)

ω′(q)

[r + λ
(
Ā−As + y

)
]

(1−As + y)λ
(
Ā−As + y

) (57)

∂q

∂y

∣∣∣∣
m∈(0,1−A)

= g2(y, q) ≡ − 1

µ′(q)
. (58)

By the discussion above, the equilibrium path q(y) solves the following ODE:

∂q

∂y
= f(y, q) ≡ max{g1(y, q), g2(y, q)}1{µ(q)≤As−y} + g1(y, q)1{µ(q)>As−y} (59)
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with the initial condition q(0) = qs, where 1{·} is an indicator function. It is easy to check that f(y, q) is

bounded and continuous for y ∈ [0, As] and q ∈ (0, q̄] where q̄ > 0 is the solution to u(q̄)− q̄ = 0.

Next we show that the equilibrium eventually enters the regime with m = 1 − A as y increases. As

q tends to 0, then ω(q)µ′(q)/ω′(q) → 0 and, thus, there exists q > 0 such that (57) exceeds (58) for all

q < q. Therefore, the equilibrium stays in the regime m = 1 − A for all q < q, as shown in Figure 13. Let

y ≡ As − µ(q) so that the equilibrium has m = 1−A for all y ≥ y.

Figure 13: The equilibrium path is contained in the shaded area.

Consider the existence and uniqueness of equilibrium for q ∈ [q, qs] and y ∈ [0, y]. By Theorem 58.5 in

Tennenbaum and Pollard (1985), there is a unique solution for q(y) in (59) provided that f(y, q) is Lipschitz

continuous, namely there is a real constant K > 0 such that

|f(y, q′)− f(y, q′′)| ≤ K|q′ − q′′|

for every y ∈ [0, y] and q′, q′′ ∈ [q, qs]. For any y ∈ [0, y], one can check that the slope of f with respect to q

is bounded provided that u′′ is bounded. Therefore, f is Lipschitz continuous.

Next, we express m as a function of y. By using the solution of q(y) and (56),

m(y) =
ασ (1−As + y) θ{u[q(y)]− q(y)} −

[
r + λ

(
Ā−As + y

)]
ω[q(y)]

λ(Ā−As + y)ω′(q)∂q/∂y + ασθ{u[q(y)]− q(y)}
. (60)

By (25) the ODE that determines yt is

ẏt = −λm(yt)(Ā−As + yt).

One can check that the slope of the right side with respected to y is bounded for all y ≤ y. Therefore, the
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right side is Lipschitz continuous and the solution for yt is unique for any given initial condition. Since q(y)

and yt exist and are unique, qt and At exist and also are unique.

For A < As − y, the equilibrium is in the regime with m = 1 − A. The ODE for A, (28), is a Riccati

equation, which has a closed form solution (see Section 2.15 in Ince (1956)):

At =
Ā− Āe−λ(1−Ā)t

1− Āe−λ(1−Ā)t
, (61)

where A0 = 0 is the initial condition. By (27) and (61) we can solve for the value of money in closed form,

ω(qt) = ω0e
rt

1 +
Ā
[
1− e−λ(1−Ā)t

]
(1− Ā)

 , (62)

where ω0 is the initial value of ω(qt) at t = 0. We can solve for ω0 by first solving t0 in At0 = As − y where

At is given by (61). Then we derive ω0 by solving ω(qt0) = ω(q) where ω(qt0) is derived by evaluating (62)

at t = t0. Since q > 0 as discussed above, ω0 > 0 by (62).

Part 2: By (29) the inequality (55) is equivalent to

ω(q)

ω′(q)

r + λ
(
Ā−A

)
(1−A)λ

(
Ā−A

) ≤ 1

µ′(q)
. (63)

Suppose A = As and q = qs. Since As = µ(qs) and As solves the equality (20), the inequality above is

equivalent to
µ′(qs)

µ(qs)

ω(qs)

ω′(qs)
≤ 1− θ

θ
.

This proves the claim concerning (33) in the proposition. Finally, if m = 1 − A near the neighborhood of

the steady state, then Ȧ in (14) is strictly positive because Ā − At > 0 and 1 − At > 0 near the steady

state. Therefore At converges to As in finite time near the steady state. When m < 1 − A, m → 0

as (q, A) → (qs, As) because the denominator in (60) is positive by (17) and (20), and it vanishes as

(q, A) → (qs, As). Moreover, since ∂q/∂y = −1/µ′[q(y)] when m < 1 − A, the numerator in (60) can be

written as

−λ(Ā−As+y)
ω′[q(y)]

µ′[q(y)]
+ασθ{u[q(y)]−q(y)} = (1−θ)ασ{u[q(y)]−q(y)}

[
θ

1− θ −
ω′[q(y)]/ω[q(y)]

µ′[q(y)]/µ[q(y)]

]
. (64)

The equation is true because when m < 1−A we have A = µ(q), and thus by (17) and A = As − y

λ
(
Ā−As + y

)
=

(1− θ)ασµ[q(y)] {u[q(y)]− q(y)}
ω(q)

. (65)
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As q(y) → qs, the right side of (64) converges to a strictly positive value by (33) and, therefore, m in

(60) vanishes as (q, A) → (qs, As). It follows that Ȧ vanishes by (25) and thus At converges to As only

asymptotically.

Proof of Lemma 1. Part 1: By Proposition 2, mining and trades coexist near the steady state if

µ′(qs)/µ(qs)

ω′(qs)/ω(qs)
>

1− θ
θ

.

By differentiating (17),
µ′(qs)/µ(qs)

ω′(qs)/ω(qs)
=

(
Ā−As

)
[1− ε(qs)]

Āω′(qs)[1− qs/u(qs)]
. (66)

Hence, (33) can be rewritten as: (
Ā−As

)
[1− ε(qs)]

Āω′(qs)[1− qs/u(qs)]
>

1− θ
θ

. (67)

The left side rises in qs by ε′(q) ≤ 0 and the concavity of u(q). As λ rises, As rises and qs falls by Proposition 1,

and thus the left side of (67) falls. As λ→∞, A→ Ā and the right side of (67) vanishes, so λ∗ is finite.

Next, by Proposition 1, as σα increases, As remains constant but qs rises. Hence, the left side of (67)

rises. When ασ is suffi ciently small, q is arbitrarily close to 0. As q → 0, the left side of (67) vanishes by

L’Hospital’s Rule, and thus the inequality fails. From (19), as ασ → ∞, qs/u(qs) → 1, and the left side of

(67) goes to infinity. This proves that (33) holds if ασ is suffi ciently large and thus κ∗ ∈ (0,∞).

Now we prove the last claim of Part 1. The transition from the regime with m = 1 − A to one with

m ∈ (0, 1−A) must occur on the indifference condition A = µ(q) and the slope of the two trajectories must

be the same, namely
∂q

∂A

∣∣∣∣
m=1−A

=
∂q

∂A

∣∣∣∣
m∈(0,1−A)

.

The equality holds because if the right side is strictly larger, then the measure of miners implied by the

trajectory A = µ(q) strictly exceeds 1 − A and thus it cannot be an equilibrium. If the left side is strictly

larger, then the trajectory in the m=1−A regime will cut the line A=µ(q) from below, but in this case no

agents has incentive to mine and, thus it is impossible to have m=1−A. Hence, the slope of the trajectories

must be the same at the transition point. From (17) and (29), the displayed equation above is the same as

ω(q)

ω′(q)

r + λ
(
Ā−A

)
(1−A)λ

(
Ā−A

) =
1

µ′(q)
.
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By the definition of µ in (17) and A = µ(q), the equation can be rewritten as[
1− ω(q){ασ(1− θ) [u′(q)− 1] + λω′(q)}

ω′(q){ασ(1− θ) [u(q)− q] + λω(q)}

]
A[r + λ

(
Ā−A

)
]

(1−A)λ
(
Ā−A

) = 1

⇐⇒ ασ(1− θ)[1− ε(q)]
ω′(q)

[
u(q)

ασ(1− θ) [u(q)− q] + λω(q)

]
A[r + λ

(
Ā−A

)
]

(1−A)λ
(
Ā−A

) = 1.

Now we argue that the left side rises monotonically as we move along the line A = µ(q) in the (A, q) space.

As we move along A = µ(q), both q and A increase. The fraction 1 − ε(q) rises in q provided that u has

decreasing elasticity. The fraction 1/ω′(q) rises in q by the concavity of u. The fraction in the large bracket

rises in q when ασ(1 − θ) > λθ. The last fraction in the left side rises in A. Altogether, the left side

increases as the trajectory moves along A = µ(q). It follows that there can be at most one transition from

the m = 1−A regime to the one with m ∈ (0, 1−A).

Finally, once the equilibrium enters the regime with m ∈ (0, 1 − A), it cannot switch regime again. For

suppose it does, then the equilibrium must stay in the regime with m = 1−A as explained in the above

paragraph. But then the equilibrium trajectory cannot converge to (As, qs) as it cannot intersect the locus

A = µ(q).

Part 2: We show m ∈ (0, 1 − A) is impossible when θ < 1/2. As discussed before (64), the denominator

in the right side of (60) is strictly negative for all q < qs and A < As. Suppose m ∈ (0, 1 − A), then the

numerator can be written as (64) and it is negative if and only if

ω(q)

ω′(q)

µ′(q)

µ(q)
>

1− θ
θ

⇐⇒ 1− ω(q){ασ(1− θ) [u′(q)− 1] + λω′(q)}
ω′(q){ασ(1− θ) [u(q)− q] + λω(q)} >

1− θ
θ

.

The second inequality uses the definition of µ in (17). If λ is suffi ciently large, then qs < q∗ by Proposition 1.

In this case u′(q)− 1 > 0 for all q ≤ qs and thus the left side is less than 1. If θ < 1/2, then (1− θ)/θ > 1

and, therefore, this condition always fails. As a result, m < 0 and thus it is impossible for the equilibrium

path to be in the regime with m ∈ (0, 1−A).

Proof of Proposition 3. Part 1: From the proof of Proposition 2, for any (A′, q′) where A′ < As and

A′ ≤ µ(q′), there is a unique q0 such that (At, qt) = (A′, q′) for some t > 0 from the initial condition A0 = 0.

As a result if two equilibrium trajectories have different initial values for q, then they will not intersect in

the (A, q) space. It follows that any equilibrium trajectory with q0 < q̂0 is located below the trajectory with

q0 = q̂0 that converges to (As, qs) as illustrated in the left panel of Figure 14. Since A0 = 0 ≤ µ(q0), the
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trajectory is located in the regime with mt = 1 − At if t is not too large. From (31), in this regime the

trajectory solves:

At =
Ā
[
1− e−λ(1−Ā)t

]
1− Āe−λ(1−Ā)t

ω(qt) = ertω(q0)

[
1− Āe−λ(1−Ā)t

1− Ā

]
.

Since the trajectory cannot intersect the one that converges to steady state, it must cross the locus A = µ(q)

in the (A, q) space at some A < As. Let T0 be the first time the trajectory satisfies At = µ(qt). Since

AT0 < As and m = 1 − At for all t < T0, the value of At reaches AT0 in finite time, thus T0 < +∞. This

proves Part 1(a).

Next, we argue that the trajectory only crosses the locus A = µ(q) once. Suppose At > µ(qt), then

mt = 0 because no agent wants to mine. Therefore, At remains constant. The value of money, ωt = ω(qt),

solves (11) with m = 0, i.e.,

ω̇ = rω − ασ (θ −AT1) [u(q)− q] . (68)

Using that ω̇ = 0 when (At, qt) = (As, qs) and ω̇/ω increases in q, it follows that ω̇ < 0. See right panel of

Figure 14. It follows that the trajectory (At, qt) falls vertically whenever (At, qt) lies below the locus A = µ(q)

and At < As. Since the trajectory must and can only cross A = µ(q) once, there is T1(q0) ∈ (T0(q0),+∞)

such that AT1 = µ(qT1) and At > µ(qt) for all t > T1. For all t < T1, mt > 0 and q̇t > 0 since otherwise the

equilibrium trajectory would fall permanently below the locus A = µ(q). These properties are also illustrated

in the left panel of the Figure 14.

Figure 14: Failing currency equilibria.
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For all t > T1, mt = 0, At = AT1 , and ω̇ < 0 as discussed above. See right panel of Figure 14. By (68)

and L’Hospital’s Rule

lim
q↘0

ω̇

ω
= r − ασ (θ −AT1)

u′(0)/[u′(0)− 1]− θ .

Since the right side is constant for t ≥ T1, ωt falls at a constant rate when q ≈ 0. Therefore, ωt converges to

0 asymptotically. This proves Part 1(b).

Part 2: If (33) holds, then there is a T< +∞ such that for all t ≥T , At = µ(qt) along the unique

equilibrium,
(
Ât, q̂t

)
, leading to (As, qs). For all T ≥T , we can construct an equilibrium such that (At, qt) =(

Ât, q̂t

)
for all t ≤ T and mt = 0 for all t ≥ T . The trajectory up to T is the solution to the system of

ODEs in backward time characterized in the proof of Proposition 2. Since AT = µ(qT ), at time T agents

are indifferent between mining or not. We select mT = 0. As a result, ȦT = 0 and

q̇T =
rω(qT )− ασ (θ −AT ) [u(qT )− qT ]

ω′(qT )
< 0.

Since q̇T < 0, the trajectory falls below the locus A = µ(q). As a result, for all t > T , mt = Ȧt = 0, and

q̇t < 0. The rest of the argument is similar to the proof of Part 1 of Proposition 3.

Lemma 2 There exists a pair of (mt, At) that solves the planner’s problem (69)-(71), provided that qt = q∗.

Proof. The planner’s problem is given by:

max
qt,mt,At

∫ +∞

0

e−rtασAt(1−At −mt)[u(qt)− qt]dt (69)

s.t. Ȧ = mtλ(Ā−At), (70)

mt ≤ 1−At and A(0) = A0. (71)

The objective is the discounted sum of all trade match surpluses where the aggregate measure of trade

matches between a money holder and a producer is ασA (1−A−m). The state variable is the money

supply which increases with the measure of miners who successfully dig money from the ground. There are

two control variables, the measure of miners and output in a match. The measure of miners has an upper

bound given the measure of agents without money. If the planner can dictate the output traded in each

match, she will choose qt = q∗ for all t. One can rewrite (70) as

Ȧ = min{mt, 1−At}λ(Ā−At). (72)
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This reformulation is useful because it ensures the planner never chooses mt > 1−At even when it is feasible.

As a result we could drop the constraint mt ≤ 1−At and only impose mt ∈ [0, 1]. Next we apply a standard

result to show the existence of solution for an infinite horizon optimization problem. By Theorem 15 in

Seierstad and Sydsaeter (1986) there exists a (At,mt) that solves the new planner’s problem if

1. The right side of (72) and the integrand in (69) are continuous in mt and At.

2. There exists a function φ(t) such that φ(t) ≥ |e−rtασAt(1 − At −mt)[u(q∗) − q∗]| for all admissible

(mt, At) and
∫∞

0
φ(t)dt <∞.

3. There exists non-negative functions a(t) and b(t) such that

min{mt, 1−At}λ(Ā−At) ≤ a(t)At + b(t)

for all At ∈ [0, Ā] and mt ∈ [0, 1].

4. The set

N(A, t) = {(e−rtασAt(1−At −mt)[u(q∗)− q∗] + γ,min{mt, 1−At}λ(Ā−At))|mt ∈ [0, 1], γ ≤ 0}

is convex for all At and t.

It is easy to see condition (1) is satisfied. Condition (2) is satisfied by assuming φ(t) = e−rtασĀ[u(q∗)−q∗].

Condition (3) is satisfied because the right side of (72) is bounded above by λĀ for all At and mt. The last

condition is satisfied because the first component of N(A, t) is linear in mt and γ and the second component

is concave in mt and constant in γ. It follows that there is a pair, (At,mt), that solves the planner’s problem

provided that qt = q∗.

Proof of Proposition 4. Part 1: It is obvious that the optimal output is qt = q∗ provided that trade

happens. By Lemma 2, there is a solution to the planner’s provided that qt = q∗. Now we characterize this

solution and argue it is unique. The current value Hamiltonian corresponding to (69)-(71) is:

H (A,m, ξ, ν) = ασA (1−A−m) [u (q∗)− q∗] + ξmλ
(
Ā−A

)
+ ν(1−A−m),

where ξ is the co-state variable associated with A, and ν is the Lagrange multiplier associated withm ≤ 1−A.

The FOC with respect to m is:

m
= 0
∈ [0, 1−A]

if − ασA [u (q∗)− q∗] + ξλ
(
Ā−A

)
− ν < 0

= 0
, (73)
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together with the complementary slackness condition, ν(1−A−m) = 0. The co-state variable satisfies the

following ODE:

rξ = ασ (1− 2A−m) [u (q∗)− q∗]− ξmλ− ν + ξ̇. (74)

The stationary solutions to (70) and (74), Ȧ = ξ̇ = 0, are such that m = 0 and

rξ = ασ (1− 2A) [u (q∗)− q∗] (75)

ξλ
(
Ā−A

)
≤ ασA [u (q∗)− q∗] . (76)

We denote A∗ the lowest value of A that satisfies (76) where ξ is given by (75). It is the lowest root of the

following quadratic equation,

2A2 −
(

1 + 2Ā+
r

λ

)
A+ Ā = 0.

In closed form:

A∗ =

(
1 + 2Ā+ r/λ

)
−
√(

1 + 2Ā+ r/λ
)2 − 8Ā

4
.

It is easy to check that A∗ < min{1/2, Ā}. We denote

ξ∗ = ασ (1− 2A∗) [u (q∗)− q∗] /r.

Now we argue that At converges to A∗. Since At is continuous, non-decreasing and bounded above by Ā,

eventually it converges and m vanishes. The process At cannot converge to any A′ < A∗. Suppose it does.

Since A∗ is the smallest solution to (75) and (76), for all A′ < A∗ we have

−ασA′ [u (q∗)− q∗] + ξλ
(
Ā−A′

)
> 0.

This implies ν > 0 by (73) and thus m = 1 − A by the complementary slackness condition. Since A′ < 1,

m = 1 − A′ > 0 and thus At cannot converge to A′. The process At also cannot converge to any A > A∗

because when At goes above A∗ the inequality (76) holds strictly and thus m = 0 by (73). It follows that

the optimal solution can only converge to A∗.

We conjecture and then verify that the solution to the planner’s problem is such that for all A < A∗,

m = 1−A. Then, the ODEs (70) and (74) can be rewritten as

Ȧ = λ(1−A)
(
Ā−A

)
(77)

ξ̇ =
[
r + (1 + Ā− 2A)λ

]
ξ. (78)
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The ODE for A, (77), is a Riccati equation that can be solved in closed form. See Section 2.15 in Ince

(1956) for details. The solutions are

At =
Ā
[
1− e−λ(1−Ā)t

]
1− Āe−λ(1−Ā)t

and ξt = ξ0e
[r+λ(1−Ā)]t

(
1− Āe−λ(1−Ā)t

1− Ā2

)2

,

where we used that A0 = 0. Hence, there is a unique solution to (77)-(78). By the formula for A∗ and At,

one can solve for the time T ∗. We denote the path defined by (77)-(78) by ξ = ξp(A). From (77)-(78) the

slope of ξ = ξp(A) is

ξp′(A) =
ξ̇

Ȧ
=

[
r + (1 + Ā− 2A)λ

]
ξ

λ(1−A)
(
Ā−A

) .

From (73) m = 1−A is optimal only if

ξp(A) ≥ Ω(A) ≡ ασA [u (q∗)− q∗]
λ
(
Ā−A

) for all A < A∗.

We now show that whenever ξp(A) = Ω(A) then 0 < ξp′(A) < Ω′(A). To see this, we evaluate ξp′(A) at

ξ = Ω(A):

ξp′(A)
∣∣
ξ=Ω(A)

=
A
[
r + (1 + Ā− 2A)λ

]
λ(1−A)Ā

ασĀ [u (q∗)− q∗]
λ
(
Ā−A

)2
< Ω′(A) =

ασĀ [u (q∗)− q∗]
λ
(
Ā−A

)2 for all A < A∗.

Given that ξp(A∗) = Ω(A∗), there is no other solution A < A∗ to ξp(A) = Ω(A), and thus ξp(A) ≥ Ω(A) for

all A < A∗.

Finally we argue m ∈ (0, 1 − A) cannot be optimal. Suppose m ∈ (0, 1 − Ã) at certain (Ã, ξ̃) where

Ã < A∗. Then ξ̃ = Ω(Ã) by (73). By the ODE (70) and (74),

ξp′(Ã) =
ξ̇

Ȧ
=

ξ̃

λ(Ā− Ã)

[
1

m

(
r +

λ(Ā− Ã)(2Ã− 1)

Ã

)
+ λ+

ασ[u(q∗)− q∗]
ξ̃

]
. (79)

Since rA+ λ(Ā−A)(2A− 1) < 0 for all A < A∗ by (75) and (76), the right side of (79) strictly increases in

m. As discussed above, if m = 1− Ã, then ξp′(Ã) < Ω′(Ã) and thus ξp(A) cuts Ω(A) from above at (Ã, ξ̃).

By a similar argument, ξp(A) must be lower than Ω(A) for all A ∈ (Ã, A∗). But then it is impossible for

ξ(A) to reach ξ∗ as A → A∗ because m = 0 when ξp(A) < Ω(A) by (73). Therefore m ∈ (0, 1 − A) is sub

optimal.

Part 2: In order to guarantee that mt = 1 − At for all t < T ∗ we set θt = 1 for all t < T ∗ so that

producers receive no gains from trade. From (19) the buyer’s bargaining power that implements q∗ when T ∗
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has been reached is θ∗ defined in (38). Incentive feasibility means θ∗ ∈ [0, 1], which holds if and only if (36)

holds. From (20) agents stop mining when A∗ is reached if

r ≤ (1−A∗) [u(q∗)− q∗]
q∗

[
ασA∗ − λ

(
Ā−A∗

)]
− λ

(
Ā−A∗

)
.

This inequality can be rearranged to give (37).

Proof of Proposition 5. From (40) and the assumption that π(At) = 0 for all At ≥ Ā, any steady-

state monetary equilibrium is such that A ≥ Ā. We focus on As = Ā since it is the value that is reached

from A0 = 0. From (41), the value of money at a steady state solves:

rωs = ασ
(
θ − Ā

)
S(ωs).

Using that S′(0) = 1/(1 − θ) and the fact that S(0) = 0 and S(ω) is concave, there exists ωs > 0 solution

to the equation above if and only if (42) holds. The system of ODEs, (40) and (41), in the neighborhood of

the steady state can be approximated by:(
Ȧ
ω̇

)
=

(
π′(Ā)Ā 0
ασS(ωs) r − ασ

(
θ − Ā

)
S′(ωs)

)(
A− Ā
ω − ωs

)
.

Using that r > ασ
(
θ − Ā

)
S′(ωs) and π′(Ā) < 0, then the determinant of the Jacobian matrix is negative

and hence there is a unique saddle path leading to the steady state. Starting from an initial condition on that

saddle path near the steady state, the system (40) and (41) in backward time generates a unique solution.

This solution is located below the ω-isocline and is such that ω̇ < 0. See phase diagram in Figure 12. It can

also be checked from the phase diagram that any ω0 ∈ (0, ω̂0) is such that ω̇ < 0 and limt→∞ ωt = 0.

Proof of Proposition 6. Part 1: At a steady-state monetary equilibrium with χ = 1, ω̄s solves

rω̄s = ασ
(
θ − Ā

)
S(ω̄s) + ψ. (80)

The left side is linear and unbounded while the right side is concave in ω̄s, bounded, and it is strictly positive

when ω̄s = 0. Hence, there is a unique ω̄s > 0 solution to (80). Moreover, ω̄s increases with ψ and, under

the assumption (42), limψ→0 ω̄
s = ωs > 0. The solution is consistent with χ = 1 if ψ ≤ ασĀ(1 − θ)S(ω̄s).

This inequality holds at ψ = 0 and, by continuity, it holds over some interval
[
0, ψ̄

]
with ψ̄ > 0.

In the neighborhood of the steady state (Ā, ω̄s), the system of ODEs for (At, ωt) is approximated by:(
ω̇

Ȧ

)
=

(
r − ασ

(
θ − Ā

)
S′(ω̄s) ασS(ω̄s)

0 π′(Ā)Ā

)(
ω − ω̄s
A− Ā

)
.
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Using that r > ασ
(
θ − Ā

)
S′(ωs) and π′(Ā) < 0, the determinant of the Jacobian matrix is negative, i.e.,

the steady state is a saddle point. Hence, there is a unique saddle path in the neighborhood of the steady

state leading to it. In order to compute the equilibrium path from A0 = 0, we take a point on the saddle

path arbitrarily close to the steady state and move backward in time according to the system of ODEs,

(40) and (45). As shown in the phase diagram in Figure 10, as long as the system remains in the region

where χt = 1, when At is suffi ciently close to Ā, i.e., t is larger than some threshold t̄, then ω̇t < 0. When

the system enters the region where χt = 0 then, from (45), ω̇/ω = r > 0. Let t> 0 be the time such that

At = ψ/ασ(1− θ) [u(q∗)− q∗]. From (44), for all t <t, χt = 0, and t≤ t̄ since the opposite would contradict

the existence of a steady state with χ = 1.

Part 2: By (44) and (45) a monetary steady-state with partial acceptability is a pair (ωs, χs) solving

ψ = ασĀ(1− θ)S(ωs), (81)

χs =
rωs

ασ(1− Ā)θS(ωs)
. (82)

This system is solved recursively: (81) gives ωs while (82) gives χs. It is easy to check that (81) admits two

solutions, as S(·) is hump-shaped. From Part 1, since χs = 1 in the steady state w̄s,

ψ ≤ ασĀ(1− θ)S(ω̄s),

the lowest candidate solution for ωs is smaller than ω̄s while the largest candidate solution is greater than

ω̄s. Given that from (82) χs is increasing with ωs and χs ≥ 1 when ωs = ω̄s, it follows that the unique

steady state with partial acceptability corresponds to the lowest solution to (81). From the phase diagram,

one can check that pairs (At, ωt) in the positive quadrant located underneath the trajectory leading to the

steady state with full acceptability and such that At ≤ Ā form a basin of attraction for the steady state with

partial acceptability. Hence, all equilibria such that ω0 ∈ (0, ω̂0) lead to (ωs, Ā).

Proof of Proposition 7. Part 1: The determinant of the Jacobian matrix of the system of ODEs

given by (40) and (49) in the neighborhood of (As, ωs) is negative. Hence, by the argument in the proof of

Proposition 6, there exists a unique equilibrium path converging to (As, ωs). To characterize the equilibrium

path, we focus first on the state space where m = 1 − A, which corresponds to the black dashed line in

Figure 12. Since the first term in the min operator of (50) rises in q, the measure of miners is m = 1−A if
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and only if (At, qt) lies on or above the line characterized by

ω(q)

u(q)− q =
ασ(1− θ)(1−A)

π(A)
(83)

in the (A, q) space, which defines a positive relationship between q and A.

Next, we characterize the state space where ω̇ > 0. When m = 1 − A, clearly ω̇ > 0 by (49). When

m ∈ (0, 1−A), substituting the value of m from (50) into (49) and assuming ω̇ = 0, we have

ω(q)

u(q)− q =
ασ(1− θ)(1−A/θ)

1−θ
θ r + π(A)

. (84)

Hence ω̇ > 0 if and only if (At, qt) lies above the line characterized by (84). But (84) characterizes a line

that is strictly below (83) in the (A, q) space. Hence, if (At, qt) lies on or above (84), then either m = 1−A

or m < 1 − A, but in both cases ω̇ ≥ 0. If (At, qt) lies below (84), then m < 1 − A and ω̇ < 0. Since

ω(q) increases in q by (8), Equation (83) and (84) also define a locus in the (A,ω) space, we plot them in

Figure 12 (dashed black and solid blue line respectively).

Call the line characterized by (84) the q locus. Since q̇ > 0 iff (At, qt) lies above the q locus, the trajectory

(At, qt) can change direction (from up to down or from down to up) at most the same number of times as

the q locus does. We now show the q locus is either increasing or hump-shaped. Let ν(A) be the right side

of (84). Since the left side of (84) rises in q, the q locus rises in the (A, q) space if and only if ν′(A) > 0. So

it suffi ces to show that ν(A) is either increasing in A or first increases and then decreases in A for A ≤ Ā.

By (84) the slope of ν(A) is proportional to

dν(A)

dA
∝ ζ(A) ≡ [λθ − (1− θ)r]A2 − 2θλĀA+ θ2λĀ,

where ζ(0) = θ2λĀ > 0, and hence ν(A) is initially rising. If λθ− (1− θ)r ≤ 0, then the right side falls in A.

In this case ν(A) is either increasing or first rises and then falls. Next, assume λθ− (1−θ)r > 0 so that ζ(A)

is U-shaped in A. The turning point of ζ(A) is Ã ≡ θλĀ/[λθ− (1− θ)r] and ζ(Ã) > 0 iff λ (θ−Ā)
1−θ > r. Hence,

ν(A) rises in A when λ (θ−Ā)
1−θ > r. If λ (θ−Ā)

1−θ ≤ r, then Ã ≥ θ > Ā, in this case ν(A) is either increasing

or first rises and then falls. Altogether, the q locus is either rising or hump-shaped. It follows that the

trajectory (At, qt) must either be increasing, decreasing, or first increasing and then decreasing.

But since the q locus is strictly to the right of the y-axis when q = 0 by (84) (the blue line in Figure 12),

the trajectory (At, qt) must lie above the q locus when A ≈ 0, and hence is initially rising. Thus, (At, qt)

is either increasing or hump-shaped. It is increasing if and only if (As, qs) lies in the increasing part of the
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q locus. Therefore if ν′(Ā) ∝ ζ(Ā) ≥ 0 then (As, qs) is increasing and if ζ(Ā) < 0 then it is hump-shaped.

Since ζ(Ā) = Ā[−(1− θ)rĀ+ θλ(θ − Ā)], ζ(Ā) ≥ 0 iff λ > λ̄.

Part 2: Let q̂0 be the initial value of q in the equilibrium described in Part 1. By the proof logic

of Proposition 3, different equilibrium trajectories cannot cross each other. Hence, if q0 < q̂0, then the

trajectory must stay strictly below the trajectory leading to (Ā, qs) at all t <∞. By (40) and (49), the slope

of any trajectory is
dq

dA
=

ω̇

ω′(q)Ȧ
=
rω(q)− ασ[θ(1−m)−A] [u(q)− q]

ω′(q)π(A)A
.

At any point (Ā, q′) where q′ ∈ (0, qs), the slope of the trajectory is dq/dA = −∞, hence no trajectory can

converge to (Ā, q′). Also there cannot be any trajectory converging to any (A′, 0) for A′ < Ā. Suppose there

exists one. Since q̇ becomes vanishing small as q → 0, the trajectory converges to the x-axis asymptotically.

But since Ȧ = π(A)A > 0 whenever q > 0, the money supply eventually reaches Ā and thus cannot converge

to A′. It follows that any trajectory must eventually converge to either (Ā, 0) or (Ā, qs). But there is a

unique trajectory converging to (Ā, qs) by Part 1, hence all other trajectories must converge to (Ā, 0). The

rest of the results follow directly from the phase diagram in Figure 12.

Proof of Proposition 8.

A necessary condition for ω̇ = 0 is m < 1−A. Substituting m by its expression from (50) into (49) and

setting ω̇ = 0 yields (52).
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Online Appendix for “Money Mining and Price Dynamics”

May 2020

A Granger test

In this section we test whether the prices of gold and Bitcoin affect their production or mining intensity.

Gold: We use the historical mine production index and purchasing power of gold from Jastram (2009).

This is an annual data covering 1870-1970, see Figure 1. Consider the two-variable VAR[
productiont
pricet

]
= b0 +B1

[
productiont−1

pricet−1

]
+ · · ·+Bk

[
productiont−k
pricet−k

]
+

[
ε1,t

ε2,t

]
where b0 is a vector of intercept terms and each of B1 to Bk is a matrix of coeffi cients. The lag length k = 3

is recommended by the likelihood ratio test, final prediction error and Akaike’s information criterion.

We use the Granger test to test the null hypothesis that all coeffi cients on lags of the price in the

production equation are equal to zero, against the alternative that at least one is not non-zero. The p-value

is 0.02 and thus we conclude that the real price of gold Granger-causes the production at the 5% level.

Bitcoin: We use the monthly data on mining diffi culty and Bitcoin price from the web site Bitcoinity,

covering the period Aug 2010 to Oct 2018. We consider the following VAR model[
growth of diff levelt
growth of pricet

]
= b0 +B1

[
growth of diff levelt−1

growth of pricet−1

]
+ · · ·+Bk

[
growth of diff levelt−k
growth of pricet−k

]
+

[
ε1,t

ε2,t

]
.

The recommended lag is k = 2 and the p-value of the causality test is 0.0004. Hence we conclude that the

growth rate of prices Granger-causes the growth rate of the diffi culty level at the 1% level.
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B Search while mining

Now we allow agents to produce and mine at the same time, specifically we let miners produce with probability

η ∈ [0, 1] when in contact with a buyer. The opportunity cost of mining becomes C(1) = ασ(1− η)A(−q +

V1 − V0) and the probability that a random non-money holder can produce is then

χt =
1−A−m(1− η)

1−A .

The gold mining model in Section 3 is the special case η = 0. Another polar case is η = 1 where agents can

engage in mining without forgiving any trading opportunity. We will show that this possibility can change

the dynamics of prices depending on the effi ciency of the mining technology.

Proposition 9 (Search while mining) There exists a steady-state monetary equilibrium iff

r <
ασ

1− θ

[
ασθ(1− η) + λ

(
θ − Ā

)
ασ(1− η) + λ

]
. (85)

The steady-state money supply, As, increases with η while the value of money, qs, decreases with η.

Suppose η = 1. There exists a monetary equilibrium if r < ασ
(
θ − Ā

)
/(1−θ) and it is such that As tends

to Ā < θ. For all A0 < Ā the unique equilibrium leading to the steady state is such that: A increases over

time until it reaches Ā; q increases over time if λ > r/
(
θ − Ā

)
, decreases if λ < r/

(
θ − Ā

)
, and remains

constant if λ = r/
(
θ − Ā

)
.

Proof of Proposition 9. Agents’value functions solve:

rV1 = ασ [1−A−m(1− ρ)] θ [u(q)− q] + V̇1 (86)

rV0 = ασAρ(1− θ) [u(q)− q] + max
{
ασA(1− ρ)(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
+ V̇0. (87)

The key novelty in (87) is that the opportunity cost of mining has been multiplied by 1 − ρ. In particular,

if ρ = 1 there is no opportunity cost of mining and all agents without money mine. Subtracting (87) from

(86) the value of money solves:

rω(q) =

{
1−

[
1 + ρ

(
1− θ
θ

)]
A−m(1− ρ)

}
θασ [u(q)− q] (88)

−max
{
ασA(1− ρ)(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
+ ω′(q)q̇.

The law of motion for A is:

Ȧ = mλ
(
Ā−A

)
. (89)
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The locus of pairs (A, q) such that agents are indifferent between mining or not is given by:

A = µ(q) ≡ λĀω(q)

ασ(1− ρ)(1− θ) [u(q)− q] + λω(q)

The µ-locus shifts to the right as ρ increases and it becomes vertical at A = Ā when ρ = 1.

By the same reasoning as in Section 3.1, qs solves (18),

rω(q) = (θ −A)ασ [u(q)− q] ,

and As is the smallest root to

λ
(
Ā−A

)
(θ −A)−A(1− η)(1− θ)r = 0. (90)

It is easy to check that As increases with ρ while qs decreases with η. Moreover, as η approaches to 1, As

approaches to min{θ, Ā}. By the same reasoning as in the proof of Proposition 1 there exists a steady-state

monetary equilibrium iff

lim
q→0
{rω(q)− [θ − µ(q)]ασ [u(q)− q]} < 0.

Dividing by ω(q) > 0 this condition can be rewritten as:

lim
q→0

{
r − ασ [θ − µ(q)] [u(q)− q]

ω(q)

}
< 0.

Using that limq→0 {[u(q)− q] /ω(q)} = 1/(1−θ) and limq→0 µ(q) = λĀ/ [ασ(1− η) + λ] the condition above

can be rewritten as (85). In particular, when η = 1,

r <
ασ

1− θ
(
θ − Ā

)
.

In that case a necessary condition for a steady-state monetary equilibrium is Ā < θ. Hence, As = θ < Ā.

The condition ασ(θ − Ā) > r(1 − θ) guarantees the existence of a steady-state monetary equilibrium

when η = 1. The system of ODEs, (88) and (89), becomes:

ω′(q)q̇ =
[
r + λ

(
Ā−A

)]
ω(q)− (θ −A)ασ [u(q)− q]

Ȧ = λ(1−A)
(
Ā−A

)
Linearizing the system around the steady state we obtain:(

q̇

Ȧ

)
=

(
rω′(qs)−(θ−Ā)ασ[u′(qs)−1]

ω′(qs)
−λω(qs)+ασ[u(qs)−qs]

ω′(qs)

0 −λ(1− Ā)

)(
q − qs
A−As

)
.
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If
(
θ − Ā

)
ασ > r(1 − θ) then rω′(qs) >

(
θ − Ā

)
ασ [u′(qs)− 1]. It follows that the determinant of the

Jacobian matrix is negative, i.e., the steady state is a saddle point. The negative eigenvalue is e1 = −λ(1−Ā)

and the associated eigenvector is

−→v 1 =

(
[λ−r/(θ−Ā)]ω(qs)

[r+λ(1−Ā)]ω′(qs)−(θ−Ā)ασ[u′(qs)−1]

1

)
where we used that rω(qs) =

(
θ − Ā

)
ασ [u(qs)− qs]. The first component of −→v 1 is of the same sign as

λ− r/
(
θ − Ā

)
. The solution to the linearized system is(

q − qs
A−As

)
= Ce−λ(1−Ā)t−→v 1,

where C is some constant. Hence, in the neighborhood of the steady state,

∂q

∂A
=

[
λ− r/

(
θ − Ā

)]
ω(qs)[

r + λ(1− Ā)
]
ω′(qs)−

(
θ − Ā

)
ασ [u′(qs)− 1]

,

which is of the same sign as λ − r/
(
θ − Ā

)
. If λ > r/

(
θ − Ā

)
, then the saddle path in the neighborhood

of the steady state is upward sloping, i.e., q and A increase over time. We can show that this result holds

globally since the equation of the q-isocline is:

ω(q)

u(q)− q =
(θ −A)ασ

r + λ
(
Ā−A

) .
The q-isocline is upward sloping when λ > r/

(
θ − Ā

)
. See left panel of Figure 15. By the same reasoning, if

λ < r/
(
θ − Ā

)
, then the saddle path is downward sloping and along the equilibrium path, q decreases while

A increases. See middle panel of Figure 15. Finally, if λ = r/
(
θ − Ā

)
, then the q-isocline is horizontal. In

that case q is constant over time. See right panel of Figure 15.

According to (85) the set of parameter values for which a steady-state monetary equilibrium exists shrinks

as η increases. If agents can meet trading partners more frequently while mining, then the opportunity cost

of mining is lower and the incentives to mine are greater, which leads to a higher supply of money. But for

a monetary equilibrium to exist, the money supply cannot be too large. A higher η also reduces the value

of money. In the limiting case where η = 1, there is no opportunity cost to engage in mining and all agents

without money mine, m = 1 − A. At the steady state the money supply is equal to the maximum stock of

money that could be mined, Ā. We now turn to the transition dynamics for this special case.

Proposition 9 shows that when there is no opportunity cost of mining, the correlation between the value of

money and the money stock along the transitional path depends on the effi ciency of the mining technology.22

22While Proposition 9 focuses on the unique equilibrium leading to the steady state, there is also a continuum of equilibria
where the value of money vanishes asymptotically. In the left panel of Figure 15, when λ is high, the value of money increases
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Figure 15: Phase diagrams when agents can mine while searching for trading partners (η = 1).

If the mining intensity is high, the value of money increases with the money supply. If the mining intensity is

low, then the opposite correlation prevails and the value of money decreases as the money supply increases.

Finally, there is a mining rate such that the price level is constant, the value of money is independent of the

money stock.

first and then decreases. In the middle and right panels, when λ is low, the value of money is monotone decreasing in time.
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C General matching function

Consider the gold mining model in Section 3. But suppose now that only buyers (money holders) and

producers participate in the matching process according to a constant returns to scale matching function.

The matching probability of a buyer is α(τ) where τ = (1−A−m)/A is market tightness expressed as the

ratio of sellers to buyers. As is standard, we assume that α′ > 0, α′′ < 0, α′(0) = +∞, α′(+∞) = 0. A

matching function that satisfies these properties is the Cobb-Douglas matching function.

The HJB equations of agents with and without money are:

rV1 = α(τ)σθ [u(q)− q] + V̇1 (91)

rV0 = max

{
α(τ)

τ
σ(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
+ V̇0. (92)

The novelty is that the matching rate of a buyer is α(τ) while the matching rate of a seller is α(τ)/τ . Using

that limτ→0 α(τ)/τ = +∞, it follows that τ > 0 in equilibrium, i.e., m < 1−A. The goods market is always

active and

max

{
α(τ)

τ
σ(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
=
α(τ)

τ
σ(1− θ) [u(q)− q] . (93)

Subtracting (92) from (91) the value of money solves:

rω(q) =

[
α(τ)σθ − α(τ)

τ
σ(1− θ)

]
[u(q)− q] + ω′(q)q̇. (94)

From (93) market tightness in the goods market solves:

α(τ)

τ
σ(1− θ) [u(q)− q] ≥ λ

(
Ā−A

)
ω(q), “= " if τ <

1−A
A

.

Solving for τ we obtain:

τ(ω,A) = min

{
g−1

[
λ
(
Ā−A

)
ω

σ(1− θ)S(ω)

]
,

1−A
A

}
. (95)

where S(ω) ≡ u [q(ω)]− q(ω) and g(τ) ≡ α(τ)/τ . For all (ω,A) such that
λ(Ā−A)ω
σ(1−θ)S(ω) ≥ g

(
1−A
A

)
, m > 0 and

τ(ω,A) is decreasing in ω and increasing in A. Moreover, τ(+∞, A) = 0 and τ(0, A) > 0. The money supply

evolves according to

Ȧ = [1−A (1 + τ)]λ
(
Ā−A

)
, (96)

where we used that 1−A (1 + τ) = m.
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We summarize the equilibrium by a system of two ODEs in ω and A:

ω̇ = rω − {α [τ (ω,A)]σθ − g [τ (ω,A)]σ(1− θ)}S(ω) (97)

Ȧ = {1−A [1 + τ (ω,A)]}λ
(
Ā−A

)
. (98)

The locus of the points such that Ȧ = 0 corresponds to all pairs (ω,A) such that τ(ω,A) = (1−A)/A. From

(95) it is given by:
λ
(
Ā−A

)
ω

σ(1− θ)S(ω)
≤ g

(
1−A
A

)
. (99)

Condition (99) at equality gives a positive relationship between ω and A. As ω approaches 0, A tends to the

solution to λ
(
Ā−A

)
= σg

(
1−A
A

)
. As ω tends to +∞, A tends to Ā. This locus is represented by a red

upward-sloping curve in Figure 16.

The locus of the points such that ω̇ = 0 and Ȧ > 0 is such that

r
ω

S(ω)
= {α [τ (ω,A)]σθ − g [τ (ω,A)]σ(1− θ)} . (100)

The left side is increasing in ω while the right side is decreasing in ω but increasing in A. For given A there

is a unique ω solution to (100) provided that

r(1− θ) < {α [τ (0, A)]σθ − g [τ (0, A)]σ(1− θ)} ,

where τ(0, A) is the solution to g(τ) = λ
(
Ā−A

)
/σ. If this condition holds for A = 0, then it holds for all

A. Hence, we assume

r(1− θ) < [α (τ0)σθ − g (τ0)σ(1− θ)] where τ0 = g−1
[
λ
(
Ā−A

)
/σ
]
. (101)

Assuming this condition is satisfied, the ω-isocline is upward sloping as illustrated in Figure 16. As A goes

to zero, ω tends to a positive value.

There is a unique steady state such that agents are indifferent between mining or not and it solves

g (τ) = g

(
1−A
A

)
=

λ
(
Ā−A

)
ω

σ(1− θ)S(ω)
(102)

r
ω

S(ω)
= [α (τ)σθ − g (τ)σ(1− θ)] . (103)

Equation (102) specifies the market tightness such that agents are indifferent between mining or participating

in the goods market. Equation (103) gives the value of money given market tightness. Combining (102) and
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Figure 16: Phase diagram under matching function satisfying Inada conditions.

(103), steady-state market tightness solves:

σ(1− θ)

 r

λ
(
Ā− 1

1+τ

) + 1

 g (τ) = α (τ)σθ. (104)

It is easy to check that there is a unique τs ∈
(

0, 1−Ā
Ā

)
solution to this equation. The supply of money at

the steady state is then As = 1/(1 + τs). The equilibrium is monetary if (101) holds. The existence of a

unique steady state guarantees that the A-isocline and ω-isocline only intersect once, i.e., the ω-isocline is

located above the A-isocline as illustrated in Figure 16.

In Figure 16 we represent the phase diagram of the dynamic system (97)-(98) and its arrows of motion.

It can be checked that the steady state is a saddle path and given the initial condition A0 = 0 there is a

unique path leading to it. Along that path the value of money rises over time. There is also a continuum of

other equilibria where the value of money vanishes asymptotically.

In order to characterize the path for market tightness, we can rewrite (100) as

r
ω (τ , A)

S [ω (τ , A)]
= [α (τ)σθ − g (τ)σ(1− θ)] ,

where ω (τ , A) is defined implicitly by τ = τ (ω,A). Assuming m > 0, ω is a decreasing function of τ and

an increasing function of A. Hence, the τ -isocline is upward sloping. The A-isocline becomes A = 1/(1 + τ).

By the same reasoning as above, the saddle path is upward sloping, which means that τ increases over time.

59



D Interest-bearing/commodity monies

Suppose money is a commodity that provides some direct utility, e.g., gold or silver, or a financial asset that

pays dividends. We denote d>0 the dividend flow enjoyed by each money holder. The Bellman equation of

a money holder is:

rV1 = d+ ασ (1−A−m) θ [u(q)− q] + V̇1. (105)

The only novelty is the first term on the right side representing the dividend flow. The Bellman equation

for an agent without money is unchanged. It follows that the dynamic equation for the value of money is:

rω(q) = d+ ασ (1−A−m) θ [u(q)− q] (106)

−max
{
ασA(1− θ) [u(q)− q] , λ

(
Ā−A

)
ω(q)

}
+ ω′(q)q̇.

A steady-state equilibrium, (qs, As), solves:

rω(q) = d+ ασ (θ −A) [u(q)− q] (107)

A =
λĀω(q)

ασ(1− θ) [u(q)− q] + λω(q)

The first equation gives a negative relationship between q and A while the second equation gives a positive

relationship between A and q. So there is a unique steady state and ∂qs/∂d > 0 and ∂As/∂d > 0.

Out of steady state, if m<1−A, then the trajectory is A=µ(q) as in the baseline. If m=1−A, then:

q̇ =

[
r + λ

(
Ā−A

)]
ω(q)− d

ω′(q)
(108)

Ȧ = (1−A)λ
(
Ā−A

)
. (109)

The slope ∂q/∂A= q̇/Ȧ falls in d for any given (A, q), but one can show that q̇ > 0 at all time. If q̇= 0 at

some time t, then q̇ < 0 after t by (108). The trajectory cannot change regime after t as a regime switch

requires both trajectories to have the same slope but the locus A= µ(q) is always upward sloping. In the

regime m=1−A, q̇=ασ(1−A)θ [u(q)− q] /ω′(q)>0 when q≈qs by (106) and (107). Hence q̇ 6= 0 at all t.

By the proof of Proposition 2, mining and production co-exist near the steady state if only if

∂q

∂A

∣∣∣∣
m=1−A

>
∂q

∂A

∣∣∣∣
m∈(0,1−A)

⇐⇒ µ′(qs)/µ(qs)

ω′(qs)/ω(qs)
>

1− θ
θ

.

As d increases there are two opposing effects. Since ∂q/∂A|m=1−A falls in d for any given (A, q), it is more

likely that m = 1−A near the steady state when d is large. On the other hand qs and As increase in d and

therefore agents have less incentive to mine around the steady state. The net effect is ambiguous in general.
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E Divisible assets

We now study price dynamics when all assets are perfectly divisible and individual asset holdings are un-

restricted, a ∈ R+. This model, which is a continuous-time version of the New-Monetarist model of Lagos

and Wright (2005), will be useful to check the robustness of our earlier results. Choi and Rocheteau (2019b)

provide a detailed description of the New Monetarist model in continuous time and its solution methods.

Consider the gold mining model in Section 3. We add a centralized market (CM) where price-taking

agents can trade continuously a good, distinct from the one traded in pairwise meetings, for money. The

purpose of these CMs is to allow agents to readjust their money holdings to some targeted level in-between

pairwise meetings, so as to keep the distribution of money holdings degenerate. In reality, the CMs could

correspond to the several exchanges where individuals trade crypto-currencies for different government-

supplied currencies using credit or debit cards (e.g., Coinbase, Coinmama, Luno...). In the following we

take the CM good as the numéraire. Agents have the technology to produce h units of the numéraire

good at a linear cost h (h < 0 is interpreted as consumption). Hence, agents’discounted lifetime utility

in-between pairwise meetings is −
∫ +∞

0
e−rtdH(t) where H(t) is a measure of the cumulative production of

the numéraire good (net of its consumption) up to t. This formulation allows agents to produce or consume

the numéraire good in flows (in which case H(t) admits a density h(t)) or in discrete amounts (in which case

H(t+) −H(t−) 6= 0). Preferences during pairwise meetings are as before. Money is a Lucas tree that pays

a dividend flow d ≥ 0. The case d = 0 corresponds to fiat money. The CM price of the asset is denoted φt.

Let V (a) be the value function of an agent with a units of assets expressed in terms of the numéraire.

At any point in time between pairwise meetings, an agent can readjust her asset holdings by consuming or

producing the numéraire good. Formally,

V (a) = max
h
{−h+ V (a+ h)} = a+ max

a∗≥0
{−a∗ + V (a∗)} ,

where h is the production of the numéraire and a∗ is the agent’s targeted asset holdings (expressed in terms

of the numéraire). The value function, V (a), is linear in a.

We now consider the bargaining problem in a pairwise meeting between a buyer holding ab units of assets

and a seller holding as units of asset. The outcome of the negotiation is a pair (q, p) ∈ R+ × [−as, ab]

where q is the amount of goods produced by the seller for the buyer and p is the transfer of assets from the

buyer to the seller. Feasibility requires that −as ≤ p ≤ ab. By the linearity of V (a) the buyer’s surplus is
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u(q) + V (ab − p)− V (ab) = u(q)− p and the seller’s surplus is −q+ V (as + p)− V (as) = −q+ p. According

to the Kalai proportional solution, the buyer’s surplus is equal to a fraction θ of the total surplus of the

match, i.e., u(q) − p = θ [u(q)− q]. Moreover, the solution is pairwise Pareto effi cient, which implies that

q ≤ q∗ with an equality if p ≤ ab does not bind. Using the notation ω(q) from (8), the buyer’s consumption

as a function of her asset holdings, q(ab), is such that q(ab) = q∗ if ab ≥ ω(q∗) and ω(q) = ab otherwise.

Consider the lifetime expected utility of the agent holding her targeted asset holdings, V (a∗). Choi and

Rocheteau (2019b) show that it solves the following HJB equation that is similar to (9) and (10) combined:

rV (a∗) = ρa∗ + α(1−m)σθ {u [q(a∗)]− q(a∗)}

+ max
{
ασ(1− θ) {u [q(ā)]− q(ā)} , λ(Ā−A)φ

}
+ V̇ (a∗), (110)

where the rate of return of assets is

ρ =
d+ φ̇

φ
. (111)

The first term on the right side of (110) is the flow return of the asset. The second term is analogous to the

first term on the right side of the HJB equation for V1, (9). The agent receives an opportunity to consume

at Poisson arrival rate ασ. The partner can produce if she is not a miner, with probability 1 − m. The

third term on the right side of (110) is analogous to the right side of the HJB equation for V0 in (10). It

corresponds to the occupational choice according to which agents can choose to be producers and enjoy the

flow payoff ασ(1− θ) {u [q(ā)]− q(ā)} or miners and enjoy λ(Ā−A)φ. The term ā represents asset holdings

of other agents in the economy. The expected gain from mining describes the assumption that at Poisson

arrival rate λ(Ā−A) the miner digs a unit of money which is worth φ units of numéraire. The last term is

the change in the value function for a given asset position, V̇ (a) = ∂Vt(a)/∂t.

The envelope condition associated with (110) together with V ′(a∗) = 1 gives

r − ρ = α(1−m)σθ

{
u′ [q(a∗)]− 1

(1− θ)u′ [q(a∗)] + θ

}
, (112)

where we used q′(a)=1/ω′(q) if a<ω(q∗) and ∂2V (a)/∂a∂t=0 as V ′(a∗)=1 at all t. The opportunity cost

of holding the asset on the left side is the difference between the rate of time preference and the real rate of

return of the asset. The right side is the marginal value of an asset if a consumption opportunity arises.

Since now agents can carry money and mine at the same time, the measure of miners solves

m

 = 1
∈ [0, 1]

= 0
if λ(Ā−A)φ

 >
=
<

ασ(1− θ) [u (q)− q] . (113)
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Figure 17: Phase diagram with divisible assets.

By market clearing:

a∗ = φA. (114)

The supply of assets evolves according to:

Ȧ = λm(Ā−A). (115)

An equilibrium is a list, 〈a∗t ,mt, φt, At〉, that solves (112), (113), (114), and (115).

We represent the phase diagram and equilibrium trajectory in Figure 17. There are two main insights

relative to the model with indivisible money and no centralized exchanges. First, there is a regime where the

asset supply at the steady state is abundant enough to satiate agents’liquidity needs and to allow agents

to trade q∗ in all matches. In such equilibria, the asset is priced at its fundamental value at all dates, see

the right panel of Figure 17. A necessary (but not suffi cient) condition is that the potential asset supply

when valued at its fundamental price, Ād/r, is larger than agents’liquidity needs, ω(q∗). It is the standard

condition in the literature for abundant liquidity since Geromichalos et al. (2007), except that it applies to

the potential asset supply, Ā, and not the actual asset supply, A, which is endogenous. The second insight

is that there is a regime with scarce liquidity that is qualitatively similar to the equilibria of the model with

indivisible money. The price of the asset is above its fundamental value at all dates and it keeps increasing

over time until it reaches a steady state as shown in the left panel of Figure 17.
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