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Abstract

This paper studies the impact of collaboration on research output. First, we build a

micro-founded model for scientific knowledge production, where collaboration between

researchers is represented by a bipartite network. The Nash equilibrium of the game

incorporates both the complementarity effect between collaborating researchers and

the substitutability effect between concurrent projects of the same researcher. Next,

we propose a Bayesian MCMC procedure to estimate the structural parameters, tak-

ing into account the endogenous participation of researchers in projects. Finally, we

illustrate the empirical relevance of the model by analyzing the coauthorship network

of economists registered in the RePEc Author Service. The estimated complementar-

ity and substitutability effects are both positive and significant when the endogenous

matching between researchers and projects is controlled for, and are downward biased

otherwise. To show the importance of correctly estimating the structural model in

policy evaluation, we conduct a counterfactual analysis of research incentives. We

find that the effectiveness of research incentives tends to be understated when the

complementarity effect is ignored and overstated when the substitutability effect is

ignored.

Keywords: bipartite networks, coauthorship networks, research collaboration, spillovers,

economics of science.

JEL: C31, C72, D85, L14
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1 Introduction

Collaboration between researchers has played a significantly important role in economics in

recent decades. In 2014, multi-authored papers accounted for 75% of all articles published

in economics (Kuld & O’Hagan 2018).1 Through a complex network of collaborations, re-

searchers generate spillovers not only to their coauthors but also to other researchers indi-

rectly connected to them. The aim of this paper is to develop a structural model that helps

us to understand how collaboration affects research output.

First, we build a micro-founded model for scientific knowledge production. The collabo-

ration between researchers is characterized by a bipartite network with two types of nodes:

researchers and research projects. The effort that a researcher spends in a project is rep-

resented by an edge in the bipartite network, and collaborating researchers are connected

through the projects they work on together. We characterize the equilibrium of the game

where researchers choose efforts in multiple and possibly overlapping projects to maximize

utility. The equilibrium takes into account both the complementarity effect between collab-

orating researchers and the substitutability effect between concurrent projects of the same

researcher.

Next, we propose an estimation procedure to recover the structural parameters of the

model. There are three main challenges in estimating this model. First, the effort level

of a researcher in the production function is unobservable. To overcome this problem, we

replace the unobserved effort level in the production function with the equilibrium effort

level derived from the theoretical model. Second, the matching between researchers and

projects is likely to be endogenous. Estimating the production function without taking into

account this potential endogeneity may incur a selection bias. To remediate the issue, we

introduce a participation function to model the endogenous selection of researchers into

projects, allowing for both researcher and project unobserved heterogeneity.2 The resulting
1Additional evidence can be found in Ductor (2015).
2As pointed out in Bonhomme (2020), a key feature of bipartite networks is two-sided heterogeneity.
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likelihood function involves high-dimensional integrals. This leads to the third challenge

of the estimation, i.e., it is computationally cumbersome to apply a frequentist maximum

likelihood method, even when resorting to a simulation approach. To bypass this difficulty,

we adopt a Bayesian Markov Chain Monte Carlo (MCMC) approach to jointly estimate the

production and participation functions.

Finally, we bring our model to the data by analyzing the coauthorship network of

economists registered in the Research Papers in Economics (RePEc) Author Service. We

find that the estimated complementarity and substitutability effects are both statistically

significant with the expected signs. The estimates are downward biased when the endoge-

nous matching between researchers and projects is ignored. The direction of the bias is

compatible with the intuition and consistent with the Monte Carlo simulation results. We

also conduct a series of robustness checks to explore the sensitivity of our results to alter-

native specifications and samples. To illustrate the importance of correctly estimating the

structural model in policy analysis, we carry out a counterfactual study on the impact of

research incentives on research output. We find that the effectiveness of research incentives

tends to be understated when the complementarity effect is ignored and overstated when

the substitutability effect is ignored.

There exists a growing literature, both empirical and theoretical, on the formation and

impact of scientific collaboration networks. On the empirical side, the structural features

of scientific collaboration networks have been analyzed in Newman (2001c,a,b, 2004a,b) and

Goyal et al. (2006). Fafchamps et al. (2010) examine predictors for the establishment of

scientific collaborations. Azoulay et al. (2010) estimate the negative externality induced by

the premature and sudden death of active “superstar” scientists on their coauthors. Ductor

et al. (2014), Ductor (2015), Ductor et al. (2021), and Lindenlaub & Prummer (2021) study

how intellectual collaboration affects the research output of individual authors. Anderson &

Richards-Shubik (2021) use a strategic network formation model to study how researchers

choose their collaborators and the projects they work on. Bonhomme (2021) proposes an
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econometric framework to identify individual contributions to the output of their teams, by

tracking researchers who work in different teams over time. In this paper, we provide a

structural model characterizing how researchers allocate their effort across different projects

taking into account the complementarity of collaboration and the substitutability of their

own research effort in different projects. It is important to quantify both the complemen-

tarity and substitutability effects as they provide two different channels of connection in the

bipartite network. As we demonstrate in the counterfactual study, correctly estimating their

magnitudes is essential for policy evaluation.

Our paper is further related to the recent theoretical contributions by Baumann (2014)

and Salonen (2016), where agents choose time to invest into bilateral relationships. Our

model extends the setup considered in these papers by allowing for investments into mul-

tilateral relationships. Moreover, in a related paper Bimpikis et al. (2019) analyze firms

competing in quantities à la Cournot across different markets with a similar linear-quadratic

payoff specification and allow firms to choose endogenously the quantities sold to each mar-

ket. While the products sold by competing firms to the same market are substitutes in

Bimpikis et al. (2019), the efforts spent by collaborating agents in the same project are

strategic complements in our model.

The rest of the paper is organized as follows. Section 2 introduces the theoretical model

and characterizes the equilibrium. Section 3 presents the econometric methodology. The

empirical implications of the model are discussed in Section 4, where Section 4.1 describes

the data used in the empirical study, Section 4.2 gives the main estimation results, Section 4.3

reports the estimated marginal effects, Section 4.4 provides robustness analysis, and Section

4.5 conducts a counterfactual study on research incentives. Section 5 briefly concludes.

The proofs, technical details, and additional robustness checks can be found in the online

appendix.
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2 Theoretical Model

2.1 Bipartite Network, Production Function, and Utility

Consider a bipartite network given by G = (N ,P , E), where N = {1, . . . , n} denotes the

set of agents, P = {1, . . . , p} denotes the set of projects, and E denotes the set of edges

connecting agents and projects. In our model, an edge eis ∈ E is the (non-negative) effort

that agent i spends in project s. Let Ns denote the set of agents working on project s and

Pi denote the set of projects agent i participates in. Let | · | denote the cardinality of a set.

The production function for project s ∈ P is given by

ys(G) =
∑
i∈Ns

αieis +
λ

2

∑
i∈Ns

∑
j∈Ns\{i}

gijeisejs + ϵs, (1)

where ys(G) (or simply ys) is the output of project s, αi represents individual heterogeneity in

productivity, gij ∈ [0, 1] measures the degree of compatibility between collaborating agents,

and ϵs is a random shock. If λ is positive, then the marginal product of agent i’s effort in

a project increases with the efforts of other agents in that project. Hence, the coefficient λ

captures the complementarity effect.

We assume that the utility of agent i is given by

Ui(G) =
∑
s∈Pi

δsys︸ ︷︷ ︸
payoff

− 1

2

∑
s∈Pi

e2is + ϕ
∑
s∈Pi

∑
t∈Pi\{s}

eiseit


︸ ︷︷ ︸

cost

. (2)

The utility function has a payoff/cost structure. The payoff is the weighted total output of

the projects that agent i participates in, with the weights given by δs ∈ (0, 1].3 The cost

is quadratic in efforts, with the coefficient ϕ measuring the degree of substitutability of an

agent’s efforts in different projects. If ϕ is positive, then the marginal cost of agent i’s effort
3For example, if δs = 1/|Ns|, then the individual payoff is discounted by the number of agents participating

in project s (cf. Kandel & Lazear 1992, Jackson & Wolinsky 1996, Hollis 2001).
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in a project increases with the effort agent i spends on other projects. This quadratic cost

specification helps to capture the fact that the time or resource of a researcher is limited.4 It

includes the convex separable cost specification as a special case with ϕ = 0. The quadratic

cost specification is very common in the literature (Singh & Vives 1984). A theoretical model

with a similar cost specification but allowing for only two activities is studied in Belhaj &

Deroïan (2014) and an empirical analysis is provided in Liu (2014) and Cohen-Cole et al.

(2018). In addition, a convex separable cost specification can be found in the model studied

in Adams (2006).

2.2 Game and Equilibrium

Prior to the effort-allocation game, we assume agents randomly meet with each other and

come up with research ideas/projects.5 This stochastic meeting process takes into account

assortativity and homophily, reflecting the fact that “similarity breeds connection” (McPher-

son et al. 2001, Currarini et al. 2009). The outcomes of the meeting process are characterized

by indicator variables dis, such that dis = 1 if agent i is in project s and dis = 0 otherwise.

Given {dis}, agents strategically allocate research efforts eis ≥ 0 to the projects that they

participate in to maximize utility in the effort-allocation game.

The following proposition provides an equilibrium characterization of the agents’ effort

portfolio e = (e′1, · · · , e′p)′, with es = (e1s, · · · , ens)′ for s = 1, · · · , p. Let

W = D(diagps=1{δs} ⊗G)D, and M = D(Jp ⊗ In)D, (3)

where ⊗ denotes the Kronecker product, D is an np-dimensional diagonal matrix given by

D = diagps=1{diagni=1{dis}}, G is an n × n zero-diagonal matrix with the (i, j)th (i ̸= j)

element being gij, and Jp is an p× p zero-diagonal matrix with off-diagonal elements equal
4For example, Ductor (2015) finds evidence for a congestion externality proxied by the average number

of coauthors’ papers that has a negative effect on individual academic productivity.
5It is possible for the same group of researchers to come up with multiple research ideas/projects.
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to one. Let ρmax(·) denote the spectral radius of a square matrix.

Proposition 1. Suppose the production function for each project s ∈ P is given by Equation

(1) and the utility function for each agent i ∈ N is given by Equation (2). Let L := L(λ, ϕ) =

λW − ϕM . Given {dis}, if

ρmax(L) < 1, (4)

then the Nash equilibrium effort portfolio is given by

e∗ = (Inp − L)−1D(δ ⊗ α), (5)

where δ = (δ1, · · · , δp)′ and α = (α1, · · · , αn)′.

The matrix L = λW − ϕM represents a weight matrix of the line graph L(G) for the

bipartite network G.6 In the line graph L(G), each node represents the effort an agent

invests into a project. The links between nodes with the same project are represented by

the nonzero entries of W while the links between nodes with the same agent are represented

by the nonzero entries of M . The matrix L is a weighted sum of the matrices W and M ,

with the weights being the complementarity effect (λ) and the substitutability effect (ϕ)

respectively. The formulation of L highlights the importance of both effects (i.e., λ and

ϕ) in the bipartite network. The condition in Equation (4) plays a similar role as the one

in Theorem 1 of Ballester et al. (2006), which limits the rate spillovers decay across the

bipartite network.

2.3 An Illustrating Example

We illustrate the equilibrium characterization of Proposition 1 with an example correspond-

ing to the bipartite network G in Figure 1. In this bipartite network, there are 3 agents and
6Given a network G, its line graph L(G) is a graph such that each node of L(G) represents an edge of G,

and two nodes of L(G) are connected if and only if their corresponding edges share a common endpoint in
G (cf. e.g., West 2001).
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1 2 3

1 2

e11 e21 e12 e32 1
(
e11
e12

)
2

(
e21
0

)

3

2

(
0
e32

)

1

2

e11 e12 e32

e21

λ

λ−ϕ

Figure 1: Top left panel: the bipartite network G of agents and projects analyzed in Section
2.3, where circles represent agents and squares represent projects. Top right panel: the
projection of the bipartite network G on the set of agents. The effort levels of the agents
for each project they are involved in are indicated next to the nodes. Bottom panel: the
line graph L(G) associated with the bipartite network G, in which each node represents the
effort an agent invests into a project. Solid lines connect nodes with the same project while
dashed lines connect nodes with the same agent.
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2 projects, where agents 1 and 2 are collaborating in the first project and agents 1 and 3 are

collaborating in the second project. For expositional purposes, let gij = 1 for all i ̸= j and

δs = 1 for all s.

Line Graph. The line graph L(G) of this bipartite network is depicted in the bottom

panel of Figure 1. In the line graph, each node represents the effort an agent invests into a

project. Solid lines connect nodes with the same project while dashed lines connect nodes

with the same agent. Following Equation (3),

W =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 1 0 0


and M =



0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

The nonzero entries of the matrices W and M correspond to, respectively, the solid lines

and the dashed lines in the line graph. The matrix L is a weighted sum of the matrices W

and M , given by

L = λW − ϕM =



0 λ 0 −ϕ 0 0

λ 0 0 0 0 0

0 0 0 0 0 0

−ϕ 0 0 0 0 λ

0 0 0 0 0 0

0 0 0 λ 0 0


.

The (1, 2)th and (2, 1)th elements of the matrix L represent the link between e11 and e21 with

weight λ in the line graph, the (4, 6)th and (6, 4)th elements represent the link between e12

and e32 with weight λ, and the (1, 4)th and (4, 1)th elements represent the link between e11
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and e12 with weight −ϕ. It is worth pointing out that, in the absence of the substitutability

effect (i.e., ϕ = 0), the line graph would be split into two independent sub-graphs with

each one corresponding to the collaborators’ efforts in a single project. Therefore, the sub-

stitutability effect provides a channel to capture the interdependence of efforts in different

projects.

Equilibrium. In this example, the sufficient condition (4) for the existence of a unique

equilibrium holds if |ϕ| < 1 − λ2. This condition requires both the complementarity effect

λ and the substitutability effect ϕ to be less than one. Note that this condition reduces to

|ϕ| < 1 if λ = 0 and |λ| < 1 if ϕ = 0. From Equation (5), the equilibrium effort portfolio is

e∗ =



e∗11

e∗21

e∗31

e∗12

e∗22

e∗32


=

1

(1− λ2)2 − ϕ2



(1− λ2 − ϕ)α1 + λ(1− λ2)α2 − λϕα3

λ(1− λ2 − ϕ)α1 + (1− λ2 − ϕ2)α2 − λ2ϕα3

0

(1− λ2 − ϕ)α1 − λϕα2 + λ(1− λ2)α3

0

λ(1− λ2 − ϕ)α1 − λ2ϕα2 + (1− λ2 − ϕ2)α3


.

Marginal Effects of αi. As |ϕ| < 1− λ2,

∂e∗11
∂α1

=
∂e∗12
∂α1

=
1

1− λ2 + ϕ
> 0

∂e∗21
∂α2

=
∂e∗32
∂α3

=
1− λ2 − ϕ2

(1− λ2)2 − ϕ2
> 0,

and, if the complementarity effect is positive (i.e., λ > 0),

∂e∗21
∂α1

=
∂e∗32
∂α1

=
λ

1− λ2 + ϕ
> 0

∂e∗11
∂α2

=
∂e∗12
∂α3

=
λ(1− λ2)

(1− λ2)2 − ϕ2
> 0,
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which suggest that more productive agents raise not only their own effort levels but also the

effort levels of their collaborators due to the complementarity effect. On the other hand, if

the substitutability effect is also positive (i.e., ϕ > 0),

∂e∗12
∂α2

=
∂e∗11
∂α3

= − λϕ

(1− λ2)2 − ϕ2
< 0

∂e∗32
∂α2

=
∂e∗21
∂α3

= − λ2ϕ

(1− λ2)2 − ϕ2
< 0,

which suggest that more productive agents induce lower effort levels spent by agents on

other projects. It is worth noting that, without the substitutability effect (i.e., ϕ = 0), agent

i’s productivity would have no effect on other agents’ effort levels on a project that agent

i is not involved in. This spotlights the important role of the substitutability effect in the

bipartite network. An illustration can be seen in Figure 2.

Marginal Effects of λ. The partial derivative of the equilibrium effort of agent 1 in

project 1 with respect to the complementarity parameter λ is given by

∂e∗11
∂λ

=
2λ(1− λ2 − ϕ)2α1 + [(1− λ4 − ϕ2)(1− λ2) + 2λ2ϕ2]α2 − ϕ[(1 + 3λ2)(1− λ2)− ϕ2]α3

[(1− λ2)2 − ϕ2]2
.

Observe that the coefficient of α3 is negative. Thus, when α3 is large enough, ∂e∗11/∂λ could

be negative. The reason is that, with increasing λ, the complementarity effects between

collaborating agents become stronger, and this effect is more pronounced for the collaboration

of agent 1 with the more productive agent 3, than with the less productive agent 2. Moreover,

when the substitutability effect ϕ is also large, agent 1 may spend even less effort in the

project with agent 2, leading to a negative ∂e∗11/∂λ. An illustration can be seen in Figure 3.
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Marginal Effects of ϕ. The partial derivatives of the equilibrium efforts of agent 1 in

projects 1 and 2 with respect to the substitutability coefficient ϕ are given by

∂e∗11
∂ϕ

= −1

2

[
λ(α3 − α2)

(1− λ2 − ϕ)2
+

2α1 + λ(α2 + α3)

(1− λ2 + ϕ)2

]
,

∂e∗12
∂ϕ

=
1

2

[
λ(α3 − α2)

(1− λ2 − ϕ)2
− 2α1 + λ(α2 + α3)

(1− λ2 + ϕ)2

]
.

Suppose α3 > α2. Then, ∂e∗11/∂ϕ is negative. That is, with increasing ϕ, agent 1 exerts

lower effort in the project with a less productive collaborator. In contrast, ∂e∗12/∂ϕ can be

positive or negative, depending on whether the first term is larger or smaller than the second

term on the right hand side of the second equation. With α1 = 0.2, α2 = 0.1, α3 = 0.9, and

λ = 0.2, we can see in Figure 4 that, when the substitutability effect ϕ is small, both ∂e∗11/∂ϕ

and ∂e∗12/∂ϕ are negative, and ∂e∗11/∂ϕ < ∂e∗12/∂ϕ. That is, increasing ϕ reduces efforts of

agent 1 in both projects, and the effort reduction is more significant in the project with

a less productive collaborator. When ϕ is larger, ∂e∗12/∂ϕ becomes positive while ∂e∗11/∂ϕ

remains negative, indicating agent 1 reallocates effort to the project with a more productive

collaborator as a result of the substitutability effect.

3 Estimation

Recall dis = 1(i ∈ Ns), where 1(·) denotes an indicator function. Equation (1) can be

rewritten as

ys =
∑
i∈N

αidiseis +
λ

2

∑
i∈N

∑
j∈N\{i}

gijdisdjseisejs + ϵs, (6)

where ϵs is i.i.d.(0, σ2
ϵ ). In the empirical model, we assume agent i’s productivity is given by

αi = exp(x′iβ), (7)

13
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Figure 2: Left panel: equilibrium effort levels for agents 1 and 2 in project 1 for λ = 0.25,
ϕ = 0.75, α2 = α3 = 1, and varying values of α1. (In this case, e∗11 = e∗12 and e∗21 = e∗32.)
Right panel: equilibrium effort levels for agents 1, 2 and 3 in projects 1 and 2 for λ = 0.25,
ϕ = 0.75, α1 = α3 = 1, and varying values of α2.
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Figure 3: Equilibrium effort levels for agent 1 with α1 = 0.2, α2 = 0.1, α3 = 0.9, ϕ = 0.05
(left panel), and ϕ = 0.25 (right panel), for varying values of λ. The dashed lines indicate
the effort levels for λ = 0.
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Figure 4: Equilibrium effort levels for agent 1 with α1 = 0.2, α2 = 0.1, α3 = 0.9, and λ = 0.2,
for varying values of ϕ. The dashed lines indicate the effort levels for ϕ = 0.
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where xi is a vector of observable individual attributes. Equation (7) is assumed to be an

exponential function to guarantee that the productivity is positive.

There are three main challenges in estimating this model. First, the effort level eis is

usually unobservable to the econometrician. To overcome this problem, we replace eis in

Equation (6) with the equilibrium effort level e∗is given by Equation (5) and estimate the

equilibrium production function

ys =
∑
i∈N

αidise
∗
is +

λ

2

∑
i∈N

∑
j∈N\{i}

gijdisdjse
∗
ise

∗
js + ϵs. (8)

Equation (8) is highly nonlinear in the unknown parameters. Thus, it is difficult to derive

easy-to-check sufficient conditions for identification as in Bramoullé et al. (2009). To get

some intuition on what data variation identifies the complementarity parameter λ and the

substitutability parameter ϕ respectively, we consider the exemplary networks in Figure 5.

The first network has two agents collaborating on a joint project, the second network has

one agent working on two projects, and the last network has two agents each working on a

solo project. Suppose δs = 1 and the productivities (αi) of all the agents are identical. If

λ = 0, then the (expected) equilibrium total outputs of the first and the last networks would

be the same. Thus, λ can be identified from the output variation of these two networks.

Similarly, if ϕ = 0, then the (expected) equilibrium total outputs of the second and the last

networks would be the same. Thus, ϕ can be identified from the output variation of these

two networks. Therefore, in the real data, when the structure of the bipartite network is

sufficiently rich, we should be able to identify both complementarity and substitutability

effects.

Second, dis is likely to be endogenous. For example, in a coauthorship network, high-

ability researchers are more likely to work on different projects at the same time, and high-

potential projects are usually harder to find and more challenging to work on. Furthermore,

researchers tend to be sorted into projects based on their research interests and abilities.
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Figure 5: Exemplary networks with two agents or two projects, respectively.

Estimating Equation (8) without taking into account potential endogeneity of dis may incur a

selection bias. To control for the endogenous selection, we introduce a participation function

allowing for both agent and project unobserved heterogeneity. More specifically, we assume

dis = 1(z′isγ + ξµi + ψηs + κ|µi − ηs|+ vis > 0), (9)

where zis is a vector of observables measuring compatibility between agent i and project

s,7 µi is an i.i.d.(0, 1) agent-specific random component, ηs is an i.i.d.(0, 1) project-specific

random component, and vis is an i.i.d.(0, 1) error term independent of µi and ηs. As the

number of observations dis is much larger than the number of random components µi and

ηs, it is reasonable to assume that µi and ηs can be identified from Equation (9). To allow

the agent and project unobserved heterogeneity to also affect production, we assume agent

i’s productivity depends on the agent-specific random component µi so that Equation (7)

becomes

αi = exp(x′iβ + ζµi),

and the error term in Equation (8) can be written as

ϵs = ςηs + us,

7In the empirical illustration, zis includes the Jaffe similarity between agent i’s research fields and project
s’s fields as a measure of the compatibility between the agent and project. zis also includes terms capturing
the connections between agent i and other agents collaborating in project s in terms of affiliation, past
coauthorship, etc. The idea is that for the agents that are in the same affiliation or coauthors in the past,
they are more likely to meet and come up with new ideas/projects together. See Section 4.2 for more details.
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where us is an i.i.d.(0, σ2
u) error term independent of ηs. This specification has the following

implications. First, if ζ > 0 and ξ > 0, then a researcher with higher ability (given by a higher

µi) tends to participate in more projects. Second, if ς > 0 and ψ < 0, then a project with

higher potential (given by a higher ηs) has a higher threshold for researchers to participate

in. Finally, if κ < 0, then agents are more likely to join projects that match their abilities,

i.e., agents are sorted into projects based on homophily of unobserved characteristics.

Third, with the unobserved heterogeneity, the joint likelihood function of production

and participation involves high-dimensional integrals and is computationally cumbersome to

evaluate. To bypass this difficulty, we follow the Bayesian approach of Zeger & Karim (1991).

Let θd = (γ′, ξ, ψ, κ)′ and θy = (λ, ϕ, β ′, ζ, ς, σ2
u)

′. Let f(d|µ, η, θd) denote the conditional

probability of d = [dis] given µ = (µ1, · · · , µn)′ and η = (η1, · · · , ηp)′, and f(y|d, µ, η, θy)

denote the conditional density of y = (y1, · · · , yp)′ given d, µ, and η. Then, µ, η, and

θ = (θ′y, θ
′
d)

′ can be sampled from the joint posterior density

p(µ, η, θ|y, d) ∝ f(y|d, µ, η, θy)f(d|µ, η, θd)π(µ)π(η)π(θy)π(θd),

with the priors π(µ), π(η), π(θy) and π(θd). The details of Bayesian estimation can be found

in Appendix B.

4 Empirical Study: Coauthorship Networks

4.1 Data

The data used for this study make extensive use of the metadata assembled by the RePEc

initiative and its various projects. RePEc assembles information about publications rele-

vant to economics from over 2,000 publishers, including all major commercial publishers

and university presses, policy institutions, and pre-prints (working papers) from academic
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institutions.8

In addition, we make use of the data made available by various projects that build on

these RePEc data and enhance it in various ways. First, we take the publication profiles of

economists registered with the RePEc Author Service, which include what they have pub-

lished and where they are affiliated.9 Second, we extract information about their advisors,

students, and alma mater, as recorded in the RePEc Genealogy project.10 This academic ge-

nealogy data has been complemented with some of the data used in Colussi (2017).11 Third,

we use the New Economics Papers (NEP) project to identify the field-specific mailing lists

through which the papers have been disseminated.12 NEP has human editors who determine

the field in which new working papers belong. We obtain 99 distinct NEP fields. Fourth, we

use citations to the papers and articles as extracted by the CitEc project.13 Finally, we use

journal impact factors, as well as author and institution rankings from IDEAS.14

Compared with other data sources, RePEc has the advantage of linking these various

datasets in a seamless way that is verified by the respective authors. Author identification

is superior to any other dataset as homonyms are disambiguated by the authors themselves

as they register and maintain their accounts. While not every author is registered, most are.

Indeed, 90% of the top 1000 economists as measured by their publication records for the

1990-2000 period are registered.15 We believe that the proportion is higher for the younger

generation that is more familiar with social networks and online tools and thus more likely

to register with online services.

In terms of publications, RePEc covers all important outlets and over 3,000 journals are

listed, most of them with extensive coverage. References are extracted for about 30% of
8See http://repec.org/ for a general description of RePEc.
9RePEc Author Service: https://authors.repec.org/

10RePEc Genealogy project: https://genealogy.repec.org/
11We would like to thank Tommaso Colussi for sharing the data with us.
12NEP project: https://nep.repec.org/
13CitEc project: http://citec.repec.org/
14IDEAS: https://ideas.repec.org/top/. For a detailed description of the factors and rankings, see

Zimmermann (2013).
15https://ideas.repec.org/coupe.html
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their articles (in addition to working papers) to compute citation counts and impact factors.

The missing references principally come from publishers refusing to release them for reasons

related to copyright protection. While the resulting gap is unfortunate, it is unlikely to result

in a bias against particular authors, fields, or journals. The exception may be authors who

are significantly cited in outlets outside of economics that may or may not be indexed in

RePEc (note that several top management, statistics, and political science journals are also

indexed).

To obtain a sample from RePEc that is appropriate for our analysis, we apply a series

of filters as follows. First, we select papers that had a first pre-print version in 2010-2012.

We choose 2010-2012 because it is old enough to give all authors a chance to have added the

papers to their profiles and for the papers to have been eventually published in journals; but

not too old for a good data coverage, as the coverage of RePEc becomes slimmer with older

vintages. Furthermore, we require all authors of the papers to be registered with RePEc and

all authors to have the RePEc Genealogy information on where they studied. We drop all

duplicate or older versions of each paper from our sample. This gives us a sample of 6,673

papers written by 3,700 distinct authors for which we have complete data.

Next, as we use citations to measure research output, we drop 2,463 papers that do not

have any citations up to November 2018 when the data is extracted from the RePEc database,

as well as 658 authors who only work on these dropped papers without any citations. This

reduces to the sample size to 4,210 papers and 3,042 authors.16

Finally, as we are interested in collaborations between researchers, we drop 621 authors

who wrote only single-authored papers in the sample period. This results in a final sample

of 3,589 papers written by 2,421 distinct authors.17

16In Appendix E, we conduct a robustness check by estimating the empirical model with a sample including
the 2,463 papers without any citations. The main result is qualitatively unchanged.

17In Appendix E, we conduct a robustness check by estimating the empirical model with a sample including
the 621 authors who wrote only single-authored papers in the sample period. The main result is qualitatively
unchanged.
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Figure 6: Distributions of research output for different types of researchers. In the top left figure, the cutoff point between high
life-time citations and low life-time citations is the median number of lifetime citations, which is 300. In the top right figure,
the cutoff point between senior and junior researchers is the median number of years after graduation, which is 9.
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In the empirical study, research output is measured by the number of citations of the

paper weighted by recursive discounted impact factors of the citing outlet.18 To capture an

author’s productivity, we use an author’s log lifetime citations (recorded at the beginning

of the sample period), decades after receiving their Ph.D., and dummy variables for being a

male and a graduate from the Ivy League. Descriptive statistics of the variables of interest

can be found in Appendix C.

In Figure 6, we plot the distribution of research output with respect to researcher char-

acteristics. A two-sample t-test indicates that, on average, high-citation researchers have

higher output than low-citation researchers, senior researchers have higher output than ju-

nior researchers, male researchers have higher output than female researchers, and researchers

graduated from Ivy League universities have higher output than researchers graduated from

non-Ivy League universities. All results are significant at the 1% level.

4.2 Main Results

In the benchmark empirical model, we assume that the compatibility between researchers is

homogeneous, i.e., gij = 1 for i ̸= j in Equation (1), and the payoff from a coauthored paper

is not discounted, i.e., δs = 1 in Equation (2). Table 1 collects the estimation results of

Equations (8) and (9), where Column (A) reports the estimates of the production function

ignoring endogenous project participation, and Column (B) reports the joint estimates of

the production and participation functions with both author- and project-specific random

components.

When endogenous project participation is ignored, the estimated complementarity effect
18The recursive impact factor Ri of journal i is computed as the fixed point of the following system of

equations

Ri =

∑
j∈J RjCij

Pi

∑
j∈J Pj∑

j∈J RjPj
, ∀i ∈ J , (10)

where J denotes the set of journals, Cij counts the number of citations in journal j to journal i, Pi is the
number of all papers/articles in journal i. It is an impact factor where every citation has the weight of the
recursive impact factor of the citing journal. All Ri are normalized such that the average paper has an Ri

of one. For the recursive discounted impact factor, each citation is further weighted by 1/T , where T is the
age of the citation in years.
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Table 1: Main Results

(A) (B)
Exogenous Participation Endogenous Participation

Production

Complementarity (λ) -0.0282 0.1164***
(0.0372) (0.0151)

Substitutability (ϕ) 0.0774*** 0.2284***
(0.0289) (0.0338)

Constant (β0) -1.0076*** -2.8863***
(0.1714) (0.1528)

Log life-time citations (β1) 0.3069*** 0.5577***
(0.0239) (0.0209)

Decades after graduation (β2) -0.2128*** -0.4316***
(0.0437) (0.0264)

Male (β3) -0.0361 0.0036
(0.0877) (0.0398)

Ivy League graduate (β4) 0.2538*** 0.2981***
(0.0547) (0.0325)

Author effect (ζ) – 1.6241***
(0.0584)

Project effect (ς) – 0.9708**
(0.3864)

Error term variance (σ2
ϵ ) 214.6892*** –

(5.0884)
Error term variance (σ2

u) – 91.8476***
(2.247)

Participation

Constant (γ0) – -12.8954***
(0.2232)

NEP (γ1) – 2.5252***
(0.1146)

Affiliation (γ2) – 9.0211***
(0.3359)

Gender (γ3) – 3.5957***
(0.1717)

Past coauthors (γ4) – 7.6398***
(0.1566)

Common co-authors (γ5) – 11.6561***
(0.1879)

Author effect (ξ) – 1.6625***
(0.0857)

Project effect (ψ) – -6.2940***
(0.1626)

Homophily effect (κ) – -2.0672***
(0.1076)

Sample size 3,589 papers and 2,421 authors

Notes: Column (A) estimates the production function ignoring endogenous project participa-
tion. Column (B) jointly estimates the production and participation functions with both author
and project random effects. We implement MCMC sampling for 30,000 iterations and leave the
first 5000 draws for burn-in and use the rest of draws for computing the posterior mean (as
the point estimate) and the posterior standard deviation (in the parenthesis). The asterisks
***(**,*) indicate that the 99% (95%, 90%) highest posterior density range does not cover zero.
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(λ) is statistically insignificant; the estimated substitutability effect (ϕ) is statistically sig-

nificant but its magnitude is small. When endogenous project participation is controlled for,

the estimated complementarity effect (λ) becomes significantly positive, and the estimated

substitutability effect (ϕ) becomes stronger. A possible explanation for the downward bias

of complementarity and substitutability effects is as follows. The estimated coefficients (ζ

and ξ) of the author-specific random component suggest that high-ability researchers tend

to participate in more projects. Therefore, ignoring endogenous project participation tends

to underestimate the substitutability effect because it fails to take into account that the

researchers simultaneously working on multiple projects are more likely to be high-ability

ones. On the other hand, the estimated coefficients (ς and ψ) of the project-specific random

component suggest that high-potential projects (given by ηs) hold a higher threshold for

researchers to participate in. The estimated coefficient κ suggests researchers are matched

to projects based on homophily of unobserved characteristics. Since high-potential projects

are harder to join and researchers are sorted into projects according to their compatibility,

high-potential projects with high-ability researchers are relatively scarce in the data. As

most researchers in our data are collaborating in projects with relatively low potentials, the

complementarity effect is underestimated when endogenous project participation is ignored.

In Appendix D, we conduct some Monte Carlo simulation experiments with different signs

of ξ and ψ, and the pattern of estimation bias is consistent with the above explanation.

Regarding the effect of author characteristics on research output, we find that the number

of lifetime citations is a positive and significant predictor of research output (cf. e.g., Ductor

2015). Being a graduate from an Ivy League university also positively and significantly

impacts research output. On the other hand, although Figure 6 shows that senior researchers

have higher output on average than junior researchers, the estimation result indicates that,

after controlling for network effects and other characteristics, seniority (measured by “decades

after graduation”) has a negative partial effect on research output.19 This finding mirrors
19Following Rauber & Ursprung (2008) we have also estimated a polynomial of order five in decades after

Ph.D. graduation. The result shows that the coefficient of the first order is significantly negative, while those
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Ductor (2015), who shows that career time has a negative impact on productivity and it

is consistent with the academics’ life-cycle effects documented in Levin & Stephan (1991).

Similarly, while Figure 6 shows male researchers have higher output on average than female

researchers, the estimation result indicates that, after controlling for network effects and

other characteristics, gender is not a significant predictor of research output. This result

echoes the finding in Ductor et al. (2021) that taking into account coauthorship network

significantly reduces the gender output gap.

In the project participation equation, we include the Jaffe similarity20 between agent i’s

NEP fields 21 and project s’s NEP fields as a measure of the compatibility between the agent

and project. We also include covariates that capture the similarities between agent i and the

coauthors of project s,22 to capture the fact that researchers with similar characteristics or

past collaborations are more likely to meet and come up with new ideas/projects together.

From the estimates reported in Table 1, we find that the similarity in research fields positively

and significantly affects the matching between authors and projects (Ductor 2015). In terms

of assortative matching between coauthors, belonging to the same affiliation, having the

same gender, being coauthors in the past, and sharing common coauthors in the past all

make collaboration more likely (cf. Freeman & Huang 2015). In Appendix E, we conduct

a robustness check with a participation equation that only includes the similarity between

the agent’s and project’s NEP fields. The main estimation result of the production function

is qualitatively unchanged. Therefore, the similarity between the agent’s and projects’ NEP

fields is a leading exogenous factor that controls for the endogenous matching of agents into

projects.

of the remaining higher orders are insignificant.
20For two vectors, their Jaffe similarity is given by their inner product over the product of their norms. Jaffe

(1986) introduces this measure for the analysis of technological similarity between patents. More recently,
Bloom et al. (2013) illustrate how “Jaffe similarity” affects firms’ profits with different patent portfolios.

21We define a researcher’s NEP fields based on his/her very first academic publication to alleviate endo-
geneity concerns.

22Take the covariate “affiliation” as an example. Suppose project s has n coauhors. If the number of
coauthors of project s (including agent i if he is a coauthor of project s) that belong to the same affiliation
as agent i is m, then affiliationis = m/n.
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Figure 7: Distributions of equilibrium efforts. The left graph is based on Column (A) of
Table 1, and the right graph is based on Column (B) of Table 1.

Finally, in Figure 7, we plot the empirical distributions of equilibrium efforts given by

Equation (5) in Proposition 1. We find that the distribution of equilibrium efforts based

on Column (B) of Table 1 is more right-skewed than that based on Column (A), suggesting

that ignoring endogenous project participation tends to overestimate equilibrium efforts.

4.3 Marginal Effects

From Equation (5), the marginal effect of the kth covariate of agent i on the equilibrium

effort is given by
∂e∗

∂xik
= (Inp − L)−1D(δ ⊗ ∂α

∂xik
),

where ∂α/∂xik is an n × 1 vector with the ith element being ∂αi/∂xik = exp(x′iβ)βk and

other elements being 0.23 As the agents are connected through the bipartite network, the

change in an agent’s covariate affects not only his/her own equilibrium effort but also the

equilibrium efforts of other agents in the network. The former is known as the direct marginal

effect, while the latter is known as the indirect marginal effect. In Table 2, we report the

average marginal effect (AME) of each covariate by first calculating the marginal effect for

each individual and then taking an average across all individuals. For the kth covariate, the
23The covariate xik is taken to be a continuous variable. If xik is a binary variable, then the marginal

effect is given by e∗(xik = 1)− e∗(xik = 0).
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direct AME is given by

n−1
∑
i∈N

∑
s∈Pi

∂e∗is
∂xik

,

the indirect AME is given by

n−1
∑
i∈N

∑
j ̸=i,j∈N ,

∑
s∈Pj

∂e∗js
∂xik

,

and the total AME is given by

n−1
∑
i∈N

∑
j∈N ,

∑
s∈Pj

∂e∗js
∂xik

.

The benchmark marginal effects reported in the first column of Table 2 are calculated

based on the estimates given in Column (B) of Table 1. To gain a deeper understanding of the

magnitudes of the estimated complementarity and substitutability effects, we also calculate

the marginal effects under the restrictions λ = 0, ϕ = 0, and λ = ϕ = 0 respectively. When

the complementarity effect is ignored (i.e., λ is set to 0), the direct AMEs are downward

biased by 1%, the indirect AMEs are 0 (i.e., downward biased by 100%), and the total AMEs

are downward biased by 8%. When the substitutability effect is ignored (i.e., ϕ is set to 0),

the direct AMEs are upward biased by 65%~72%, the indirect AMEs are upward biased

by 133%~153%, and the total AMEs are upward biased by 70%~78%. When both effects

are ignored (i.e., both λ and ϕ are set to 0), the direct AMEs are upward biased by about

63%~70%, the indirect AMEs are 0, and the total AMEs are upward biased by 51%~58%.

In summary, ignoring the complementarity effect leads to a downward bias in the estimated

marginal effects, while ignoring the substitutability effect leads to an upward bias in the

estimated marginal effects. The latter bias dominates the former.
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Table 2: Marginal Effects of Researcher Characteristics on Efforts

Benchmark λ = 0 ϕ = 0 λ = ϕ = 0

Direct AME
Log life-time citations 1.4345 1.4208 2.3626 2.3315
Decades after graduation -1.1072 -1.0966 -1.8227 -1.7988
Male 0.0146 0.0144 0.0251 0.0248
Ivy League graduate 0.8340 0.8259 1.3761 1.3578

Indirect AME
Log life-time citations 0.1129 0.0000 0.2635 0.0000
Decades after graduation -0.0871 0.0000 -0.2032 0.0000
Male 0.0011 0.0000 0.0029 0.0000
Ivy League graduate 0.0658 0.0000 0.1545 0.0000

Total AME
Log life-time citations 1.5475 1.4208 2.6261 2.3315
Decades after graduation -1.1944 -1.0966 -2.0259 -1.7988
Male 0.0157 0.0144 0.0280 0.0248
Ivy League graduate 0.8998 0.8259 1.5305 1.3578

Notes: The marginal effects are calculated based on the estimates reported in Column
(B) of Table 1.

4.4 Robustness Analysis

We also consider two alternative specifications of the empirical model. First, we allow com-

patibility between researchers to be heterogeneous. Researchers differ in their knowledge

bases and these differences can affect their compatibility when collaborating on a joint

project. In order to capture heterogeneous compatibility, we define gij in Equation (1)

based on the Jaffe similarity of NEP fields between each pair of authors. The estimation

results with heterogeneous compatibility are reported in Table 3. We find the results are

comparable with those reported in Table 1. In particular, the complementarity and substi-

tutability effects are both positive and significant when endogenous project participation is

controlled for, and are downward biased when endogenous project participation is ignored.

It is worth pointing out that the estimates of λ are a little larger than those reported in

Table 1. This is because gij based on the Jaffe similarity measure is smaller than one and

thus a larger complementarity coefficient is obtained in compensation.

In the second specification, we assume that the payoff is discounted by the number of

coauthors in a project, i.e., δs = 1/|Ns| in Equation (2).24 The estimation results are reported

in Table 4. Although the estimated complementarity effects are larger than those reported
24However, Kuld & O’Hagan (2018) argue that the available empirical evidence suggests that the number

of co-authors causes very limited discounting of a published article.
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Table 3: Robustness Check: Heterogeneous Compatibility

(A) (B)
Exogenous Participation Endogenous Participation

Production

Complementarity (λ) -0.0893 0.2059***
(0.0795) (0.0217)

Substitutability (ϕ) 0.0818*** 0.2933***
(0.0284) (0.0411)

Constant (β0) -0.9902*** -2.8685***
(0.1670) (0.1564)

Log life-time citations (β1) 0.3092*** 0.5812***
(0.0227) (0.0219)

Decades after graduation (β2) -0.2135*** -0.5343***
(0.0430) (0.0267)

Male (β3) -0.0350 -0.0328
(0.0867) (0.0425)

Ivy League graduate (β4) 0.2564*** 0.3007***
(0.0535) (0.0312)

Author effect (ζ) – 1.6426***
(0.0522)

Project effect (ς) – 1.4881**
(0.4379)

Error term variance (σ2
ϵ ) 214.5831*** –

(5.0848)
Error term variance (σ2

u) – 92.0003***
(2.2335)

Participation

Constant (γ0) – -12.4886***
(0.2095)

NEP (γ1) – 2.4110***
(0.1089)

Affiliation (γ2) – 8.6645***
(0.3294)

Gender (γ3) – 3.3041***
(0.1602)

Past coauthors (γ4) – 7.5885***
(0.1460)

Common co-authors (γ5) – 11.0446***
(0.1997)

Author effect (ξ) – 1.6079***
(0.0830)

Project effect (ψ) – -5.3160***
(0.1607)

Homophily effect (κ) – -1.7855***
(0.0989)

Sample size 3,589 papers and 2,421 authors

Notes: Column (A) estimates the production function ignoring endogenous project participa-
tion. Column (B) jointly estimates the production and participation functions with both author
and project random effects. We implement MCMC sampling for 30,000 iterations and leave the
first 5000 draws for burn-in and use the rest of draws for computing the posterior mean (as
the point estimate) and the posterior standard deviation (in the parenthesis). The asterisks
***(**,*) indicate that the 99% (95%, 90%) highest posterior density range does not cover zero.
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Table 4: Robustness Check: Discounted Payoffs

(A) (B)
Exogenous Participation Endogenous Participation

Production

Complementarity (λ) -0.0038 0.3778***
(0.0961) (0.0516)

Substitutability (ϕ) 0.0756*** 0.1710***
(0.0265) (0.0212)

Constant (β0) -1.0422*** -3.1433***
(0.1693) (0.1766)

Log life-time citations (β1) 0.3105*** 0.5662***
(0.0231) (0.0229)

Decades after graduation (β2) -0.2073*** -0.4219***
(0.0439) (0.0259)

Male (β3) -0.0352 0.0352
(0.0870) (0.0442)

Ivy League graduate (β4) 0.2529*** 0.3590***
(0.0535) (0.0377)

Author effect (ζ) – 1.7624***
(0.0552)

Project effect (ς) – 1.2589***
(0.4416)

Error term variance (σ2
ϵ ) 214.7029*** –

(5.0879)
Error term variance (σ2

u) – 89.4708***
(2.1938)

Participation

Constant (γ0) – -12.1526***
(0.2201)

NEP (γ1) – 2.3066***
(0.1132)

Affiliation (γ2) – 8.2854***
(0.3275)

Gender (γ3) – 3.0565***
(0.1579)

Past coauthors (γ4) – 7.4929***
(0.1497)

Common co-authors (γ5) – 10.7551***
(0.2213)

Author effect (ξ) – 1.4193***
(0.0884)

Project effect (ψ) – -5.4637***
(0.1659)

Homophily effect (κ) – -1.8165***
(0.1069)

Sample size 3,589 papers and 2,421 authors

Notes: Column (A) estimates the production function ignoring endogenous project participa-
tion. Column (B) jointly estimates the production and participation functions with both author
and project random effects. We implement MCMC sampling for 30,000 iterations and leave the
first 5000 draws for burn-in and use the rest of draws for computing the posterior mean (as
the point estimate) and the posterior standard deviation (in the parenthesis). The asterisks
***(**,*) indicate that the 99% (95%, 90%) highest posterior density range does not cover zero.
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in Table 1 due to the smaller value of δs, the main results are qualitatively unchanged.

In Appendix E, we perform additional robustness checks to gauge the sensitivity of the

estimation results. In Table E.1, we experiment with an alternative specification of the

participation equation. In Tables E.2 and E.3, we estimate the benchmark empirical model

with samples which also include authors who wrote only single-authored papers in the sample

period and papers without any citations. We find that the estimates are similar to those

reported in Table 1, indicating the robustness of our findings.

4.5 Counterfactual Study

To illustrate the importance of complementarity and substitutability effects in policy evalu-

ation, we conduct a counterfactual study on a simple merit-based research incentives policy.

Under this policy, we assume every agent receives merit-based research incentives, r ∈ R+,

per unit of the output he/she generates.25 Then the utility function (2) of agent i can be

extended to

Ui(G, r) =
∑
s∈Pi

(1 + r)δsYs −
1

2

∑
s∈Pi

e2is + ϕ
∑
s∈Pi

∑
t∈Pi\{s}

eiseit

 . (11)

Let L(r) := L(r;λ, ϕ) = λ(1 + r)W − ϕM . Following a similar argument as in the proof of

Proposition 1, we can show that, if ρmax[L(r)] < 1, then the equilibrium effort portfolio is

given by

e∗(r) = (1 + r)[Inp − L(r)]−1D(δ ⊗ α). (12)

It is worth pointing out that, if the complementarity effect is ignored (i.e., λ = 0), then

L(r) = −ϕM , which does not depend on r. In this case, the research incentives r only
25Indeed, many universities give awards, monetary incentives, or merit compensation increase to promote

high quality research publications.
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increase the equilibrium effort

e∗(r) = (1 + r)(Inp + ϕM)−1D(δ ⊗ α)

by a factor of (1 + r). As the research output is linear in e∗(r) with λ = 0 in Equation

(1), the impact of research incentives on research output is 1:1. Intuitively, when λ = 0,

the multiplier effect of the bipartite network is wiped out, and hence the impact of research

incentives is likely to be understated. On the other hand, if the substitutability effect is

ignored (i.e., ϕ = 0), then the cost of research effort is understated and thus the impact of

research incentives on equilibrium effort is overstated. As a result, the impact of research

incentives on research output tends to be overstated as well.

In Figure 8, the solid line represents the impact of research incentives r on the total

research output based on the estimates reported in Column (B) of Table 1.26 The dashed

line corresponds to the case that the complementarity effect is ignored (i.e., λ is set to 0).

In this case, the impact of research incentives is understated by about 16%. The dotted line

corresponds to the case that the substitutability effect is ignored (i.e., ϕ is set to 0). In this

case, the impact of research incentives is overstated by about 90%. When both effects are

ignored (i.e., both λ and ϕ are set to 0), the impact of research incentives is depicted by the

dash-dotted line. In this case, the impact of research incentives is overstated by about 48%.

In summary, consistent with what we observe in the estimated marginal effects, ignoring

the complementarity effect underestimates the impact of research incentives, ignoring the

substitutability effect overestimates the impact of research incentives, and the latter bias

dominates the former. Hence, correctly estimating these two effects is crucial for policy

evaluation and recommendation.
26δs is set to be one for the estimation results reported in Table 1.
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Figure 8: Impact of research incentives on the total research output.

5 Conclusion

In this paper, we analyze the equilibrium efforts of researchers who seek to maximize their

utility when involved in multiple, possibly overlapping projects in a bipartite network. We

show that both the complementarity effect between collaborating researchers and the sub-

stitutability effect between concurrent projects of the same researcher play an important

role in determining the equilibrium effort level. To estimate the structural parameters of

the model, we propose a Bayesian MCMC procedure that accounts for endogenous selection

of researchers into research projects. We then bring our model to the data by analyzing

the coauthorship network of economists registered in the RePEc Author Service and find

empirical evidence for both complementarity and substitutability effects. Our approach can

be applied to other bipartite networks, such as the innovation network of developers and

patents and the business network of directors and company boards.

As our model has an explicit micro-foundation, it provides a formal framework for coun-
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terfactual analysis. To illustrate the importance of correctly estimating the structural model

in policy evaluation, we conduct a counterfactual analysis on the impact of research incen-

tives on research output. We find that the effectiveness of research incentives tends to be

underestimated when the complementarity is ignored and overestimated when the substi-

tutability is ignored.
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Appendices for “Collaboration in Bipartite Networks”
by Chih-Sheng Hsieh, Michael D. König, Xiaodong Liu, and Christian Zimmermann

A Proof of Proposition 1

Proof of Proposition 1. Let dis be an indicator variable such that dis = 1 if agent i

participates in project s and dis = 0 otherwise. Substitution of Equation (1) into Equation

(2) gives

Ui(G) =
∑
s∈P

disδs

∑
j∈N

αjdjsejs +
λ

2

∑
j∈N

∑
k∈N\{j}

gjkdjsdksejseks + ϵs

 (13)

−1

2

∑
s∈P

dise
2
is + ϕ

∑
s∈P

∑
t∈P\{s}

disditeiseit

 .

First, note that the marginal utility has to be non-positive at equilibrium, i.e.,

∂Ui(G)
∂eis

|e∗ = dis

δsαi + λδs
∑

j∈N\{i}

gijdjse
∗
js − e∗is − ϕ

∑
t∈P\{s}

dite
∗
it

 ≤ 0,

where the inequality is strict only if e∗is = 0 at equilibrium (corner solution). This set of

inequalities can be written in matrix form as

−D(δ ⊗ α) + (Inp − L)e∗ ≥ 0. (14)

Second, if e∗is > 0 at equilibrium, then ∂Ui(G)
∂eis

|e∗ = 0, which implies

e∗′[−D(δ ⊗ α) + (Inp − L)e∗] = 0. (15)
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Finally, the equilibrium effort has to be non-negative, i.e.,

e∗ ≥ 0. (16)

Conditions (14), (15), and (16) constitute a linear complementarity problem (Samelson et al.

1958). If ρmax(L) < 1, the matrix Inp − L is positive definite. It follows by Lemmas 2 and 3

in Bimpikis et al. (2019) that the unique equilibrium is given by the solution to the linear

complementarity problem and the inactive links (dis = 0) are strategically redundant and

play no role in determining the equilibrium. Hence, it follows by a similar arguments as in

the proof of Theorem 1 in Bimpikis et al. (2019) that the game has a unique equilibrium

with the equilibrium effort levels are given by Equation (5).
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B Bayesian Estimation

Since the likelihood function based on Equations (8) and (9) involves high-dimensional inte-

grals, it is computationally cumbersome to apply a frequentist maximum likelihood method

even when resorting to a simulation approach. As an alternative estimation method, the

Bayesian Markov Chain Monte Carlo (MCMC) approach can be more efficient for estimat-

ing latent variable models (cf. Zeger & Karim 1991). We divide the parameter vector θ and

unknown latent variables into blocks and assign the prior distributions as follows:

λ ∼ N (0, σ2
λ),

ϕ ∼ N (0, σ2
ϕ),

β ∼ N (0,Σβ),

ζ ∼ N (0, σ2
ζ ),

ς ∼ N (0, σ2
ς ),

γ ∼ N (0,Σγ),

ξ ∼ N (0, σ2
ξ ),

ψ ∼ N (0, σ2
ψ),

κ ∼ N (0, σ2
κ),

σ2
u ∼ IG

(τ0
2
,
ν0
2

)
,

and µi ∼ N (0, 1) for i ∈ N and ηs ∼ N (0, 1) for s ∈ P . We consider the normal and inverse

gamma (IG) conjugate priors, which are widely used in the Bayesian literature (Koop et al.

2007). The hyperparameters are chosen to make the prior distributions relatively flat and

cover a wide range of the parameter space, i.e., we set σ2
λ = σ2

ϕ = 10, Σβ = 10I, σ2
ζ = σ2

ς = 10,

Σγ = 1000I, σ2
ξ = σ2

ψ = σ2
κ = 1000, τ0 = 2.2, and ν0 = 0.1.

The MCMC sampling procedure combines the Gibbs sampling and the Metropolis-

Hastings (M-H) algorithm. It consists of the following steps:
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1. Draw the latent variable µi using the M-H algorithm based on f(µi|y, d, θ, µ−i, η), for

i = 1, . . . , n.

2. Draw the latent variable ηs using the M-H algorithm based on f(ηs|y, d, θ, µ, η−s), for

s = 1, . . . , p.

3. Draw γ using the M-H algorithm based on f(γ|y, d, θ\{γ}, µ, η).

4. Draw ξ using the M-H algorithm based on f(ξ|y, d, θ\{ξ}, µ, η).

5. Draw ψ using the M-H algorithm based on f(ψ|y, d, θ\{ψ}, µ, η).

6. Draw κ using the M-H algorithm based on f(κ|y, d, θ\{κ}, µ, η).

7. Draw λ using the M-H algorithm based on f(λ|y, d, θ\{λ}, µ, η).

8. Draw ϕ using the M-H algorithm based on f(ϕ|y, d, θ\{ϕ}, µ, η).

9. Draw β using the M-H algorithm based on f(β|y, d, θ\{β}, µ, η).

10. Draw ζ using the M-H algorithm based on f(ζ|y, d, θ\{ζ}, µ, η).

11. Draw ς using the M-H algorithm based on f(ς|y, d, θ\{ς}, µ, η).

12. Draw σ2
u using the conjugate inverse gamma conditional posterior distribution.

We collect the draws from iterating the above steps and compute the posterior mean and

the posterior standard deviation as our estimation results.
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C Data Description

To obtain a sample from RePEc that is appropriate for our analysis, we apply a series of

filters as follows.

First, we select papers that had a first pre-print version in 2010-2012. Furthermore,

we require all authors of the papers to be registered with RePEc and all authors to have

the RePEc Genealogy information on where they studied. We drop all duplicate or older

versions of each paper from our sample. This gives us a sample of 6,673 papers written by

3,700 distinct authors for which we have complete data. We call this sample: Sample (I).

This is the sample that we used to obtain the estimates reported in Table E.2 in Appendix

E. Descriptive statistics of the variables of interest in Sample (I) are reported in Table C.1.

Next, we drop 2,463 papers that do not have any citations up to July 2018 when the

data is extracted from the RePEc database, as well as 658 authors who only work on these

dropped papers without any citations. This reduces the sample size to 4,210 papers and

3,042 authors. We call this sample: Sample (II). This is the sample that we used to obtain

the estimates reported in Table E.3 in Appendix E. Descriptive statistics of the variables of

interest in Sample (II) are reported in Table C.2.

Finally, we drop 621 authors who only wrote a single-authored paper in the sample

period. This results in a sample of 3,589 papers written by 2,421 distinct authors. We call

this sample: Sample (III). This is the sample we used to obtain the main results reported in

Section 4.2. Descriptive statistics of the variables of interest in Sample (III) are reported in

Table C.3.
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Table C.1: Summary Statistics of Sample (I)

Min Max Mean S.D. Sample size

Papers
Weighted citations 0.0000 317.9515 3.7587 12.3858 6673
Number of authors (in each paper) 1 5 1.4160 0.6421 6673

Authors
Log life-time citations 0 10.7634 5.3176 1.8428 3700
Decades after graduation -0.7 6.2000 1.0642 1.0676 3700
Male 0 1 0.8154 0.3880 3700
Ivy League graduate 0 1 0.1268 0.3327 3700
Number of papers (for each author) 1 63 2.5538 2.7762 3700

Notes: This sample is constructed based on works that were released as working papers in
2010-2012. We drop papers in which not all of their authors were registered with RePEc. We
also drop authors who do not have the RePEc Genealogy information on where they studied.

Table C.2: Summary Statistics of Sample (II)

Min Max Mean S.D. Sample size

Papers
Weighted citations 0.0000 317.9515 5.9577 15.1682 4210
Number of authors (in each paper) 1 5 1.5124 0.6820 4210

Authors
Log life-time citations 0 10.7634 5.5445 1.7358 3042
Decades after graduation -0.7 6.2000 1.0701 1.0447 3042
Male 0 1 0.8222 0.3824 3042
Ivy League graduate 0 1 0.1341 0.3408 3042
Number of papers (for each author) 1 19 2.0930 1.7079 3042

Notes: This sample is constructed based on works that were released as working papers in
2010-2012. We drop papers in which not all of their authors were registered with RePEc. We
also drop authors who do not have the RePEc Genealogy information on where they studied.
In this sample, we further drop papers which do not have any citations up to November 2018.
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Table C.3: Summary Statistics of Sample (III)

Min Max Mean S.D. Sample size

Papers
Weighted citations 1e-04 317.9515 6.4578 16.0868 3589
Number of authors (in each paper) 1 5 1.6010 0.7017 3589

Authors
Log life-time citations 0 10.7634 5.7441 1.6782 2421
Decades after graduation -0.7 6.2000 1.1056 1.0372 2421
Male 0 1 0.8228 0.3819 2421
Ivy League graduate 0 1 0.1450 0.3522 2421
Number of papers (for each author) 1 19 2.3734 1.8112 2421

Notes: This sample is constructed based on works that were released as working papers in
2010-2012. We drop papers in which not all of their authors were registered with RePEc. We
also drop authors who do not have the RePEc Genealogy information on where they studied.
In this sample, we further drop papers which do not have any citations up to November 2018
and the authors who only wrote a single-authored paper in the sample period.

D Monte Carlo Simulation

To show that the proposed Bayesian MCMC estimation approach in Appendix B can ef-

fectively recover the true parameters in Equations (8) and (9), we conduct a Monte Carlo

simulation with 100 repetitions. In each repetition, we generate an artificial bipartite col-

laboration network of 300 authors (n = 300) and 400 projects (p = 400). The data gen-

erating process (DGP) runs as follows: we first simulate dyadic binary exogenous variables

zis ∈ {0, 1} randomly with the probability P (zis = 1) = 0.64; individual exogenous variable

xi from normal distribution N(0, 4); and both author and project latent variables µi and

ηs from N(0, 1). Then, we generate the artificial collaboration network and project output

based on the participation function of Equation (9) and the production function of Equation

(8).

In the Monte Carlo simulations, we consider three sets of parameters to see how the signs

of the coefficients of agent and project latent variables affect the direction of the selection

bias. In the first parameter specification, we set ζ > 0 and ξ > 0 (i.e., a researcher with

higher ability µi tends to participate in more projects), ς > 0 and ψ < 0 (i.e., a project

with higher potential ηs has a higher threshold for researchers to participate in), and κ < 0
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(i.e., agents are sorted into projects based on homophily of unobserved characteristics). The

simulation results reported in Table D.1 confirm that all true model parameters can be

effectively recovered by the employed Bayesian MCMC approach when endogenous project

participation is controlled for through author and project latent variables, and both the

complementarity and substitutability effects are downward biased when endogenous project

participation is ignored. The direction of the bias is the same as what we observe in the

empirical study.

In the second parameter specification, we set ζ > 0 and ξ < 0 (i.e., a researcher with

higher ability tends to participate in fewer projects), while holding the other parameters the

same as the first specification. In this case, all true model parameters can still be effectively

recovered by the employed Bayesian MCMC approach when endogenous project participation

is controlled for. When endogenous project participation is ignored, the substitutability effect

is overestimated because it is low-ability researchers who are more likely to work on multiple

concurrent projects.

In the third parameter specification, we set ς > 0 and ψ > 0 (i.e., high-potential projects

are easier to join than low-potential ones), while holding the other parameters the same

as the first specification. In this case, all true model parameters can still be effectively

recovered by the employed Bayesian MCMC approach when endogenous project participation

is controlled for. When endogenous project participation is ignored, the complementarity

effect is overestimated because researchers are more likely to collaborate on high-potential

projects.

From the simulation results, we can conclude (i) all true model parameters can be ef-

fectively recovered by the employed Bayesian MCMC approach when endogenous project

participation is controlled for, and (ii) the pattern of bias is consistent with our intuition.
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Table D.1: Simulation results: downward biases on λ and ϕ

Exogenous Participation Endogenous Participation

DGP Est. S.D. Est. S.D.

Production
Complementarity (λ) 0.10 0.0315 0.0609 0.0997 0.0024
Substitutability (ϕ) 0.10 -0.1051 0.1171 0.1007 0.0146
Constant (β0) -1.00 -0.0584 0.6452 -0.9965 0.0620
xi (β1) 0.50 0.3877 0.1754 0.4974 0.0131
Author effect (ζ) 1.00 1.0014 0.0262
Project effect (ς) 0.50 0.5251 0.0459
Error variance (σ2

u) 0.50 236.3430 176.4898 0.4625 0.0438

Participation
Constant (γ0) -5.75 -5.7298 0.1008
zij (γ1) 0.50 0.4882 0.1041
Author effect (ξ) 1.00 1.2646 0.2290
Project effect (ψ) -1.00 -1.2657 0.2538
Homophily (κ) -0.50 -0.7721 0.2373

Notes: We perform Monte Carlo simulations with 100 repetitions. The reported values are
the mean and the standard deviation of point estimates calculated across repetitions.

Table D.2: Simulation Result: upward bias on ϕ

Exogenous Participation Endogenous Participation

DGP Est. S.D. Est. S.D.

Production
Complementarity (λ) 0.10 0.0539 0.0509 0.0934 0.0271
Substitutability (ϕ) 0.10 0.8949 1.1015 0.0997 0.0342
Constant (β0) -1.00 -0.6415 0.9804 -0.9829 0.0967
xi (β1) 0.50 0.4004 0.3622 0.4913 0.0250
Author effect (ζ) 1.00 1.0042 0.0507
Project effect (ς) 0.50 0.5259 0.0360
Error variance (σ2

u) 0.50 77.3531 76.722 0.4753 0.0354

Participation
Constant (γ0) -5.75 -5.7416 0.1063
zij (γ1) 0.50 0.4964 0.0971
Author effect (ξ) -1.00 -1.2362 0.2490
Project effect (ψ) -1.00 -1.2485 0.2418
Homophily (κ) -0.50 -0.7283 0.2754

Notes: We perform Monte Carlo simulations with 100 repetitions. The reported values are
the mean and the standard deviation of point estimates calculated across repetitions.
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Table D.3: Simulation Result: upward bias on λ

Exogenous Participation Endogenous Participation

DGP Est. S.D. Est. S.D.

Production
Complementarity (λ) 0.10 0.1277 0.0096 0.1005 0.0015
Substitutability (ϕ) 0.10 -0.0197 0.0720 0.0968 0.0039
Constant (β0) -1.00 -1.4053 1.2002 -1.0625 0.0338
xi (β1) 0.50 0.5845 0.3356 0.5077 0.0124
Author effect (ζ) 1.00 0.9957 0.0221
Project effect (ς) 0.50 0.4992 0.0460
Error variance (σ2

u) 0.50 904.6899 752.5478 0.5111 0.0412

Participation
Constant (γ0) -5.75 -5.7572 0.0894
zij (γ1) 0.50 0.4839 0.0938
Author effect (ξ) 1.00 0.9867 0.0488
Project effect (ψ) 1.00 0.9734 0.0540
Homophily (κ) -0.50 -0.5036 0.0656

Notes: We perform Monte Carlo simulations with 100 repetitions. The reported values are
the mean and the standard deviation of point estimates calculated across repetitions.

E Additional Robustness Checks

In this section, we perform additional robustness checks to gauge the sensitivity of the

estimation results. In Table E.1, we experiment with an alternative specification of the

participation equation. In Tables E.2 and E.3, we estimate the benchmark empirical model

with Sample (I) and Sample (II) respectively (see Appendix C). We find that the estimates

are similar to those reported in Table 1, indicating the robustness of our findings.
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Table E.1: Robustness Check: Alternative Participation Equations

(A) (B) (C)
Homogeneous Heterogeneous Discounted

Complementarity Complementarity Payoffs

Production

Complementarity (λ) 0.1110*** 0.2259*** 0.3556***
(0.0159) (0.0196) (0.0448)

Substitutability (ϕ) 0.2041*** 0.2311*** 0.1781***
(0.0285) (0.0311) (0.0212)

Constant (β0) -2.9599*** -2.5822*** -3.0756***
(0.1535) (0.1423) (0.1490)

Log life-time citations (β1) 0.5580*** 0.4978*** 0.5599***
(0.0208) (0.0212) (0.0199)

Decades after graduation (β2) -0.4315*** -0.3847*** -0.4307***
(0.0255) (0.0275) (0.0248)

Male (β3) -0.0111 -0.0279 0.0464
(0.0403) (0.0457) (0.0387)

Ivy League graduate (β5) 0.3222*** 0.3665*** 0.3344***
(0.0303) (0.0458) (0.0278)

Author effect (ζ) 1.7854*** 1.6729*** 1.7871***
(0.0550) (0.0520) (0.0528)

Project effect (ς) 1.0686** 1.1877** 1.4627***
(0.4566) (0.4246) (0.4302)

Error term variance (σ2
u) 88.8616*** 86.8997*** 88.9253***

(2.4089) (2.1576) (2.1357)

Participation

Constant (γ0) -7.7101*** -7.6576*** -7.7143***
(0.0542) (0.0845) (0.0875)

NEP (γ1) 1.6197*** 1.6131*** 1.6129***
(0.0945) (0.0997) (0.0978)

Author effect (ξ) 0.4461*** 0.5163*** 0.4406***
(0.0628) (0.0632) (0.0635)

Project effect (ψ) -0.5582*** -0.6755*** -0.5382***
(0.0944) (0.0887) (0.0817)

Homophily effect (κ) -0.7438*** -0.7466*** -0.7471***
(0.0738) (0.0690) (0.0685)

Sample size 3,589 papers and 2,421 authors

Notes: Column (A) assumes homogeneous complementarity. Column (B) allows for het-
erogeneous complementarity using Jaffe’s similarity measure for the research fields of col-
laborating authors. Column (C) considers the case where the payoff is discounted by the
number of coauthors in a project. We implement MCMC sampling for 30,000 iterations and
leave the first 5000 draws for burn-in and use the rest of draws for computing the posterior
mean (as the point estimate) and the posterior standard deviation (in the parenthesis).
The asterisks ***(**,*) indicate that the 99% (95%, 90%) highest posterior density range
does not cover zero.
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Table E.2: Robustness Check: Sample (I)

(A) (B)
Exogenous Participation Endogenous Participation

Production

Complementarity (λ) 0.0021 0.1598***
(0.0260) (0.0116)

Substitutability (ϕ) 0.1014*** 0.1441***
(0.0233) (0.0227)

Constant (β0) -1.2066*** -3.4528***
(0.1256) (0.1437)

Log life-time citations (β1) 0.3303*** 0.6186***
(0.0175) (0.0221)

Decades after graduation (β2) -0.2371*** -0.5033***
(0.0335) (0.0257)

Male (β3) -0.0288 -0.1442**
(0.0700) (0.0557)

Ivy League graduate (β5) 0.2919*** 0.3851***
(0.0458) (0.0396)

Author effect (ζ) – 2.0052***
(0.0655)

Project effect (ς) – -0.6477
(0.4203)

Error term variance (σ2
ϵ ) 126.7968*** –

(2.1856)
Error term variance (σ2

u) – 72.2692***
(1.4150)

Participation

Constant (γ0) – -10.6088***
(0.1233)

NEP (γ1) – 1.4979***
(0.0771)

Affiliation (γ2) – 6.5643***
(0.2446)

Gender (γ3) – 1.7358***
(0.0841)

Past coauthors (γ4) – 6.2987***
(0.0948)

Common co-authors (γ5) – 7.2021***
(0.0729)

Author effect (ξ) – 0.4572***
(0.0582)

Project effect (ψ) – -1.2853***
(0.0919)

Homophily effect (κ) – -0.2246***
(0.0831)

Sample size 6,673 papers and 3,700 authors

Notes: Column (A) estimates the production function ignoring endogenous project participa-
tion. Column (B) jointly estimates the production and participation functions with both author
and project random effects. We implement MCMC sampling for 30,000 iterations and leave the
first 5000 draws for burn-in and use the rest of draws for computing the posterior mean (as
the point estimate) and the posterior standard deviation (in the parenthesis). The asterisks
***(**,*) indicate that the 99% (95%, 90%) highest posterior density range does not cover zero.
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Table E.3: Robustness Check: Sample (II)

(A) (B)
Exogenous Participation Endogenous Participation

Production

Complementarity (λ) -0.0407 0.1422***
(0.0357) (0.0118)

Substitutability (ϕ) 0.0827*** 0.1847***
(0.0254) (0.0123)

Constant (β0) -0.9694*** -3.1811***
(0.1480) (0.1454)

Log life-time citations (β1) 0.3121*** 0.6027***
(0.0215) (0.0200)

Decades after graduation (β2) -0.2334*** -0.5232***
(0.0416) (0.0216)

Male (β3) -0.0501 -0.0008
(0.0766) (0.0339)

Ivy League graduate (β5) 0.2613*** 0.2994***
(0.0499) (0.0247)

Author effect (ζ) – 1.6756***
(0.0481)

Project effect (ς) – 1.5924***
(0.2942)

Error term variance (σ2
ϵ ) 189.6873*** –

(4.1484)
Error term variance (σ2

u) – 76.9183***
(1.6947)

Participation

Constant (γ0) – -12.5956***
(0.2253)

NEP (γ1) – 2.3455***
(0.1095)

Affiliation (γ2) – 8.9033***
(0.3213)

Gender (γ3) – 3.3093***
(0.1363)

Past coauthors (γ4) – 7.4911***
(0.1635)

Common co-authors (γ5) – 10.9856***
(0.1859)

Author effect (ξ) – 1.5721***
(0.0730)

Project effect (ψ) – -4.2284***
(0.1082)

Homophily effect (κ) – -1.6136***
(0.0792)

Sample size 4,210 papers and 3,042 authors

Notes: Column (A) estimates the production function ignoring endogenous project participa-
tion. Column (B) jointly estimates the production and participation functions with both author
and project random effects. We implement MCMC sampling for 30,000 iterations and leave the
first 5000 draws for burn-in and use the rest of draws for computing the posterior mean (as
the point estimate) and the posterior standard deviation (in the parenthesis). The asterisks
***(**,*) indicate that the 99% (95%, 90%) highest posterior density range does not cover zero.
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